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1. Background 
The background to this paper is the attempt within EUROTRA to develop a general framework 

for research and development work in MT, providing in particular an environment which facilitates 
reasoning about the relationships between the representations that are necessary for automatic trans- 
lation between natural languages. The more immediate background is the attempt to apply this 
framework experimentally on a small scale in developing a “proto-EUROTRA” (affectionately “the 
toy”) over the summer and autumn of this year. The aim of this paper is to give a reasonably clear 
idea about the user language and theories of representation for this experiment (the Mul level in 
terms of the paper presented by Louis des Tombe), and to indicate en route some of the directions for 
further work. It reports work in progress, and is thus deliberately speculative, programmatic, and 
rather informal. 

For concreteness section 2 gives a brief and rather casual restatement of some of the key 
assumptions behind this work. 

2. Assumptions 
-- Translation between natural languages involves a sequence of primitive translations between a 

number of levels of representation. 
-- A representational level is a language L generated by a grammar G, and an interpretation I, 

specifying respectively the syntactically and semantically well-formed expressions of L. G con- 
sists of a set of atoms A, and constructors C. Syntactically, Cs are of the form: 

(name {type}) [ argspecl ,..., argspecN] 

and atoms are of the form: 

(name {type}) 

where {type} is a set of features (conforming to some theory of features defining the notion of “well- 
formed type”). The same name may be shared by several atoms or constructors. Each constructor 
has in addition a constructor-name which identifies it uniquely, and which is used by the translation 
rules. The theory of features we assume here is extremely impoverished, allowing little more than 
that a type is a collection of attribute-value pairs. Syntactically, if c is a constructor of arity n, and 
each of ul .... uN are well-formed, then 

† This is a joint paper by the individuals listed alphabetically above. Arnold did the actual writing, and I am the 
referent of all uses of the first person singular; in the nature of things I am responsible for the places where this is 
poorly expressed or misrepresents the collective view. The paper is intended to fit together with the paper by the 
same authors presented by Louis des Tombe, but (apart from the title) it is supposed to be readable in isolation. I’d 
like to dedicate it to the memory of Dave Kilby, who died in June -- he deserved something clearer and more pol- 
ished than this, but it is the first thing I have written since he died, and he was always generous and patient with 
those who knew less than he did and could not think as clearly as he did. 
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c [ul ,..., uN] 

is well-formed. Semantically, it is only well-formed if each argspec of c unifies (according to some 
definition appropriate to that G) successfully with the appropriate u; its interpretation is the evaluation 
of this unification in the appropriate environment of variable bindings. “Constructs” are atoms and 
the result of applying constructors to atoms. (The examples in the next section will clarify most of 
this). 
-- The relation between a level i and an “adjacent” level J is given by a translator described by a 

set of T rules, which relate the generating devices Gi and Gj. 
-- To be “primitive” the operation of such a translator must be: (a) compositional, and (b) "one 

shot." 
A translation relation T between Gi = <Ci, Ai >and Gj = <C j, A j> is strictly compositional if T 

 
maps Ai into Aj , and there is a mapping t from Ci into Cj such that if 

exp= c [ul,...,uN]   . 

then the translation of exp is: 

t(c) [ T(u1), ..., T(uN) ] 

In addition to strict compositionality, the following relaxations are allowed: 
(a) the number and/or order of arguments of c and t(c) may differ. 
(b) rather than being a and actual member of the constructors for a given G, either c, or t(c) may 

be a function made up of variables, and atoms and constructors of G. 
(Some further relaxations are may be motivated, however, e.g. allowing that in some cases as 

well as (functions composed of) actual constructors and atoms, translators might relate descriptions 
of constructions). 

A translator is one-shot if it takes only well-formed expressions of Gi and yields only (syntacti- 
cally and semantically) well-formed expressions of Gj. 

