
Building and Querying Parallel Treebanks

Martin Volk, Torsten Marek
University of Zurich, Institute of Computational Linguistics , 8050 Zurich,
Switzerland
volk|marek@cl.uzh.ch

Yvonne Samuelsson2
Stockholm University, Department of Linguistics ,106 91 Stockholm, Sweden
yvonne.samuelsson@ling.su.se

This paper describes our work on building a trilingual parallel treebank. We have annotated
constituent structure trees from three text genres (a philosophy novel, economy reports and a
technical user manual). Our parallel treebank includes word and phrase alignments. The
alignment information was manually checked using a graphical tool that allows the annotator
to view a pair of trees from parallel sentences. This tool comes with a powerful search facility
which supersedes the expressivity of previous popular treebank query engines.

1 Introduction

Recent years have seen a number of initiatives in building parallel treebanks (see
(Abeillé, 2003, Nivre et al., 2005)). The current interest in treebanks is documented in
international workshop series like “Linguistically Interpreted Corpora (LINC)” or
“Treebanks and Linguistic Theories” (TLT).

We see a treebank as a particular kind of annotated corpus where each sentence is
mapped to a special type of graph, a tree which represents its syntactic structure.
Traditionally the graphs were constituent structure trees but recent years have also
seen dependency treebanks. Constituent structure trees contain nodes and edges
where each node holds a label for a group of words (as e.g. NP for noun phrase or VP
for verb phrase). Dependency trees represent syntactic dependencies between words
directly. We work with constituent structure trees that have labeled edges to denote
functional relations which can easily be mapped to dependencies. The concept of
constituent structure trees in treebanking has been stretched beyond proper trees as
defined in graph theory by accepting crossing edges and even secondary edges.

Parallel treebanks are treebanks over parallel corpora, i.e. the “same” text in two
or more languages, where one text might be the source text and the other texts are
translations thereof, or where all texts are translations of a text outside of the corpus.
In addition to the syntactic annotation, a parallel treebank is aligned on the sub-
sentential level, for example on the word level or the phrase level.

Translation: Corpora, Computation, Cognition. Special Issue on Parallel Corpora: Annotation, Exploitation, Evaluation.
Volume 1, Number 1. December 2011.
ISSN 2193-6986

7

Building and querying parallel treebanks

Parallel treebanks can be created automatically or manually. Automatic creation
entails automatic parsing and automatic alignment, both of which will result in a
certain amount of error at the current state of the technology. In this paper we focus
on the manual creation of parallel treebanks.

Parallel treebanks can be used as training or evaluation corpora for word and
phrase alignment, as input for example-based machine translation (EBMT), as
training corpora for transfer rules, or for translation studies.

Parallel treebanks have evolved into a research field in the last decade. Cmejrek
et al. (2003) at the Charles University in Prague have built a parallel treebank for the
specific purpose of machine translation, the Czech-English Penn Treebank with
tectogrammatical dependency trees. They have asked translators to translate part of
the Penn Treebank into Czech with the clear directive to translate every English
sentence with one in Czech and to stay as close as possible to the original.

Other parallel treebank projects include Croco (Hansen-Schirra et al., 2006) which
is aimed at building an English-German treebank for translation studies, LinES an
English-Swedish parallel treebank (Ahrenberg, 2007), and the English-French
HomeCentre treebank (Hearne and Way, 2006), a hand-crafted parallel treebank
consisting of 810 sentence pairs from a Xerox printer manual.

Our group has contributed to these efforts by building a tri-lingual parallel
treebank called SMULTRON (Stockholm MULtilingal TReebank).1 Our parallel
treebank consists of syntactically annotated sentences in three languages, taken from
translated documents. The syntax trees of corresponding sentence pairs are aligned
on a sub-sentential level. On the side we have also experimented with building
parallel treebanks for the widely differing languages Quechua and Spanish (Rios
et al., 2009).

In this paper we will first describe our parallel treebank and the difficulties in
consistent annotation. We have developed a special alignment tool and present its
functionality for alignment and search of parallel treebanks. To our knowledge this is
the first dedicated tool that combines visualization, alignment and searching of
parallel treebanks.

