
Functional Descriptions
as a Formalism for Linguistic Knowledge

Representation
in a Generation Oriented Approach

Miyo Otani 1 & Nathalie Simonin 2
(Cap Sogeti Innovation, Paris, France)

Topic: Knowledge Representation and Use

Abstract:

This paper describes how linguistic knowledge has been declaratively formalised using Func-
tional Descriptions (FDs), in the generation module of the SAGE system. SAGE (Sentence
Analysis and GEneration) is the Natural Language Frontend of the Dialogue Manager of the
Esprit I project Esteam-316.

The present implementation has the advantage of being based on two principles, which are
the dynamic checking of constraints and the functional unification of knowledge and dy-
namic objects. In order to provide these functionalities to the former formalism of FD, we
have introduce the notions of Syntactic Components and of Current Syntactic Component.
The whole sentence is built step by step in a complex tree-like structure. The generation
interpreter is able to move upward and downward inside this tree.

In addition, our system validates the use of a Lexicon-Grammar (drawn from the LADL
studies) for sentence-generation. The target language is English, but all of the knowledge
bases have been developed in such a way that the generation process is able to support a
change of language.

Cap Sogeti Innovation tel: (33) -1- 46 22 60 27
118, rue de Tocqueville fax (33) -1-42 67 41 39
75017 Paris, France

1 E-mail address: otani@csinn.uucp
2 E-mail address: simonin@csinn.uucp

1 Preamble

The Generation Module described here belongs to the SAGE system, which parses and
generates sentences. SAGE is the Natural Language Frontend of the Dialogue Manager of
the Esprit I project ESTEAM-316. ESTEAM-316 is an Advice-Giving system, and its
testbed application field is private investment. Several examples given in this paper will be
thus related to the financial domain.

One of the tasks of the generation process is to determine with which syntactic structure
an idea will be expressed. Our synthesis module therefore generates a linguistic structure
made of nested Syntactic Components (SCs) described by Functional Descriptions (FDs).
An SC is characterised by its meaning slot and is composed of Syntactic sub-Components
(sub-SCs). The value of the meaning slot is an instance of a semantic concept and is called
a token. For instance, a clause SC is composed of the following sub-SCs: a subject, a verb,
some complements and adverbials.

After an introduction to FDs in section 2, section 3 explains how linguistic knowledge has
been structured using FDs. Section 4 describes how our generation module handles this
knowledge whereas section 5 draws conclusions on the choices made in our implementation.

2 Introduction to Functional Descriptions

2.1 Functional Unification and Functional Descriptions

The theory of Functional Unification and Functional Descriptions (FDs) has been developed
by Martin Kay [Kay 81] and is based on the formalism of Functional Grammar developed
by Simon Dik [Dik 78]. Briefly, a FD is an object described by a set of slots, i.e. an attribute
to which a value is associated. The value of the slot is either atomic (integer, real, or string
quoted between " "), or non-atomic (ordered list of objects quoted between (), non-ordered
set of objects quoted between { }, nested FD or symbols). Figure 1 is an example of a FD.

[age = 26
height_in_meter = 1.83
name = "Jimmy"
chronology_of_professional_positions = (software_engineer project_manager)
hobbies = { skiing rock_climbing movies }
present_position = [function = project_manager

affiliation = Cap_Sogeti_Innovation]]

Figure 1: An example of FD.

Two other kinds of values which are paths and links to other objects have been introduced.
The paths are either compiled when the object is loaded in memory, or dynamically com-
puted when the loaded object is handled for instance by the generation process. They are
quoted between < > [Fimbel & al 85]. The links are a kind of pointer to another object:
they are invisible to the user and may be handled only by the interpreter (i.e. a program

written in C).

2.2 Constraints: Conditions and Actions

We wanted our generation system to be declarative and reusable for other applications.
For this, we needed to handle dynamic objects in different kinds of rules, especially in the
generation grammar. These rules are described by FDs divided in three parts: a condition
slot, a body of several slots that may be functionally unified with the current SC, and
several slots of conclusion. Conditions and conclusions are lists of FDs containing premise
and action slots. We may assess that there is an or logical operator between these FDs
within the list. Condition, body and conclusions are not compulsory in a rule FD. However,
no more than one condition is allowed, whereas there may be several conclusions. The
operands of premises and actions are either constants (FD or any object known by the
system) or dynamic objects specified by paths and links.