Syntactically, T rules are written: 
atom = = > atom 
constructor-name = = > constructor name 

construction-name (variables) = = > constructor name (variables) 
c-function = = > c-function 
where a c-function is of the form: 

constructor-name[ sub-iteml ..., sub-itemN] 

and where sub-items are either atoms, or constructor descriptions, or variables (integers standing for 
classes of source or target constructs, as appropriate). We will call a T rule simple if at most one 
side is a c-function: ideally, we would like all translators to be composed of simple T rules, but see 
below. Both sides of T rules in transfer are required to be simple. 

The intention is that that whatever syntactically and semantically well-formed source language 
constructs result from interpreting the lhs of a T rule will be translated as whatever syntactically and 
semantically well-formed constructs result from interpreting the rhs of the rule. 

As regards the pragmatics of using these languages, there are essentially three expressive dev- 
ices available to the linguist: Gs (rules for defining individual languages), T rules (relating 
languages), and a feature theory (theory of types); and it is to some extent a matter of choice which is 
chosen for a particular task. However, it is the Gs that we are most interested in here, since we are 
interested   in   the   idea   of   translation   as   a   compositional   process  --  that  is  a  relatively   simple 
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relationship between the basic items and the modes of combination available in two languages. 
Thus, users of these devices are encouraged to put the main burden of work on the Gs, and in keep- 
ing with this fairly strict restrictions have been imposed on the form of T rules, and the feature 
theory is extremely impoverished. 

This is rather casual, and contains some obvious omissions (a proper account of a feature 
theory, and a procedural semantics, e.g.), but should serve the purpose of exposition. 

3.  Levels of Representation 
The aim of the rest of the paper is to outline the substantive linguistic theory involved in the 

proto-EUROTRA experiment It should make the description of the framework more concrete, and 
give some idea of what it is like to work with in practice. Both this paper and the paper presented by 
Johnson will discuss some of the limitations of the framework we have assumed. This is as it should 
be: it is the purpose of this experiment to lead to the discovery of problems -- especially “natural 
classes” of problems. 

At the lowest level(s) of representation, texts are simply strings (that is concatenations) of 
atoms. We will call a level structural if its constructors assign more structure than this. The 
hypothesis to be investigated in proto-EUROTRA is that there are three structural levels of represen- 
tation in this sense: 
• Eurotra Constituent Structure (ECS):  where texts are represented as constructions of surface 

constituents. 
• Eurotra Relational Structure (ERS): where texts are represented as constructions of surface 

constituents. 
• Interface Structure (IS):  a level based on semantic dependence relations -- the input to 

transfer, providing the interface between monolingual components. 
In what follows, upper case normally indicates variables, lower case constants, underline is the 

anonymous variable, and ‘...’ is a sloppy variable for what is too tiresome to specify in an exposition 
like this. For brevity we will sometimes write exp’ to mean the translation of exp. 

For the purpose of this experiment, we assume that the internal structure of words is never 
represented explicitly (the intuition behind this is that translation is fundamentally a relation between 
words -- rather than e.g. semantic formulae or morphemes, but there is clearly more than this to say 
on the topic of derivational morphology and compounding. More than this is said in [1], but it will 
not be pursued here). Given this lack of any systematic morphology the non-structural levels are not 
of great linguistic interest. It is, however rather easy to exemplify some simple T rules here. Sup- 
pose there is a level (1) at which atoms are simply word forms, and the single constructor is the 
string concatenator concat, of arbitrary arity; and a level (2) with the same constructor, but where 
atoms are words with associated lexical features. One would expect T rules such as the following: 

(1) (2) 

concat       = = > concat 

(hit)        = = > (hit {cat=v}) 

(hit)        = = > (hit {cat=n}) 

(aux)        = = > concat [(a {cat=p}), (les,{cat=det})] 

concat [(computer), (terminal)] = = > (computer-terminal, {cat=n}) 
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3.1. ECS 

3.1.1. Overview of ECS 
The hypothesis proposed here is that the first level of structural representation for a language 

should be sensitive to only the superficial distributional categories of the language: i.e. a 
configurational/categorial representation indicating surface syntactic category and constituent struc- 
ture, with words as its basic expressions. 