2 Building SMULTRON - The Stockholm MULtilingual TReebank

We have built a trilingual parallel treebank in English, German and Swedish. In its
2008 release SMULTRON consists of around 500 trees from the novel Sophie’s World
and 500 trees from economy texts (an annual report from a bank, a quarterly report
from an international engineering company, and the banana certification program of
the Rainforest Alliance) (Samuelsson and Volk, 2006, 2007). The sentences in Sophie’s
World are relatively short (14.8 tokens on average in the English version), while the

1 We gratefully acknowledge financial support for the Smultron project by Granholms stiftelse,

Rausings stiftelse and the University of Zurich.

8

sentences in the economy texts are much longer (24.3 tokens on average; 5 sentences
in the English version have more than 100 tokens).

Lately we have added 500 trees from another text genre: a user manual for a DVD
player. This genre differs in that it contains a multitude of imperative constructions,
many numerical expressions as well as many itemized and enumerated lists.
SMULTRON version 2.0 consisting of 1500 trees from three text genres in three
languages has been released in the beginning of 2010.2

2.1 Monolingual Treebanking

For English and German there are large monolingual treebanks that have resulted in
standards for treebanking in these languages. We have followed these standards and
(semi-automatically) annotated the German sentences of our treebank with Part-of-
Speech tags and phrase structure trees (incl. edges labeled with functional
information) according to the NEGRA guidelines (Brants et al., 1997).

For English we have used the Penn Treebank guidelines which also prescribe
phrase structure trees (with PoS tags, but only partially annotated with functional
labels). However they differ from the German guidelines in many details. For
example, the German trees use crossing edges for discontinuous units while the
English trees introduce symbols for empty tokens plus secondary edges for the
representation of such phenomena.

There has been an early history of treebanking in Sweden, dating back to the
1970s (cf. (Nivre, 2002)). The old annotation schemes were difficult for automatic
processing (in the case of Talbanken (Telemann, 1974))3 or too coarse-grained (in the
case of Syntag (Järborg, 1986)). Therefore we have developed our own treebanking
guidelines for Swedish inspired by the German guidelines.

We annotated the treebanks for all three languages separately, with the help of
the treebank editor ANNOTATE4. ANNOTATE includes the TnT Part-of-Speech Tagger
and Chunker for German. We added taggers and chunkers for Swedish and English.
After finishing the monolingual treebanks, the trees were exported from the
accompanying SQL database and converted into an XML format as input to our
alignment tool, the TreeAligner.

Both the German trees and the Swedish trees are annotated with flat structures
but subsequently automatically deepened to result in richer and linguistically more
plausible tree structures.

2.1.1 Automatic Treebank Deepening

The German NEGRA annotation guidelines (Brants et al., 1997) result in rather flat
phrase structure trees. This means, for instance, no unary nodes, no “unnecessary”

2 Smultron is freely available from http://kitt.cl.uzh.ch/kitt/smultron/
3 Talbanken has recently been cleaned and converted to a dependency treebank by Joakim Nivre and

his group. See http://w3.msi.vxu.se/ nivre/research/talbanken.html
4 Annotate is a treebank editor developed at the University of Saarbrücken. See http://www.coli.uni-

sb.de/sfb378/negra-corpus/annotate.html

TC3, Vol. 1, No. 1 9

Building and querying parallel treebanks

NPs (noun phrases) within prepositional phrases and no finite verb phrases. Using a
flat tree structure for manual treebank annotation has two big advantages for the
human annotator: 1) the annotator needs to make fewer decisions, and 2) the
annotator has a better overview of the trees. This comes at the cost of the trees not
being complete from a linguistic point of view. One could ask why an NP that
consists of only one daughter is not marked, or why an NP that is part of a PP is not
marked, while the same NP outside a PP is explicitly annotated. These restrictions
also have practical consequences: If certain phrases (e.g. NPs within PPs) are not
explicitly marked, then they can only indirectly be searched in corpus linguistics
studies.