One of the most important links used by our system is a link pointing to the SC currently
computed, which we shall symbolise by current_SC. Another one is a link from a sub-SC
to its parent SC: a path like < current_SC parent meaning > will be interpreted as the
meaning of the parent of the current SC. Examples of premises and actions will appear
below.

A rule is relevant if one of the FDs of the condition slot is verified. If so, the body of the rule
is unified to the current SC. Then all of the conclusions of the rule are evaluated: this means
the actions of the first FD of a conclusion slot whose premises are verified are activated.

One might wonder about the usefulness of actions in a condition FD: this proved to be
helpful in order to modify and prepare the current SC before it is unified with the body of
the rule.

The following section details how the new FD formalism is used by SAGE to develop lin-
guistic knowledge bases.

3 Linguistic knowledge bases

3.1 Lexicon-Grammar: syntactic valencies

The purpose of the lexicon-grammar is to define syntactic properties completely: using it,
we are able to take into account a wide range of constructions of a given language. Our
lexicon-grammar is based on the theory developed by Maurice Gross [Gross 75] and the
studies carried out by the LADL on French constructions. To give an idea of this knowledge
base, we give the information stored for the direct object of the verb want below.

• The standard construction is [Subject + Verb + Direct Object];
• The direct object may be a human being as in "The mother wants her child", a non-

human entity as in "He wants time", or a thai-clause as in "Mary wants that John settle
down in Paris";

• The thai-clause is reduced to the following forms:
• [Noun group + Adjective] or NAdj, if the omitted verb is be: e.g "The teacher

wants the exercise ready for tomorrow';
• [Verb in the complete infinitive form + complements] or ToVinf0, if the concept

of the subject of this clause is the same as that of the subject of want: e.g. "Mary wants to
settle down in Paris";

• [Noun group + Verb in the complete infinitive form + complements] or NToVinf
when the two subjects are different: e.g. "Mary wants her friends to settle down in Paris";
 • The whole clause may be transformed into the passive form.

The semantic distributions are also defined in these FDs: they state to which semantic
classes the token of a sub-SC may belong, according to is_a slots. For instance, in our
lexicon-grammar, want allows a human being or a non-human item as the direct object.

In our formalism, this information is specified as shown in Figure 2.

Syntactic_want ↔
[verb = [word = want]
 subject = [noun_phrase_form = { (noun_phrase +) }

distribution = { (*human +) }
interrogative-pronoun = (wh_who)]

object1 = [noun_phrase_form = { (noun_phrase +)}
reduced_clause_form = { (ToVinf0 +) (NAdj +)}
clause-form = { (NToVinf +)}
distribution = { (*human +) (*non_human +) }
interrogative-pronoun = (wh_what wh_who)]

transformation = (passive_transformation)
...]

Figure 2: Characterization of want in the Lexicon-grammar.

The "+" symbol states that the corresponding form or semantic distribution is allowed.
"-" would stand for forbidden constructions and "?" would introduce constructions that
are acceptable for the parser, but dubious and forbidden in a generation processing.

The slot interrogative_pronoun defines the interrogative pronouns allowed for referring to
the sub-SC in a Wh-questions.

Semantic distributions specified in the lexicon-grammar may be very detailed according to
the use of such or such verb or noun. For instance, the subject of to graze may be a sheep,
and that of to eat may be a human being. This information is very useful in synthesizing
a pronoun: it helps to check whether a pronoun is ambiguous. If the speaker talks about a
cow and a sheep, then an "it" before the verb to graze probably is the sheep, and an "it"
before to browse refers to the cow: needless to say these distributions may greatly help the
parser too.

3.2 Linguistic Definitions: a mapping from semantics slots to syn-
tactic components

Given that identifiers of a token depend only on the concept of which it is an instance, the
allocation of the slots in the sub-SCs raises the problem of the link between those specific
identifiers and standard sub-SCs. This is solved with a Linguistic Definition (LD), which

makes explicit the mapping between slots and Syntactic sub-Components (sub-SCs). A
concept is thus associated with several LDs and the generator is able to choose among them
according to such or such linguistic constraints.

For instance, the concept of *transaction may be generated in a clause with the verb to
buy, or with the verb to sell. In several cases, when the token of transaction is nested in
another one, the noun phrase structure may be best adapted for instance as a subject of a
sentence as in "Her purchase of an expensive cottage remained unknown for a long week".1 The
LD corresponding to the mapping from an instance of the concept *transaction into
the syntactic structure of the verb sell is described in Figure 3.

[subject = [meaning = < current_SC meaning seller >]
objectl = [meaning = < current_SC meaning object >]
object2 = [meaning = < current_SC meaning buyer >]
gramma_-rule = gram_clause }

Figure 3: A Linguistic Definition.