All the standard distributional evidence is that this will require more than one bar projection of 
each category (i.e. Xn for n>l -- if we think of S as a projection of V, allowing at least VP as well 
as S and V -- the precise number of the projections for particular categories and languages is a 
matter for investigation, and left open here). Such a level will not explicitly represent grammatical 
relations (such as government, or subject-of) or semantic relations (such as agent-of, or pronoun- 
antecedent relations). There thus seems no reason to include empty categories, whose major purpose 
is to make available information about such relations. 

The existence of such a pure surface constituency level is a departure from “standard EURO- 
TRA” (i.e. the theory of representation discussed in [1]), but is not otherwise very controversial: 
such descriptions are typically extremely easy to produce and process, and it is widely believed that it 
is much easier to describe the (grammatical and semantic) relational structure of texts in terms of 
such a representation than it is to describe it directly in terms of a nonstructural (string) representa- 
tion. 

3.1.2. ECS Constructors and atoms 
Since the constructions at this level are surface constituents, it is natural to think of the con- 

structors as essentially phrase structure rules. It also seems reasonable to abstract away from details 
of inflectional morphology at this level, so the ECS atoms should correspond to words (rather than 
the word-forms), and be named accordingly. 

For example, the following might be atoms for English ECS (here and below, I have included a 
number of comments to aid readability, but I think the general intention of what is written will be 
clear to anyone who has worked with formalisms whose semantics involve unification: 

(like, {cat=v, num = sing, per=3, tense=pres}) ; i.e. ‘likes’ 
(like, {cat=v, num = sing, per=l, tense=pres}) ; i.e. ‘(I) like’ 
(example, {cat=n, num = sing}) 
(example, {cat=n, num = pl}) ; i.e. ‘examples’ 
(computer-terminal, {cat=n, num = sing}) ; the internal structure of 
(legalisation, {cat=n, num=sing})               ; compounds and derived 

; words is ignored here 
(I, {cat=prop-noun, per=l, num=sing}) 
(Jules, {cat=prop-noun, per = 3, num = sing}) 
(a, {cat=det, num = sing}) 
(the, {cat=det, num = X}   ; the number of ‘the’ is not specified 

; lexically: the rule below will give it 
; the same value as the n it modifies). 

For the fragment of English described by the following rules we might product the following 
set of Cs: 
PS rules: 

S --> NP VP 
NP --> DET N 
NP --> Proper-N 
VP --> V NP 
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Constructors: 

Cs= (s, {declarative=yes, tense=Z }) [(np, {num=X, per=Y}) 
(vp, {num=X, per=Y, tense=Z}) 

Among other things, this enforces person-number agreement of np and vp, and passes the value of 
tense from vp to s. 

Cnp/det-n = (np, {num-X, per = Y}) [(DET, {cat=det, num=X}) 
(N, {cat=n, num=X, per=Y})] 

DET and N have to be variables, because they must match to the name of atoms (which are word 
names at this level), otherwise, det and n must agree in number, which is passed to the np, np shares 
the person value of n -- if this is not specified lexically by the N, Cs will ensure it is assigned by the 
vp, hence by the verb. 

Cnp/proper= (np {num=X, per=Y}) [(PROPN, {cat-propn, num=X, per=Y})] 

Cvp= (vp, {num=X, per+y, tense=Z}) [ (V, }cat=v, num = X, per = Y, tense=Z}) 
(np, { })] 

vp inherits person number and tense values from v; only the name of the object np is considered, its 
type (features) is ignored. 

3.1.3. Derivation, interpretation, and inspection trees 
Obviously, the hierarchical nature of expressions generated by Gs for structural levels means 

they are equivalent to trees. However, only in simple cases will these trees correspond to normal 
linguistic representations such as phrase structure and dependency trees. More generally, they will 
correspond to derivation trees where each terminal node is labeled with a basic expression (an atom), 
and each nonterminal node is labeled with a constructor-name; constructors are to be understood as 
applying to their substructure. The interpretation of a < C,A > expression is also equivalent to a tree 
(an interpretation tree), where each node is labeled by the name and features of an atom or construc- 
tor, and the daughters of a node appear in square brackets after it, Again these are somewhat distant 
from traditional linguistic trees: readability may involve abstracting away from some aspects of the 
derivation and interpretation trees to some other graphical representation (typically a normal phrase 
structure or dependency tree). This we call an Inspection tree. It exists purely for the convenience 
of the linguist, and plays no role in the working of the system. 