In addition to the linguistic drawbacks of the flat syntax trees, they are also
problematic for phrase alignment in a parallel treebank. Our goal is to align sub-
sentential units (such as phrases and clauses) to get fine-grained correspondences
between languages. The alignment focuses on meaning, rather than sentence
structure. For example, sentences can have alignment on a higher level of the tree (for
instance if the sentence carries the same meaning in both languages), without
necessarily having alignment on all lower levels (for instance, if the sentence contains
an NP without direct correspondence in the other language). We prefer to have
“deep trees” to be able to draw the alignment between the German sentences and the
parallel Swedish sentences on as many levels as possible; in fact, the more detailed
the sentence structure is, the more expressive is our alignment.

We deepened the flat phrase structure trees automatically with a script, which
automatically inserts nodes to create the deeper structure. However, these insertions
must be totally un-ambiguous, so that no errors are introduced. The input for this
program is a tree description in TIGER-XML (König and Lezius, 2002), an interface
format which can be created and used by the treebank tool TIGERSearch5. The output
is a deepened TIGER-XML tree. We have measured that the automatic node insertion
resulted in an increase of almost 60% additional nodes.

2.1.2 Completeness and Consistency Checks over Treebanks

Completeness and consistency are important characteristics of corpus annotation.
Tree completeness means that each token6 and each node is part of the tree. This can
easily be checked and should ideally be part of the annotation tool.

Consistency checking is more complicated. Consistent annotation means that the
same token sequence (or part-of-speech sequence or phrase sequence) is annotated in
the same way across the treebank. Annotation error detection has been explored for
part-of-speech annotation (Dickinson and Meurers, 2003a, Loftsson, 2009) and
syntactic annotation (Ule and Simov, 2004, Dickinson and Meurers, 2005).

5 See also http://www.ims.uni-stuttgart.de/projekte/TIGER.
6 Different treebanks take different positions on whether special tokens like punctuation symbols

should be part of the tree. For example, the Penn Treebank guidelines require punctuation marks to
be part of the tree whereas the German TIGER guidelines leave them unattached.

10

The variation n-gram approach for syntactic annotation (Dickinson and
Meurers, 2003b, 2005) is a method for detecting strings which occur multiple times in
the corpus with varying annotation. The approach can detect bracketing and labeling
errors in constituency annotation.

2.2 Aligning Trees

Establishing translation correspondences is a difficult task. This task is traditionally
called alignment and is usually performed on the paragraph level, sentence level and
word level. Alignment answers the question: Which part of a text in language L1
corresponds in meaning to which part of a text in language L2 (under the assumption
that the two texts represent the same meaning in different languages)?

There is considerable interest in automating the alignment process. Automatic
sentence alignment of legacy translations helps to fill translation memories.
Automatic word alignment is a crucial step in training statistical machine translation
systems. Both sentence and word alignment have to deal with 1-to-many alignments,
e.g. sometimes a sentence in one language is translated as two or three sentences in
the other language.

In other respects sentence alignment and word alignment are fundamentally
different. It is relatively safe to assume the same sentence order in both languages
when computing sentence alignment. But such a monotonicity assumption is not
possible for word alignment which needs to allow for word order differences and
thus for crossing alignments. While basic algorithms for sentence alignment can rely
on unsophisticated measures like sentence length in characters and still produce
good results, word alignment algorithms use cross-language cooccurrence
frequencies as a key feature.

Our work focuses on word alignment and on an intermediate alignment level
which we call phrase alignment. Phrase alignment encompasses the alignment from
simple noun phrases and prepositional phrases all the way to complex clauses. For
example, on the word alignment level we want to establish the correspondence of the
German “verb form plus separated prefix” fing an with the English verb form began.
In phrase alignment we mark the correspondence of the verb phrases ihn in den
Briefkasten gesteckt and dropped it in the mail box. For the alignment we have developed
a specific tool called TreeAligner (Lundborg et al., 2007), which displays two trees
and allows the user to draw alignment lines by clicking on phrases and words.

