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Abstract 

This paper aims at providing a reliable 

method for measuring the correlations 

between different scores of evaluation 

metrics applied to machine translated 

texts.  A series of examples from recent 

MT evaluation experiments are first 

discussed, including results and data from 

the recent French MT evaluation 

campaign, CESTA, which is used 

here.  To compute correlation, a set of 

1,500 samples for each system and each 

evaluation metric are created using 

bootstrapping. Correlations between 

metrics, both automatic and applied by 

human judges, are then computed over 

these samples.  The results confirm the 

previously observed correlations between 

some automatic metrics, but also indicate 

a lack of correlation between human and 

automatic metrics on the CESTA data, 

which raises a number of questions 

regarding their validity.  In addition, the 

roles of the corpus size and of the 

selection procedure for bootstrapping 

(low vs. high scores) are also examined. 

1 Introduction 

One of the design principles of automatic MT 

evaluation metrics is that their scores must 

“correlate” with a reliable measure of translation 

quality, generally estimated by human judges.  

Indeed, the claim that an automatic scoring 

procedure applied to MT output can provide an 

accurate view of translation quality must be 

substantiated by a proof that the scores do reflect 

genuine quality, as perceived by human users of 

a translation.  For instance, the proponents of 

BLEU or WNM (Babych and Hartley, 2004; 

Papineni et al., 2001) have compared the scores 

produced by their metrics – which compare      

n-grams of MT-generated sentences with one or 

more reference translations produced by humans 

– with adequacy and fluency scores assigned by 

human judges. 

It is not, of course, that all metrics of 

translation quality must be correlated.  Although 

adequacy (i.e. fidelity or “semantic correctness”) 

and fluency (acceptability as a valid sample of 

the target language) do seem correlated to some 

extent (White, 2001), one can easily imagine 

MT output with high fluency but low adequacy.  

However, an automatic MT evaluation metric 

should at least correlate with one quality 

characteristic on which human judges would 

reliably agree, which can be some aspect of 

intrinsic quality, or a utility-based measure with 

respect to a given task. 

Given the low cost of automatic metrics, they 

have been widely used in recent experiments, 

three of which are discussed in Section 5.  

However, the results obtained on the correlation 

between metrics that were used are difficult to 

compare, and therefore the reliability of 

automatic metrics is hard to assess.   

In this article, we propose a method to 

measure the correlation between two MT 

evaluation metrics based on bootstrapping 

(Section 3) and apply it to data from the recent 

French MT evaluation campaign, CESTA 
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(Section 4).  Our experiments (Section 5) analyze 

the correlation between metrics and show that 

correlation is lower than expected for automatic vs. 

human metrics.  The experiments also show that 

correlation varies with sample size, as well as with 

the subset of sentences that is considered (low vs. 

high quality).  Samples from the two CESTA runs 

indicate however that correlations do not vary 

significantly with a different translation domain. 

2 Correlation between MT Evaluation 

Metrics in Previous Experiments 

Many authors report on the correlation between 

human and automated metrics: some working at 

the sentence level (Kulesza and Shieber, 2004; 

Russo-Lassner et al., 2005), and some at the 

corpus level (Doddington, 2002; Papineni, 2002), 

in a variety of approaches and setups. Recent 

experiments, for instance, report that the 

correlation of the well-known BLEU metric with 

metrics applied by humans is not always as high as 

previously reported (Callison-Burch et al., 2006).  

In this section, we analyze three recent 

contributions that illustrate clearly the variety of 

methodologies used to compute correlations 

between metrics.  

2.1 An Experiment with the Europarl Corpus 

Koehn and Monz (2006) describe the competition 

organized during the Statistical MT Workshop at 

NAACL 2006.  Its main goal was to establish 

baseline performance of MT evaluation for 

specific training scenarios. The test corpus 

consisted of sentences from the Europarl corpus 

(Koehn, 2005) and from editorials of the Project 

Syndicate website, and contained a total of 3,064 

sentences. The translation directions were 

SP↔EN, FR↔EN, DE↔EN and there were 14 

participating systems. 