Assuming that Figure 4 is the initial SC, and that the SC will be unified2 with the LD of

[meaning = [instance_of = *transaction
buyer = *user
object = [instance_of = *house

type = *cottage]]

Figure 4: An initial SC.

Figure 3, the path evaluation will result in the SC of Figure 5. After path evaluation, the
sub-SCs with no meaning slot are deleted as in the case of the object2 sub-SC in Figure 5.
Concept names are marked with a star * for the sake of readability.

3.3 Specification of syntactic coding

The following two paragraphs give examples of how syntactic codes are specified using our
"rule FD formalism".

3.3.1 Standard syntactic forms

The syntactic forms seen in §3.1 must be specified using a rule format. In our system, the
condition slot of the symbol ToVinf0 states that the construction [Verb in the complete

1 We do not take into account pragmatic rules concerning focus, intention of the speaker, etc for choosing
among several LDs.

2 in the meaning of functional unification. See [Kay 81].

[meaning = [instance_of = *transaction
seller = *user
object = [instance_of = *house

type = *cottage]]
subject = [meaning = *user]
objectl = [meaning = [instance_of = *house

type = *cottage]]
grammar_rule = gram_clause]

Figure 5: An SC after an LD has been unified.

infinitive form + complements] is allowed if the subject of the current SC equals the subject
of the main clause i.e. of the parent SC. In the body of ToVinf0 (see Figure 6), the verb is
set to the complete infinitive form, and the subject is erased because not expressed in an
infinitive clause.

ToVinf0 →
[condition = ([equal = (< current_SC subject meaning >

< current_SC parent subject meaning >)])
subject = [structure = erased]
verb = [form = complete_infinitive]]

Figure 6: Description of the Syntactic form ToVinf0.

3.3.2 Interrogative pronouns

A slot interrogative_pronoun has been added in each sub-SC of the lexicon-grammar items,
in order to generate the appropriate pronoun in a Wh-question. This is spectacular when
the pronoun is not directly predictable from the syntactic function the sub-SC (subject,
object or adverbials). For instance, starting from "The fund will be available in 2 years.",
we may generate " Under what delay will the fund be available?".

In the case given in Figure 2, the objectl SC may be transformed using the code wh_what
described by Figure 7.

wh_what →
[condition = ([not_a = (< current_SC meaning >

*human)])
pronoun = [word = what]]

Figure 7: Description of the Syntactic code wh_what.

3.4 Other Knowledge Bases

Besides the KBs mentioned above, which are the Linguistic Definitions and the Lexicon-
Grammar, there are mainly the generation grammar, the semantic dictionary and the lexicon
of words. The last two will not be described here:

• The semantic dictionary is a semantic net of FDs linked with is_a slots. Briefly,
the concepts are defined with FDs divided in three parts: 1) the semantic net link
descriptions; 2) a schemata which lists the slots that characterize a token, i.e. an
instance of the concept; and 3) the list of LDs that the generation module has at its
disposal for the given token.

• The lexicon is a standard dictionary of English words with the indication of syntactic
categories (noun, preposition, auxiliary, verb, etc) and of conjugation models (the verb
to eat obeys the same conjugation rules as to sing).

The following section details the grammar structure and the generation process itself.

4 Generation strategies

4.1 Generation grammar rules

For a given generation rule, the grammar specifies under what conditions it may be applied
using the slot condition, what rules are to be chosen for the synthesis of each sub-SC in
the FD of the sub-SC of the body of the rule, and what actions are to be carried out on
the current SC (such as choosing the number and person of a verb according to the subject
within a clause).

Figure 8 is an example of what may be specified for the clause grammar rule.

In our implementation, neither condition nor conclusion slots are needed in the clause rule.
When provided, they indicate in which cases a grammar rule is relevant to the current SC,
and if so, what actions are to be undertaken on the SC.

The names of the sub-SCs are made explicit using the slot list_of_subSCs. Sub-SCs are
not all compulsory and may be deleted in the SC if no meaning is given to them after the
unification of the LD (see §3.2). The parent of the sub-SCs is the current SC: it is specified
so by the path < current_SC > in the slot parent.

Figure 8 shows also how the slot grammar_rules specifies the grammar rules allowed for each
sub-SC. One sub-SC may be synthesized simply using another grammar rule. For instance,
objects of a clause may be synthesized as personal pronoun using gram_pers_pron rule or as
reflexive pronoun using gram_reflexive rule. Most of the time, the sub-SCs are generated
using LD and lexicon-grammar as stated by the symbol linguistic_synthesis. The generation
rules are tried in the order specified by grammar_rules.