We regard phrase alignment as alignment between linguistically motivated
phrases, in contrast to work in statistical machine translation where phrase
alignment is defined as the alignment between arbitrary consecutive word
sequences. Our phrase alignment is alignment between nodes in constituent
structure trees. See figure 1 for an example of a tree pair with word and phrase
alignment. Green lines indicate exact alignments and red lines represent fuzzy
alignments (cf. section 2.2.2).

We believe that linguistically motivated phrase alignment provides useful phrase
pairs for example-based machine translation, and provides interesting insights for

TC3, Vol. 1, No. 1 11

Building and querying parallel treebanks

translation science and cross-language comparisons. Phrase alignments are
particularly useful for annotating correspondences of idiomatic or metaphoric
language use.

2.2.1 Related Research

Our research on word and phrase alignment is related to previous work on word
alignment as e.g. in the Blinker project (Melamed, 1998) or in the UPLUG project
(Ahrenberg et al., 2003). Alignment work on parallel treebanks is rare. Most notably
there is the Prague Czech-English treebank (Kruijff-Korbayová et al., 2006) and the
Linköping Swedish-English treebank (Ahrenberg, 2007). There has not been much
work on the alignment of linguistically motivated phrases. Tinsley et al. (2007) and
Groves et al. (2004) report on semi-automatic phrase alignment as part of their
research on example-based machine translation.

The most comprehensive study is probably the recent PhD thesis by
(Zhechev, 2009). The author describes his system for automatic phrase alignment
over parallel trees which is based on word alignment probabilities provided by
GIZA. He evaluates his system against the manually aligned HomeCentre treebank

Figure 1: Tree pair German-English with word and phrase alignments.

12

and reports on about 78% recall for 80% precision. These results are comparable to
Ambati and Lavie (2008). These approaches are unsupervised in the sense that
human-aligned trees are used only for evaluation.

Tiedemann and Kotzé (2009) present a supervised approach which automatically
learns phrase alignment features from our parallel treebank. By training on 400
aligned trees and testing on the remaining 100, they report on 80% precision and 76%
recall.

Considering the fact that the alignment task is essentially a semantic annotation
task, we may also compare our work to other tasks in semantic corpus annotation,
for example, the frame-semantic annotation in the German SALSA project
(cf. (Burchardt et al., 2006)).

2.2.2 Our Alignment Guidelines

We have compiled alignment guidelines for word and phrase alignment between
annotated syntax trees. The guidelines consist of general principles, concrete rules
and guiding principles. The most important general principles are:

 Align items that can be re-used as units in a machine translation system.
 Align as many items (i.e. words and phrases) as possible.
 Align as close as possible to the tokens.

The first principle is central to our work. The focal point is whether a phrase pair is
general enough to be re-used as translation unit in a machine translation system. For
example, in our Sophie’s World treebank we have decided not to align die
Verwunderung über das Leben with their astonishment at the world although these two
phrases were certainly triggered by the same phrase in the Norwegian original, and
both have a similar function in the two corresponding sentences. These two phrases
in isolation are too far apart in meaning to license their re-use. We are looking for
correspondences like was für eine seltsame Welt and what an extraordinary world which
would make for a good translation in many other contexts.

Some special rules follow from this principle. For example, we have decided that
a pronoun in one language shall never be aligned with a full noun in the other, since
such a pair is not directly useful in a machine translation system.

Principles 2 and 3 are more technical. Principle 2 tells our annotators that
alignment should be comprehensive. We want to re-use as much as possible from the
treebank, so we have to look for as many alignments as possible. Principle 3 says that
in case of doubt the alignment should go to the node that is closest to the terminals.
For example, our German treebank guidelines require a multi-word proper noun to
first be grouped in a PN phrase which is a single daughter node of a noun phrase
[[Sofie Amundsen]PN]NP. When we align the name, principle 3 tells us to draw
the alignment line from the German PN node since it is closer to the tokens than the
German NP node.