The BLEU metric was used for automatic 

evaluation, as the most commonly used metric in 

the MT community.  To provide human quality 

judgments, the workshop participants had to assess 

300–400 sentences each, in terms of adequacy and 

fluency, on a 5-point scale.  Each evaluator was in 

fact simultaneously given 5 machine translations, 

one reference translation, and one source sentence, 

and was asked to perform a comparative 

evaluation of the machine translations.  The scores 

for adequacy and fluency were then normalized 

and were finally converted into rankings, to 

increase robustness of the conclusions.   

The similarity between the performances of 

the systems and the problems encountered in the 

human evaluation made it difficult to draw 

strong conclusions about the correlation of 

human and automatic metrics.  Some evaluators 

explicitly pointed out how difficult it was to 

maintain consistency of judgment, especially 

when the sentences are longer than average.  

Evaluators also suggested extending the scale 

for adequacy scores, as this would improve the 

reliability of judgments.  

2.2 Reliability and Size of Test Set 

Coughlin (2003) reports results on the 

correlation between human assessments of MT 

quality and the BLEU and NIST metrics 

(Doddington, 2002) in a large scale evaluation, 

using data collected during two years. The 

judges were neither domain experts (in computer 

science), nor were they involved in the 

development of the participating systems. 

Having access only to high quality reference 

translations, they had to rate sentences in pairs, 

to compare two different systems. The 

innovative methodology of human evaluation 

was to rate the overall acceptability of the 

sentences – and not their adequacy or fluency – 

on a 4-point scale, without further instructions, 

thus generating only one human score per 

sentence.  

The sentences were evaluated by 4–7 judges, 

leading to an average inter-rater agreement of 

0.76 for EN�DE and 0.83 for FR�EN. 

Contrary to the work described in the 

previous subsection, Coughlin (2003) found a 

very high correlation between the BLEU metric 

and the human judges, especially when test data 

sets comprise more than 500 sentences. For the 

NIST metric, on the contrary, correlation is 

lower for data sets that comprise more than 250 

sentences. In general, Coughlin (2003) shows a 

high correlation between BLEU/NIST and 

human scores, for all language pairs and systems 

used, except for the FR�EN pair which had low 

negative correlation, for which they suggest that 

the Hansard domain might be more difficult to 

translate for the systems under evaluation. 
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2.3 Correlations in the CESTA Campaign 

The French MT evaluation campaign, CESTA, 

also reported results on the meta-evaluation of 

automatic metrics, i.e. their comparison to the 

human scores of adequacy and fluency (Hamon et 

al., 2006).  The data used for the evaluation is 

described in detail in Section 4, since it is also 

used in this paper.  The main automatic metrics 

used in CESTA are BLEU, NIST, Weighted N-

gram Metric (WNM) (Babych, 2004), mWER 

(Niessen et al., 2000), and mPER (Tillmann et al., 

1997).  

CESTA used human judges to assign adequacy 

and fluency scores on a 5-point scale with a 

protocol and interfaces that changed from the first 

to the second run.  The rating scale in the first run 

explicitly listed the intermediate labels for the 

values, while for the second run the labels were 

removed.  In addition, while in the first run the 

evaluation of adequacy and fluency was done at 

the same time, in the second run, the judges scored 

every segment separately for fluency and for 

adequacy. In both runs the final scores for each 

sentence are the average of two assessments. 

When defined as the percentage of identical 

values from the 5-point scale, the inter-judge 

agreement is only 40% for fluency, and varies 

from 36% to 47% for adequacy in the first vs. 

second run (EN�FR). However, when defined as 

the percentage of scores that differ by at most one 

point between two judges (e.g. a segment rated 3 

by one judge and 2 by the other would count as an 

agreement), inter-judge agreement increases 

significantly, to 84% for fluency and 78% for 

adequacy. Moreover, the CESTA campaign 

reports acceptable correlation between automatic 

metrics and adequacy/fluency, when computed 

over the five participating systems, that is, as the 

Pearson correlation of five pairs of values.  For 

example, the correlation of NIST (or BLEU) with 

fluency is around 0.67 in the first run1.  