As an example, application of constructors to atoms as indicated by the derivation tree (1) will 
evaluate by unification to the interpretation tree (2). This is clearly equivalent to a standard phrase 
structure tree, which is the obvious inspection representation. 

(1) 

 

5 



(2) 

(s {declarative=yes, tense = pres}) 
[ (np {num = sing, per=l}) 

[ (I, {cat=propn, num = sing, per=l}) ] 
(vp, {num=sing, per=l, tense=pres}) 

[ (like, {cat=v, num = s, per=l, tense=pres}) 
(np, {num = sing, per=Y}) 

[ (the, {cat=det, num = sing}) 
(example, {cat=n, num = sing, per = Y}) ] ]] 

A problem that deserves special mention here is that of optional modifiers: The <C,A> syntax dis- 
tinguishes Cs by their arity but it is well known that constructions allow for indeterminate numbers 
of modifiers. The solution to this proposed here is that each G contain a set of Cs whose intuitive 
purpose is to ‘include’ extra modifiers one at a time into existing constructions. The following would 
handle extra (optional) pps inside vp: 

Cvp/pp = (vp, {num=X, per-Y...}) [ (vp, {num = X, per=Y...}), (pp,   { }) ] 
The intended meaning is that given an VP construction and a pp construction, this will create a new 
construction, whose type is identical to that of the original vp, but which includes the pp. A similar 
treatment would seem appropriate for handling coordinate constructions. 

The existence of such constructors complicates the relationship of derivation and interpretation 
trees and inspection trees. It will produce derivation trees such as (3), and inspection trees such as 
(4): 

(3) 
                    Cvp/pp 
 
 
          Cvp/pp                Cpp 
 
 
     Cvp/pp          Cpp 

 

(4) 
(vp {...}) 

[ (vp { }) 
    [(vp{ })] 
     (pp { }) ] 
(pp{   })] 

The natural inspection level tree is probably along the lines of (5); it can be derived from (4) by col- 
lapsing nodes which are labeled identically: 

(5) 
                vp 
 
 
 
      v              pp         pp 

 
We use traditional terms like geometry and labeling to refer to aspects of this inspection 

representation. We will also use the term ‘construction’ rather loosely to mean both appropriate 
linguistic entities (as in ‘dependency construction’), and the result of applying a construction to some 
arguments. However, as the above example indicates, not every construction in the latter sense 
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exactly corresponds to one in the former sense. 

3.1.4. Translation of ECS and non-structural levels 
For atoms, the translation from non-structural into structural levels is rather straightforward 

(depending mainly on whether atoms at prestructural levels correspond to words or word forms). 
For constructors, there are a number of options, depending on the nature of the pre-structural con- 
structor (the exact nature of concat), and parsing strategy the translator is intended to mimick. For 
example, translation concat as Cs (with appropriate procedural semantics to ensure that e.g. the 
failure of Cs to unify with the translations of the arguments of concat results in the recursive applica- 
tion of appropriate np and vp constructors) will effectively produce a top down parse. There are ways 
in which this can be made more efficient, of course, but this transition from non-structural to struc- 
tural level is something of a degenerate case of compositional translation, and is far from the most 
troublesome aspect of MT. 

3.1.5. Overgeneration 
Clearly, the ECS G will over-generate: semantically/pragmatically anomalous expressions 

apart, it will assign an analysis to things like: 

(6) I like I the computer terminal. 
The intention is that this kind of over generation will be harmless because of the effect of T-rules 
involving ECS (e.g. (6) will not be translatable in an ERS structure because ERS constructors will 
take account of the syntactic frames of verbs). 