The order slots specify the order of the sub-SCs in the generated sentence, and may be
modified by actions. For instance, if the object2 sub-SC is synthesized as a personal pronoun,
then it is put before objectl by decreasing its order value form 210 to 110. The order values
are interpreted by the morphological generator i.e. all sub-SCs of an SC are sorted according
to their order, before the corresponding words are generated.

gram_clause ↔
[list_of_subSCs = (subject verb objectl object2 adverbial_date)

rule_type = clause_type
subject = [parent = < current_SC >
 order = 50

 grammar_rules = (gram_pers_pron linguistic_synthesis)]
verb = [parent = < current_SC >
 order = 60
 grammar_rules = (gram_verbe)]
objectl = [order = 200

 parent = < current_SC >
 grammar_rules = (gram_reflexive gram_pers_pron linguistic_synthesis) }
object2 = [order = 210

 parent — < current_SC >
 grammar_rules = (gram_reflexive gram_pers_pron linguistic_synthesis)]
adverbial_date = [parent = < current_SC >
 order =400
 grammar_rules = (gram_pers_pron linguistic_synthesis)]]

Figure 8: An example of a clause grammar rule.

4.2 Interpretation in the generation process

The generation process is top-down, with backtracking. It recursively builds a complex
object of several nested SCs. At the beginning of the generation process, the first SC is an
object similar to:

[meaning = token_to_be_generated]

The current SC is supplemented with sub-SCs in a loop: according to the concept of the
token in the meaning slot, the generation interpreter chooses a LD, then a syntactic structure
in the lexicon-grammar. These two FDs are functionally unified with the current SC.

Then, one syntactic form like noun_phrase or ToVinf0 (see §3.3.1) is chosen for the current
SC according to the grammar rule given in the LD and the validity condition of the syntactic
form. These forma are compulsory only if the type of the current SC is of clause or noun
phrase. In the former case, the generator needs either a complete clause form or a reduced
one and chooses among the lists of reduction_form or clause_form; in the second case, it
requires a noun_phrase_form. If found, the form is functionally unified with the current SC.
Figure 9 shows the SC corresponding to You want time after functional unifications. The
concept *user is generated in a dialog pronoun into the second person (you) because the
Natural Language Front-End is integrated with a Person-Machine Dialogue application.

At this stage of the process, the generator may add several modifiers to the current level,
adverbials in clauses, or adjectives in noun groups: these adjuncts are also carried through
functional unifications since the modifiers are also described in a FD just like any LD.
Henceforth, the modifiers are handled in the same way as the sub-SCs defined by the LD.

Lastly, the grammar rule specified by the LD is applied. First, the body of the grammar rule
is functionally unified to the current SC. Secondly, the sub-SCs are synthesized either by
another grammar rule such as the one allowing the pronominalization of sub-SCs, or by the

[meaning = [instance_of = *want
actor = *user
object = [instance_of = *time]]

subject = [meaning = *user
 distribution = {(*human +)}
 noun_phrase = {(noun_phrase +)}]
verb = [word = want]
objectl = [meaning = [instance_of = *time]

distribution = {(*non_human +) (*human +)}
reduction-form = {(ToVinf0 +) (NAdj +)}
clause_form = {(NToVinf +)}
noun_phrase_form = {(noun_phrase +)}]

transformation = {(passivel 100)}]

Figure 9: Syntactic Component of You want time.

generation process described in the present paragraph §4.2, according to the grammar_rules
list. It is during that phase that the sub-SCs become the current SC in turn.

This is where our declarative KBs based on Functional Descriptions prove to be efficient.
The same heuristic based on series of functional unifications is used for totally different
structures such as noun phrase or clause. Therefore, this loop is allowed to be totally
recursive.

Then the conclusion slots of the grammar rule are evaluated, if there are any.

Transformations are processed whenever they are needed, as for questions (which puts the
verb in the interrogative form and inserts an auxiliary verb before the subject), or negations
or passive transformations.

If a failure occurs during this loop, for instance if one of the sub-SC has not been gener-
ated completely, then backtracking is carried out by choosing another LD and/or another
grammar rule.