3 Using Bootstrapping to Study the 

Correlation between Metrics 

We propose here the use of bootstrapping to 

investigate the correlation between the scores of 

different metrics on a per system basis, and not 

                                                           
1The CESTA final report provides the detailed scores: 
http://technolangue.net/IMG/pdf/Rapport_final_CESTA_v1.04.pdf. 

only between the various systems participating 

in an evaluation. To calculate the correlation 

between two or more variables (metrics in this 

case), we need two or more samples of each 

variable: for example, in an evaluation 

campaign, the samples are the final scores 

obtained by each system, which are then 

correlated to explore relations between different 

metrics (cross-system correlation). Our approach 

consists of (artificially) generating several 

sample scores of the same system and 

calculating the correlations of two metrics over 

the set of samples, for that particular system. 

The advantages of this method are that we only 

need the output of one system and that the 

results obtained are specific to that system. The 

disadvantage is of course, that direct comparison 

with standard cross-system correlation is not 

possible, since we only consider one system at a 

time. 

Therefore, this method can be used to 

estimate the correlation of metrics as the result 

of evaluating one system only, and can include 

of course any kind of metrics, human and 

automatic, in the analysis. 

3.1 Bootstrapping Samples of Scores 

Bootstrapping is a statistical technique that is 

used to study the distribution of a variable based 

on an existing set of values (Efron and 

Tibshirani, 1993). This is done by randomly 

resampling with replacement (i.e. allowing 

repetition of the values) from the full existing 

sample and computing the desired parameters of 

the distribution of the samples. The method has 

the practical advantage of being easy to 

implement and the theoretical advantage of not 

presupposing anything about the underlying 

distribution of the variable. A simple 

programming routine can thus calculate the 

estimators of the mean, variance, etc., of any 

random variable distribution.  

Moreover, when the original sample is 

resampled a large number of times, the law of 

large numbers ensures that the observed 

probability approaches (almost certainly) the 

actual probability. Also, when N is sufficiently 

large, the sample scores are quite close to the 

normal distribution, as illustrated in Figure 1.  

The bootstrapping algorithm can be 

summarized as follows: 
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1. Given a sample X = (X1, X2, …, Xn) from a 

population P, generate N random samples 

(noted X*) of the same size by drawing n 

values from the sample, with replacement 

(each value having probability 1/N).  

2. The resulting population P*, noted X* = (X1
*, 

…, XN
*), constitutes the N bootstrapped 

samples. 

3. If the original estimator of a given population 

parameter was θ(X), with the bootstrapped 

samples we can calculate the same estimator 

as θ(X*).  

 

An important parameter for bootstrapping is N, 

the number of bootstrapped samples, i.e. the 

number of times the process is repeated. This 

number should be large enough to build a 

representative number of samples. It appears that, 

for instance, N = 200 leads to slightly biased 

estimations (Efron and Gong, 1983; Efron and 

Tibshirani, 1993; Koehn, 2004; Zhang et al., 2004, 

so N ~ 1,000 is preferred, for example N = 1,000 ) 

or even N = 10,000  (Bisani and Ney, 2004). Based 

on these examples, we decided to use N = 1,500 

bootstrapped samples. 

 

 
Figure 1. Example of histogram for the WER 

scores obtained with 1,500 bootstrapped samples 

(CESTA scores, first run, system S2) 

 

3.2 Application to MT Evaluation Scores 

In the MT field, bootstrapping has been mainly 

used to estimate confidence intervals for automatic 

metrics and to compute the statistical significance 

of comparative performance of different MT 

systems, e.g. using the BLEU (Koehn, 2004; 

Kumar and Byrne, 2004; Zhang et al., 2004) or 

WER metric (Bisani and Ney, 2004). Here, 

bootstrapping will be used to compute the 

correlation between metrics for MT. These 

correlations will be studied for each system, i.e. 

they are calculated on a per system basis as 

opposed to the common cross-system 

correlation.  