3.2. ERS 

3.2.1. Overview of ERS 
The intuitive basis of ERS is that of the grammatical relation of dependency that holds between 

the heads of phrases and their dependents (complements and modifiers). The head of a phrase is the 
item which intuitively: 
(a) possesses a ‘frame’ of ‘slots’ to be filled by complements -- which are obligatory in the sim- 

plest case, and; 
(b) is the focus of modification by other - typically optional -- items (see [1] for discussion).  The 

head is said to govern the other members of the construction. 
The intention is that ERS atoms correspond to (readings of) words, and that ERS abstracts 

away from configurational distortions of dependency relations (such as are caused by movement 
rules) by representing complete and coherent syntactic dependency constructions (the terminology 
is that of LFG [3]). A construction is complete if it contains all the dependents of its head, and 
coherent if it contains only dependents of its head. Extraposition as in (7): 

(7) I read a book yesterday about phrenology. 
thus produces a surface construction which is incomplete (the construction headed by book) and one 
which is incoherent (the construction headed by read). Thus the idea is that items that are superfi- 
cially displaced from their syntactic constructions (e.g. extraposition) will be reunited with their syn- 
tactic co-dependents -- e.g. extraposition and wh-movement will be ‘undone’ at ERS. Similarly, the 
fact that e.g. subjects of control predicates (try etc.) are subjects of the associated embedded clauses 
will be represented explicitly. Roughly: 
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ECS:     Who do you think [ will win ]. 
ERS:     Do you think [ who will win ]. 

ECS     Jules tried [ to go ] 
ERS     Jules --subj-- tried [ to go ] 
                       \------ subj ------/ 

Atoms and constructions are subclassified according to category (lexical and phrasal category respec- 
tively). 

The existence of such a level of pure syntactic dependency is something of a departure from 
standard EUROTRA, which attempts to combine configurational and relational syntactic representa- 
tions by judicious use of empty elements. The motivation for ERS is the fact that languages appear to 
differ more in terms of phrase and configurational properties than they do in terms of relational ones: 
thus a relational representation is a better basis for translation than a configurational one, and IS 
should be relational. Furthermore, it is widely thought that a level that involves explicit representa- 
tion of syntactic relations is a useful intermediate step between superficial and semantic representa- 
tions. Since there is evidence that syntactic category is useful in transfer, at least some such infor- 
mation (major category, number, person ...) should be preserved at ERS. 

As will appear, the version of IS proposed below requires heads to be lexical, but allows for 
distinctions between the type of a construction and the type of its head (i.e. it requires a lowered-gov, 
X1 representation reminiscent of that in GETA [2], and in standard EUROTRA. The distinction 
between this and pure (X0) is that the latter allows only lexical nodes, expressing government 
geometrically as domination, whereas an X1 requires each node to have a lexical daughter which 
governs the rest of the construction, hence expressing government as a variety of command). It 
seems reasonable to adopt the same view at ERS. 

3.2.2. Atoms and Constructors at ERS 
Given this, there are a number of different candidates for ERS constructors (e.g. words 

(atoms), syntactic relations (phrasal), syntactic categories, ...); however, given the intuition that 
dependency relations are between constructions and words, and that at least some words share the 
same syntactic dependency structure, the obvious constructors are classes of lexical items -- as 
defined by their dependency structures (i.e. their syntactic dependency frames). 

Thus, we will take the name of a constructor to be the name of a grammatical relation (gov, 
subj, obj, etc.), include category in the type, and refer to the frame of the gov in the constructor. 
The following constructors would construct transitive sentences involving verbs which require nomi- 
nal subjects and objects, nps with a nominal head and det modifiers, and nps with proper noun 
heads. 

Csub/obj=  (_, {cat=s}) [ (gov, {cat=v, frame = subj/np-obj/np}) 
(subj, {cat=np}) 
(obj, {cat=np}) 

The name of the constructor as a whole is unspecified, since the grammatical relation of construc- 
tions is not determined intrinsically but by whatever construction they are themselves part of. For 
brevity, some ‘minor’ properties such as number and person, are ignored in these examples. 