4.3 Conclusion on parsing and generation grammars

The main feature of our Natural Language Front-End is that the Parsing and Genera-
tion processes are carried out using the same linguistic knowledge bases. On the other
hand, parsing and generation grammar formalism differ because of their dedicated heuris-
tics. Unlike parsing, our generation process is not a sequence of "left-to-right" procedures
[Danlos 87a][Danlos 87b]. Moreover, a given heuristic of clause transformation is strongly
dedicated to a parsing or to a generation process: during generation, the order of the objects
in a clause may be modified after they have been synthesized into personal pronouns (see
§4.2); during parsing, it is not possible to recognize an objectl and an object2 unless the
aphorisms are solved.

5 Conclusion on the implementation

5.1 Declaration and interpretation

Rules may be declaratively defined using condition and conclusion slots. This has been
made possible with the link current_SC and with the slot parent referring to the embedding
SC, allowing dynamic paths like < current_SC parent meaning >.

Yet some of the generation inferences are invisible to the user for being integrated in the C
programs. For instance, the choice of a syntactic form (ToVinf0, NAdj, etc) is not declared
in a grammar rule (clause or noun phrase rule) but is processed by a specific C function
called before the grammar rule is activated. This implicit inference might become visible
and might be declared in the generation grammar if an action choose_a_form_among were
introduced, with the following format:

choose_a_form_among = < current_SC noun_phrase_form >. Other premises or ac-
tions may be added to the inference engine in the same way.

5.2 Backtracking

The concept of link in FD is useful for handling objects defined dynamically with paths,
and also for backtracking.

If a grammar rule fails for instance, then we must be able to recover a former state of the
current SC i.e. to destroy slots that have been added by functional unification. So each SC
is actually handled as a link to a FD. Before any inference is carried out, the FD of each
SC is copied and stored in a backup FD. In case of failure of the generation process, the
backtracking process makes the SC links point to the latter stored FDs: the same links (i.e.
SC pointers) are thus still relevant.

5.3 Results and performance

Presently, we are able to generate sentences with infinitive clauses, imperative clauses, Yes-
No questions, several Wh-questions (where the interrogative pronoun is bound either to the
main clause or to a nested clause). Here is a table of several generated sentences together
with an average response time they require on a SUN 3/50.

We believe that we brought the theory of Functional Description and Functional Unification
some promising features, especially concerning link handling and rule description. The

constitution of declarative knowledge using dynamic operands and declarative rules is a
principle that may be applied in other fields of Natural Language Processing. This allow
the sharing of linguistic knowledge bases by parser and generation module, even though there
are distinct parsing and generation grammars, and dedicated interpreters in C.

Moreover, we believe that FDs as described in our present paper may be useful for realms
of Knowledge based systems other than Natural Language Processing.

References
[Danlos 87a] Laurence Danlos, A French and English Syntactic Component for Genera-

tion, Natural Language Generation: New Results in Artificial Intelligence,
Psychology and Linguistics, Kempen G. ed, Dordrecht/Boston, Martinus
Nijhoff Publishers, 1987.

[Danlos 87b] Laurence Danlos, The linguistic basis of text generation, Cambridge Uni-
 versity Press.

[Dik 78] Simon Dik, Functional Grammar, Publications in Language Science, Foris
 Publications, Dordrecht, Holland, 1978.

[Fimbel & al 85] Eric Fimbel, Herbert Grosco, Jean-Marie Lancel, Nathalie Simonin, Us-
ing a Text Model for Analysis and Generation, Proceedings of ACL'85,
Geneva, pp 226-231.

[Gross 75] Maurice Gross, Méthodes en syntaxe, Régime des constructions complétives,
Hermann, 1975.

[Kay 81] Martin Kay, Unification Grammars, Xerox Publication, 1981.
[Lancel & al 86] Jean-Marie Lancel, Francois Rousselot, Nathalie Simonin, A Grammar

 used for Parsing and Generation, 11th International Conference on Com-
 putational Linguistics, Proceedings, Coling'86, August 1986.

[Lancel & al 88] Jean-Marie Lancel, Miyo Otani, Nathalie Simonin, Laurence Danlos SAGE:
a Sentence Parsing and Generation System, "Sentence Parsing and Gener-
ation with a Semantic Dictionary and a Lexicon-Grammar", 13th Interna-
tional Conference on Computational Linguistics, Proceedings, Coling'88,
August 1988.

[Longman 78] Longman Dictionary of Contemporary English, Longman Group Limited,
1978, Corrections 1981.

[Otani 88] Miyo Otani, Jean-Marie Lancel, Sentence Generation: from semantic rep-
resentations to sentences throughout Linguistic Definitions and Lexicon-
Grammar, Proceedings of Ecai '88, August 1988.