Since correlation concerns two sets of scores, 

we need to apply the metrics simultaneously to 

the same bootstrapped samples to keep 

consistency in the scores. Put in simpler words, 

we apply two (or more) different metrics to the 

same random sample per iteration of the 

bootstrapping process. A random sample is a set 

of segments randomly selected from the corpus 

and of the same size of the corpus used in the 

evaluation. 

Described in pseudo code, the routine 

computing correlation is particularly simple: M 

is the number of segments to be considered, N is 

the numbers of iterations, sample[m] is the m-th 

element of the random sample and sample* is 

the complete bootstrapped sample: 

 
 

  for(n=0; n<N; n++){ 
      for(m=0; m<M; m++){  
         sample[m] = selectRandSeg(); 
      } 
      scoresA[n]=calcMetricA(sample*); 
      scoresB[n]=calcMetricB(sample*); 
  } 

  calcCorrelation(scoresA, scoresB); 

 

4 Evaluation Resources: Data, Systems 

and Metrics 

For the experiments presented here, we used the 

resources of the EN�FR translation task in the 

CESTA MT evaluation campaign (Hamon et al., 

2006).  In all cases, the results of the 

participating systems are anonymized, therefore 

the systems will simply be referred to by the 

codes S1 to S5 in no particular order.  

One of the goals of the first run was to 

validate the use of automatic evaluation metrics 

with French as a target language, by comparing 

the results of well-known automatic metrics with 

fluency and adequacy scores assigned by human 

judges.  The test data for the first run consisted 

of 15 documents from the Official Journal of the 

European Communities (JOC, 1993) with a total 

of 790 segments and an average of 25 words per 

segment. The documents contain transcribed 

questions and answers in a parliamentary 

context, and since no particular domain was 
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targeted when putting together the corpus, the 

CESTA campaign considered this as general 

domain data. Five systems participated in the 

EN�FR first run, both commercial and research 

ones. 

For the second run, the goal was to improve the 

evaluation protocols used in the first run and to 

observe the impact of system adaptation to a 

particular domain. Therefore, the medical domain 

was chosen, using data collected from the Santé 

Canada website, with a total of 288 segments and 

an average of 22 words per segment. Almost the 

same systems participated in the second run. 

In addition to the automatic metrics used in the 

CESTA campaign, we included in our experiment 

precision and recall from the General Text 

Matcher (Turian et al., 2003). 

5 Experimental Study of Correlation 

Although we performed the study using all the 

systems participating in the CESTA campaign, we 

will only present here the results of two systems, 

namely S2 and S5, chosen among the best. In 

Section 5.1, we compute correlations between 

metrics on two test sets of dissimilar size, in 

Section 5.2 we study the correlations for segments 

of very high and very low adequacy scores and, 

finally, in Section 5.3 we present the results of the 

correlations for a test set of a different domain.  

5.1 Correlation Values and the Influence of 

the Size of Test Data  

In the first experiment, we compared correlation 

between metrics, when calculated on a test set of 5 

documents and on a larger set of 15 documents 

from the general domain corpus. We hypothesize 

that if a strong correlation exists between two 

score sets, it should be stable, i.e. it should be 

similar or even higher, when using a larger test set. 

Tables 1 to 4 show the Pearson R coefficients 

for all the metrics applied in this study, separately 

for systems S5 (Tables 1 and 2) and S2 (Tables 3 

and 4).  The correlation figures were computed on 

5 documents in Tables 1 and 3, and respectively on 

15 documents in Tables 2 and 4.  Negative values 

generally occur when the metrics vary in the 

opposite direction, e.g. higher scores of the first 

one correspond (correctly) to lower scores of the 

second one.  

As we expected, there is a relatively high 

correlation between metrics of the same type 

(except for adequacy and fluency for S5) 

regardless of the size of the test data set: for 

instance, the following correlations between 

metrics appear to be quite high: WER vs. PER > 

0.81, BLEU vs. NIST > 0.72, PREC vs. REC > 

0.76.  However, the figures show also that 

automatic metrics correlate better with other 

automatic metrics than with adequacy or 

fluency; for both systems, the NIST metric 

presents the lowest coefficients.  