Cdefdet-n=   (_, {cat = np, definiteness = def}) [ (gov, {cat = n}) 
(mod, (cat=det}) 

Cpropn=   (-, {cat=np}) [ (gov, {cat=propn}) ] 
Since it is not a simple configurational level, the relationship of the <C,A> representation of ERS to 
an inspection tree is slightly less obvious than with ECS. Either of the following are reasonable: 
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(8) 

  
(9) 

 
The set of atoms at ERS will be closely related to that at ECS -- in particular, since both 

represent words of the same language, it will never be the case that ECS words are translated as ERS 
constructions, or vice versa. There are two differences worth mentioning. First, ERS atoms should 
be differentiated according to their frames so that the relation of ECS atoms to ERS atoms will typi- 
cally be one to many. Secondly, since we want the atoms at ERS to enter into dependency relations, 
we may want the name of each atom to be available for this; since it clearly cannot be specified lexi- 
cally, the name of each atom would have to be ‘blank’ at ERS; the word it represents would then be 
part of the type; e.g. 

(_, {word=like, cat=v, frame= subj/npobj/np, .„.}) 

(an incomplete specification of the transitive verb ‘like’ ignoring number, person, etc ...) 

3.2.3. Translation of ECS and ERS 
For atoms, the ECS <---> ERS translations are always atom to atom, hence always straight- 

forwardly primitive. Likewise, there will be many cases of straightforward constructor-constructor 
translations, involving at most re-ordering of arguments: 

ECS ERS 
Cnp/proper Cpropn 
Cnp/det-n (1,2) Cdet-n (2,1) 

(the ECS constructor takes its arguments in the order det, n, the ERS one in the order n, det). 
The translation rule that eliminates vps is also straightforward. Roughly: Cvp is assigned no 

translation at ERS, instead, Cs will be translated by a set of T rules, including the following: 

Cs (A, Cvp (B, c)) = = > Csubj/obj (B, A, C') 

in terms of the inspection trees: 
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(10) 
 
               S                    = = >              S 
      -----------------                     ---------------------------------- 
     |                       |                    |                    |                 | 
    np                  vp                gov                subj            obj 
  A               --------------          B                   A               C 
                   |                  | 
                  v               np 
                   B               C 

3.2.4. Control and unbounded dependencies 
Given the rather impoverished feature theory we have assumed, it is only possible to express 

the ‘control’ relation (i.e. the fact that the subject of verbs like ‘try’ is also the subject of their com- 
plement) through a non-simple T (i.e. a rule for which both sides are c-functions). In outline (i.e. 
ignoring complications like the presence of ‘to’, and the fact that the relation is dependent on particu- 
lar predicates such as ‘try’), if the phrase structure of ‘Kim tried to hit Sandy’ is of the form: 
(11) 

 
 

 

then the ECS description is of the form: 

Cs (1, Cvp (2, Cvp (3, 4))) 

and the corresponding ERS description is of the form: 

Ssubjobj (1, 2, Csubjobj (3, 2, 4)) 

i.e. in terms of the inspection tree: 

(12) 
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Intuitively, this is not surprising: the phenomena of control involves more than one construc- 
tion both at ECS and ERS -- if one is constrained so to refer to no more than one construction on one 
side of a T rule, then such phenomena will be difficult to handle. 

Similar difficulties arise with unbounded dependencies (e.g. wh-movement) which can be 
reduced to a combination of local dependencies. The difference being that the problem cannot be 
handled by allowing non-simple T-rules, since they involve constructions which may be arbitrarily 
far apart (if unbounded dependencies are reduced to local ones then they may involve an arbitrarily 
large number of constructions. 

