

Gr. Thurmair, Linguatec Prague, 2009-05-14

Baseline

Outcome of the MT Workshop Athens, 2009:

- 1. Knowledge-driven systems are still not beaten in quality by data-driven systems in the majority of language directions researched
- 2. MT output acceptability is between 50% and 20%, depending on language direction

Winners look different!

Error analysis

- knowledge-driven systems:
 - Parse failures / robustness, lexical selection, fluency
- data-driven systems:
 - Non-local phenomena / word order, output grammaticality, accuracy, domain dependency

Hybrid MT systems

- Progress by exploiting all available resources
 - Dictionaries and grammars (knowledge-driven systems)
 - Phrase tables and language models (data-driven systems)
 - Identify and use the ,knowledge' encoded in them
- Build flexible system arechitectures
 - Support the use of all types of resources
 - Scale the systems according to their availability
 - in case of "less resourced" translation directions
 - types of architectures:
 - Coupling (linear, parallel)
 - Extensions of RMT / SMT skeletons
 - · Hybrid combinations of components

Analysis

- Identify source content: what needs to be translated!
 - Don't start target sentence without knowing what you want to say!
 - Source language is not just a bag of words (word semantics);
 You can only generate what you have analysed
 - Strengthen <u>analysis</u> capacity!
 - This is a knowledge-driven task!
 - E.g.: syntactic functions / cases; intonation (Kuo/Ramsay 08) tense & aspect, pronouns, gapping, ...
 - Must be supported by data-driven resources
 - Tree banks, collocations, etc.
 - Go beyond sentence boundary
 - NE coreference; text grammars, discourse referents
 - Develop robust fallbacks for analysis failures

Transfer

- Maintain translation accuracy
 - No missing words, no spurious add-ons
- Use all existing knowledge sources
 - (All) possible translations are coded in dictionaries!
 - Phrase table contents should be subsets of those ...
 - => use dictionaries for cleanup / control
 - => add dictionary information to phrase tables
 - Phrase tables provide probabilities to translations
 - RMT Transfer components should use them
 - Structural (and complex lexical) tansfer
 - Source and target trees are not isomorphic ...
- Don't decide on transfer selection with limited knowledge
 - Give generation a *lattice* of translation options

Generation

- Improve fluency /grammaticality of translation result
- Build a knowledge-driven skeleton of target text
 - Constituent ordering, based on syntactic functions / cases
 - (SOV>SVO; do-insertion; complex VP split, ...)
 - Ensure grammaticality of the output
 - This is the most significant human evaluation criterion
- Use language model information for fine tuning
 - for selection of lexical units
 - for handling ,language-use' dependent phenomena, e.g.:
 - Adverb placement
 - · Preposition selection

Usage / Context

- MT is not a playground for machine learning (or linguistic) approaches
- Worry about the (real) user problems in translation
 - deficient input
 - customer specific terminology
 - translation memory integration
 - domain adaptation
 - embedded solutions
- Winners will be systems with user/market acceptance
 - Improve **MT quality**, by integrating all available resources
 - Improve domain **integration** / application orientation