 

 
Figure 2. Scatter plot of WER vs. BLEU 

bootstrapped scores using 5 documents 
 

 
Figure 3. Scatter plot of adequacy vs. fluency 

bootstrapped scores using 5 documents 

 

Regarding the change in the size of the test 

data, the correlations (excluding adequacy vs. 

fluency) for S2 systematically increase when 

using 15 documents with respect to 5.  However, 

this is less clear for S5: the correlation of NIST 

0.44 
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with all other metrics increases, BLEU vs. 

WER/PER remains stable, but the correlations 

between automatic metrics and the human ones 

decrease, quite considerably in some cases, e.g. 

BLEU vs. fluency. This is probably due to the 

particular documents selected, since scores vary 

more on small test sets, as shown in (Estrella et al., 

2007). 

A graphical representation of the scores 

appears in Figures 2 to 5, which plot two scores 

for each of the 1,500 bootstrapped samples, for 

systems S2 (light/green) and S5 (dark/blue). 

Figure 2 illustrates two metrics that are highly 

correlated, BLEU and WER: the clouds of dots are 

organized along a line, which has negative slope as 

lower WER corresponds to higher BLEU (and to 

better performance, in principle). The correlation 

coefficients for the samples in Figure 2 are 

respectively -0.83 and -0.89. 

A similar, albeit lower, correlation appears in 

Figure 3 for the two human metrics, adequacy 

vs. fluency.  Again, the clouds of dots are 

organized along lines, this time with positive 

slopes.  The correlation coefficients are 

respectively 0.84 and 0.58 for S2 and S5, the 

lower value for S5 being quite visibly reflected 

in the more scattered pattern of blue dots (less 

linear and more rounded shape). 

 

 

 

S5 WER PER BLEU NIST ADE FLU PREC REC 

WER 1 0.93 -0.90 -0.69 -0.42 -0.43 -0.72 -0.56 

PER  1 -0.89 -0.76 -0.40 -0.41 -0.84 -0.68 

BLEU   1 0.83 0.39 0.44 0.82 0.71 

NIST    1 0.26 0.27 0.87 0.68 

ADE     1 0.58 0.34 0.39 

FLU      1 0.34 0.37 

PREC       1 0.79 

REC        1 

Table 1. Correlation matrix for S5 using 5 documents 

 

S5 WER PER BLEU NIST ADE FLU PREC REC 

WER 1 0.92 -0.90 -0.75 -0.28 -0.32 -0.74 -0.55 

PER  1 -0.89 -0.79 -0.25 -0.29 -0.84 -0.65 

BLEU   1 0.86 0.25 0.29 0.83 0.66 

NIST    1 0.16 0.16 0.86 0.64 

ADE     1 0.63 0.25 0.30 

FLU      1 0.24 0.26 

PREC       1 0.78 

REC        1 

Table 2. Correlation matrix for S5 using 15 documents 

 

S2 WER PER BLEU NIST ADE FLU PREC REC 

WER 1 0.81 -0.83 -0.52 -0.48 -0.46 -0.61 -0.41 

PER  1 -0.73 -0.60 -0.43 -0.42 -0.75 -0.54 

BLEU   1 0.72 0.43 0.41 0.74 0.61 

NIST    1 0.13 0.13 0.84 0.58 

ADE     1 0.84 0.27 0.32 

FLU      1 0.26 0.30 

PREC       1 0.76 

REC        1 

Table 3. Correlation matrix for S2 using 5 documents 
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S2 WER PER BLEU NIST ADE FLU PREC REC 

WER 1 0.83 -0.85 -0.59 -0.49 -0.49 -0.64 -0.50 

PER  1 -0.81 -0.69 -0.44 -0.43 -0.79 -0.61 

BLEU   1 0.79 0.43 0.43 0.78 0.65 

NIST    1 0.23 0.20 0.86 0.61 

ADE     1 0.79 0.30 0.35 

FLU      1 0.28 0.33 

PREC       1 0.77 

REC        1 

Table 4. Correlation matrix for S2 using 15 documents 

 

5.2 Correlation for High and Low Quality 

Translations  

The findings from the previous section can be due 

to many factors; for example, using a corpus 

containing segments of diverse translation 

difficulty or using the average of two judgments 

for adequacy or fluency might give less 

informative results, since the final scores are 

calculated on the entire test set. Or it might be, as 

pointed out by Coughlin (2003), that humans could 

be influenced by the reference translation they see 

during the evaluation and therefore evaluate 

systems depending more on the algorithm they use 

(statistical or rule-based) than on their intrinsic 

quality. 