There are two obvious solutions: 
a) Find some way of stating these relations within one level (i.e. by Cs).    The obvious way of 

doing this is to enrich the type theory so as to allow some attributes to take constructions as 
values:   in this way one would be able to ‘pass’ descriptions of entire constructions around 
from construction to construction (e.g. for control at ERS make the identity of the subject of 
the embedded sentence part of the sentence's type description, and ensure that the actual sub- 
ject of the matrix sentences unifies with this description) this is essentially how such things are 
handled in GPSG [4] and LFG [3]. 

b) Allow a relaxation of the spirit of the T-rules to allow that in addition to c-functions, they may 
contain expressions which evaluate to c-functions (i.e. essentially lambda abstractions of c- 
functions).   Roughly, we could allow ECS constructors to translate (ambiguously) as lambda 
abstractions of ERS constructors: 

Cs ( 1, Cvp (2)) = = > λ X Csubj-obj (2, 1, X) 

if Ctop is the ECS constructor that combines topicalized elements with sentences, then we could 
say: 

Ctop(l,2) = = >2(l) 

The translation of Jules, I like, would then be the translation of I like applied to the translation 
of Jules, i.e. (13) which evaluates by lambda conversion to (14), which in turn evaluates to an 
ERS interpretation tree. This is essentially how such things are handled in theories whose 
semantics are inspired by Montague grammar, e.g. [4]. 

(13) λ X Csubj-obj (like’, I’ ) : Jules’ 

(14) Csubj-obj (like’, I’ Jules’) 
There is no reason why such a modification of ECS < -- > ERS should be extended to other transla- 
tors, of course. 

There is no doubt that a more sophisticated feature theory is necessary (at least as sophisticated 
as that of [4], and that the restrictions on T-rules will make certain kinds of translational relationship 
difficult or impossible to express. But it is not obvious what problems these solutions entail. And 
there is a sense in which while such constructions can be handled in this kind of approach (i.e. 
within what is essentially a context free grammar augmented by a feature and certain kinds of filter 
[the T rules]), they are at the boundaries within which it is ‘natural.’ The approach is most natur- 
ally suited to phenomena which are intuitively hierarchical and recursive in nature, and as such is 
not well suited for handling non-, or only quasi-hierarchical relations (such as e.g. those whose nor- 
mal representation requires tree geometry to be augmented with co-indexation devices) -- what is not 
clear is whether phenomena such as control and unbounded dependencies (and the similar kinds of 
problem that arise in translating between other languages -- e.g. in transfer) are of this kind. 

11          



3.3.  IS 

3.3.1. Overview of IS 
The intuitive basis of IS is that of semantic (‘true’) dependency: an IS construction is a (com- 

plete and coherent) true dependency construction differentiated according to the kind of relation (SR) 
which holds between each member of the construction and the head. 

Roughly, the true members of a construction are those which make an independent contribu- 
tion to its interpretation: true modifiers are items which semantically specify the head of the con- 
struction, true complements are items that satisfy an argument position in the frame of the predicate. 
True heads are items which possess an argument structure, or which are the focus of true modifica- 
tion. Typical non-true dependents are formal subjects, and (some) subordinating conjunctions and 
articles, typical non-true heads are aspectual auxiliaries, and strongly governed prepositions (this is 
all discussed in some detail in [1] p. 155 ff, and 168 ff). Requiring IS constructions to be coherent 
means that such items will not appear in IS. The atoms of IS are again (readings of) words. Some 
information about morpho-syntactic properties is preserved (e.g. major syntactic category), other 
superficial type information is removed (surface case, tense marking e.g.); some semantic properties 
(Semantic Features, and Time labels) are present. 

Briefly, IS represents: 

atoms   (i.e. readings of words) 
SR       (Semantic Relations, semantic cases, theta roles, etc: e.g. 

agent, patient, experiencer, etc. see [1] for the proposed 
list) 

Time    (to be precise, a subset of time meanings cf. and [1]) 
Syntactic Category    (cat, num, per, ...) 
This is a proper subset of the standard EUROTRA IS, including some obvious omissions. 

As with standard EUROTRA, we allow that there may be differences in type between a con- 
struction as a whole and the head of the construction; since we also require that heads be lexical, the 
intuitive geometry of IS contains lowered govs (an X1 representation). 