To further investigate the correlations described 

in Sections 5.1, we carried out another experiment, 

focusing on the highest and lowest scores assigned 

by adequacy judgments.  The goal is to explore the 

agreement among some metrics when the 

adequacy scores are very high and very low.  An a 

priori hypothesis is that low quality translations 

might be more difficult to evaluate (leading to a 

larger variation of scores) than high quality 

translations. According to this hypothesis, the 

correlation between metrics applied on almost 

perfect segments should be stronger than that of 

metrics applied on low quality segments.  We 

consider “quality” in terms of the score provided 

by human judges of adequacy, fluency or the 

average of both; for the purpose of this experiment 

we take adequacy as the measure of quality, but 

results using fluency or the average do not change 

dramatically. 

Each segment of the CESTA data was 

evaluated for adequacy and for fluency by two 

judges, and the final scores for each metric are the 

average between the two assessments. These 

scores were then normalized and converted from 

a 5-point scale to a value between 0 and 1.  To 

find only the segments with high adequacy 

score, we extracted, from the 15 documents of 

the first run, those segments with an average 

adequacy score above 0.825. For the low quality 

test set, we extracted the segments with an 

average adequacy below 0.125. We tried to keep 

the size constant, so we had around 130 

segments in both new test sets, given that S5 had 

the least number of segments below 0.125. 

These empirical cut-off limits should also 

account for high inter-judge agreement, since a 

high/low score can only be reached if both 

assessors assigned similar high/low scores for 

the same segment. 

To simplify the experiment, we only applied 

the WER and PER metrics to the corresponding 

outputs of S2 and S5. Tables 5 and 6 show the 

resulting R coefficients, the lower part of the 

tables corresponding to S2 and the upper part to 

S5 (for compactness reasons). 

 

S2          
S5
 WER PER FLU ADE 

WER  0.93 -0.17 -0.25 

PER 0.71  -0.13 -0.28 

FLU -0.14 -0.11  -0.13 

ADE -0.09 -0.14 0.16  

Table 5. Correlations on the low-adequacy  

data set: S2 lower-left half, S5 upper-right 
 

S2          
S5

 WER PER FLU ADE 

WER  0.94 -0.17 -0.32 

PER 0.93  -0.27 -0.10 

FLU -0.43 -0.39  0.42 

ADE -0.36 -0.30 0.41  

Table 6. Correlation on the high-adequacy 

data set: S2 lower-left half, S5 upper-right 
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The correlations clearly increase in absolute 

value from low-adequacy to high-adequacy 

segments, as hypothesized, but are still much 

weaker than expected for high-adequacy segments. 

Two special cases with extremely low correlation 

values are marked in italics, namely fluency vs. 

adequacy in Table 5 and PER vs. adequacy in 

Table 6, respectively. In the first case, we 

manually inspected the results of the bootstrapping 

procedure, and observed that adequacy scores 

were much lower than the fluency scores. Figures 

4 and 5 provide a graphical representation of these 

two cases. 
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Figure 4. Adequacy vs. fluency using only 

segments with low adequacy scores 
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For the PER vs. adequacy correlation, we found 

out that S2 has more segments scoring less than 

0.125 (90 segments vs. 57 for S5) but has also 

more segments scoring 1 (121 segments vs. 93 

for S5).  This explains the scatter plot in Figure 

5 but contradicts the expected results, since S5 

was ranked among the best in the CESTA 

campaign. In overall scores this situation could 

be changed because the scores are averaged out. 

In practice, we believe that the difference 

between coefficients of -0.10 and -0.13 does not 

have a big impact, since one system provides 

clearly better translations than the other. 

5.3 Correlations on a Different Domain 

The last experiment consists of comparing 

the correlations obtained for test sets in a 

different domain than the previous one. For the 

second run of the CESTA campaign, the 

participants had the opportunity to train or adapt 

their systems to a particular domain (medical) 

using a special corpus for that purpose. Given 

that systems were trained for that specific 

domain, performance should have increased, as 

well as correlations between some metrics. 

Using the test corpus created for the second run 

of CESTA (288 segments), the results are 

comparable, in terms of size, to those obtained 

in Section 5.1 for 5 documents (270 segments).  

Results for S2 an S5 are reported respectively 

in Tables 7 and 8.  For the human metrics, 

results are not directly comparable to those of 

the previous sections due to a change in the 

evaluation protocols from the first run of the 

campaign to the next. Unfortunately, it appears 

that correlation coefficients remain quite low, 

despite the adaptation. In Table 7 we observe a 

significant increase in correlation coefficients 

between automatic metrics and adequacy for S2; 

this difference between S5 and S2 might indicate 

a failure of S5 to fully acquire the relevant 

vocabulary for the new domain. Following the 

hypothesis of the previous section and recalling 

that S2 was ranked below S5 in the CESTA 

campaign, it appears that assessment of low 

quality segments leads to more variation of 

scores, thus resulting in low correlation 

coefficients.
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S2 WER PER BLEU NIST ADE FLU PREC REC 

WER 1 0.98 -0.87 -0.72 -0.72 -0.27 -0.69 -0.77 

PER  1 -0.81 -0.69 -0.70 -0.26 -0.67 -0.83 

BLEU   1 0.84 0.68 0.36 0.77 0.47 

NIST    1 0.51 0.24 0.68 0.40 

ADE     1 0.27 0.50 0.52 

FLU      1 0.27 0.15 

PREC       1 0.35 

REC        1 

Table 7. Correlation matrix for S2 using corpus from health domain 
 

S5 WER PER BLEU NIST ADE FLU PREC REC 

WER 1 0.87 -0.82 -0.67 -0.20 -0.28 -0.66 -0.29 

PER  1 -0.80 -0.75 -0.18 -0.20 -0.78 -0.44 

BLEU   1 0.80 0.17 0.21 0.74 0.48 

NIST    1 0.21 0.21 0.85 0.63 

ADE     1 0.34 0.18 0.13 

FLU      1 0.15 0.12 

PREC       1 0.64 

REC        1 

Table 8. Correlation matrix for S5 using corpus from health domain 

 

6 Conclusion and Future Work 

The method presented in this paper allows the 

computation of correlation between two metrics on 

a single system, using bootstrapping to create a 

large set of samples of variable qualities. 

Observations clearly indicate that some related 

automatic metrics, such as BLEU and NIST, or 

BLEU and WER, are better correlated than 

automatic vs. human metrics.  However, even for 

related metrics, the correlation is not necessarily 

very high. 

It is quite surprising that, using this method, 

correlations between human and automatic metrics 

are much lower than figures obtained by other 

methods and published as arguments for the 

reliability of automatic metrics.   

At this stage, it is not yet clear, which is the 

main factor that explains such a low correlation, 

and whether these figures do indicate a significant 

lack of correlation on the CESTA scores that we 

examined.  For instance, these figures could be 

related to low inter-rater agreement between the 

two judges of adequacy and fluency, which is not 

compensated by the use of the average values or to 

the fact that these automatic metrics are not  

 

 

suitable for the evaluation of morphologically 

richer languages, such as French. 

Future work in this direction will examine 

how human scores used in our experiments are 

distributed among systems.  Of course, adding 

new human judgments of the same MT output 

could help to increase our confidence in 

adequacy and fluency, but this operation is quite 

costly. We also plan to repeat some of the 

experiments with other automatic metrics, which 

claim to improve some of the metrics used here 

and to improve correlation with human scores. 
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