For the most part, the motivation for these representational devices is pretty well known: SRs 
play a crucial role in the translation of prepositions, the relationship between tenses in different 
languages is notoriously complex, and syntactic category is useful in cases such as English know 
==> Dutch weten or kennen depending on the category of the patient, and English talk ==> 
French parler or conversation depending on whether it is a noun or a verb. 

3.3.2. Atoms and Constructors at IS 
As with ERS, we will treat the part of an atom which indicates the word of which it is a reading 

as part of the type, and leave the atom name ‘blank’ to receive a semantic function: 

(_ , { word = like, frame = experiencer/patient, cat=v, .....} ) 
Also as with ERS, the choice of constructors is not entirely obvious, but again, the intuition is that 
the semantic dependencies which are the basis of IS are relations between constructions and words, 
where words can be grouped according to their semantic relation frames. Thus, in most cases, the 
constructors of IS will correspond to semantic relation frames. 

Some IS constructors: 

Cexp/pat=    (_ , {cat=s}) [ (gov, {cat=v, frame = experiencer/patient}), 
(experiencer, { }), 
(patient, { }) ] 

This will assign gov, experiencer, and patient roles to three arguments providing the first is a v with 
the indicated frame. The resulting construction is of category s. 
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Cnp/def=    (_, {cat=np, definiteness=def}) [(gov, {cat=n})] 
This allows definite nps to contain just a nominal gov; a similar C would have to be written for inde- 
finite nps. 

An example inspection tree: 

(15)  

 

3.3.3. Translation of ERS and IS 
Since atoms correspond to words at both ERS and IS, T rules involving atoms will always be 

atom-atom in the ERS-IS and IS-ERS translators, the only complication being the extra readings of 
words that will be produced by atoms having SR frames rather than syntactic relation frames. 

Given the pragmatic principle that assigns a major burden to the <C,A> descriptions of the 
levels and their interpretations, it should often be possible to state T-rules for constructors very sim- 
ply, using the target language G and I to filter the apparent overgeneration of the translator. For 
example, the rule: 

Csubj-obj = = > Cexp/pat 

which works in the case of Jules likes Sandy appears to overgenerate, since in general subject-object 
constructions do not translate as experiencer-patient constructions. For example, if the ERS 
representation of Jules hit Sandy is: 

Csubj-obj [ hit, Jules, Sandy] 

the T rule will attempt to produce: 

Cexp-pat [ hit’, Jules’, Sandy’ ] 

this will fail, however, since hit has an agent-patient SR frame, and will fail to unify with the first 
arg-spec of Cexp-pat. 

Since a major difference between ERS and IS is the presence/absence of non-true dependents, 
one would expect T rules such as the following to be common: 

Cdefdet-n (1,2) = = >  Cnp/def ( 1 ) 

3.3.4. Translation of IS and IS 
Investigation of IS-IS translation (i.e. transfer) is the central preoccupation of the proto- 

EUROTRA experiment. This preoccupation is not reflected here, however, since in this framework 
transfer is not essentially different from any other step in the translation process, and the purpose of 
exposition is better served by describing relations between more superficial representations, where 
the phenomena are more familiar. 

Transfer components are the most numerous components of MT systems, and their construc- 
tion is the most demanding in terms of human effort. Accordingly, we would like to simplify the task 
of constructing the transfer translators as much as possible. Thus, where for most levels we are 

13  
 
 
 
 
 



prepared to relax the requirement that some T-rules must be simple, it will be imposed strictly for 
transfer. 

For transfer, both sides of T rules must be of the form 

atom = = > atom 
constructor-name = = > constructor-name 
constructor-name (variables) = = > constructor-name (variables) 

It is clear that this is unrealistic given the current representational theories. Gross structural differ- 
ences apart, languages lexicalize differently, producing lexical holes and protuberances 
(schimmel = = > white horse, kenner = = > someone who knows, graag = = > like to, etc.). Imposing this 
restriction is intended to lead to the definition of classes of such cases, and a basis for modifications 
to the Mu1 level of the framework grounded on contrastive study. 
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