Often we are confronted with phrases that are not exact translation
correspondences but approximate translation correspondences. Consider the phrases
mehr als eine Maschine and more than a piece of hardware. This pair does not represent

TC3, Vol. 1, No. 1 13

Building and querying parallel treebanks

the closest possible translation but it represents a possible translation in many
contexts. In a way we could classify this pair as the “second-best” translation. To
allow for such distinctions we provide our annotators with a choice between exact
translation correspondences and approximate correspondences. We also use the term
fuzzy correspondence to refer to and give an intuitive picture of these approximate
correspondences. The option to distinguish between different alignment strengths
sounded very attractive at the start. But where and how can we draw the line
between exact and fuzzy translation correspondences? We have formulated some
clear-cut rules:

 If an acronym is to be aligned with a spelled-out term, it is always an
approximate alignment. For example, in our economy reports the English
acronym PT stands for Power Technology and is aligned to the German
Energietechnik as a fuzzy correspondence.

 Proper names shall be aligned as exact alignments (even if they are spelled
differently across languages; e.g. Sofie vs. Sophie).

But many open questions persist. Is einer der ersten Tage im Mai an exact or rather a
fuzzy translation correspondence of early May? We decided that it is not an exact
correspondence. How shall we handle zu dieser Jahreszeit vs. at this time of the year
where a literal translation would be in this season? We decided that the former is still
an exact correspondence. These examples illustrate the difficulties in distinguishing
between exact and approximate translation correspondence.

Automatically ensuring the overall consistency of the alignment decisions is a
difficult task. We have built a tool to ensure the consistency within the exact and
approximate alignment classes. The tool computes the token span for each alignment
and checks if the same token span pairs have always received the same alignment
type. For example, if the phrase pair mit einer blitzschnellen Bewegung and with a
lightning movement is once annotated as exact alignment, then it should always be
annotated as exact alignment. Figure 1 shows approximate alignments between the
PPs in der Hand and in her hand. It was classified as approximate rather than exact
alignment since the German PP lacks the possessive determiner.

Currently our alignment guidelines are more than 15 pages long with examples
for English-German and English-Swedish alignments. The challenge was to compile
precise and comprehensive guidelines to ensure smooth and consistent alignment
decisions. In (Samuelsson and Volk, 2006) we have reported on experiments to
evaluate inter-annotator agreement from our alignment tasks. Here we summarize
an experiment described in detail in (Volk et al., 2008) in which we evaluated our
alignment guidelines.

2.2.3 Inter-Annotator Agreement Experiments

In order to evaluate the inter-annotator agreement for the alignment task we
performed the following experiment. We gave 20 tree pairs in German and English to
12 advanced undergraduate students. Half of the tree pairs were taken from our
Sophie’s World treebank and the other half from our Economy treebank. We made

14

sure that there was one 1-to-2 sentence alignment in the sample. The students did not
have access to the gold standard alignment.

In class we demonstrated the alignment tool to the students, and we introduced
the general alignment principles to them. Then the students were given a copy of the
alignment guidelines. We asked them to do the alignments independently of each
other and to the best of their knowledge according to the guidelines.

 Alignment Type exact fuzzy total
Sophie part word alignment 75 3 78
 phrase alignment 46 12 58
Economy part word alignment 159 19 178
 phrase alignment 62 9 71

Table 1: Alignment Frequencies in the Gold Standard

Our own annotation of the 20 tree pairs (the gold standard alignment) contains
the alignments shown in table 1. In the Sophie part of the experiment treebank we
have 78 word-to-word alignments and 58 phrase-to-phrase alignments. Note that
some phrases consist only of one word and thus the same alignment information is
represented twice. We have deliberately kept this redundancy.

The alignments in the Sophie part consist of 125 times 1-to-1 alignments, 4 times
1-to-2 alignments and one 1-to-3 alignment (wäre vs. would have been) when viewed
from the German side. There are 3 times 1-to-2 alignments (e.g. introducing vs. stellte
vor) and no other 1:many alignment when viewed from the English side. In the
Economy part the picture is similar.

The student alignments showed a huge variety in terms of numbers of
alignments. In the Sophie part they ranged from 125 alignments to bare 47
alignments (exact alignments and fuzzy alignments taken together). In the Economy
part the variation was between 259 and 62 alignments. On closer inspection we
found that the student with the lowest numbers works as a translator and chose to
use a very strict criterion of translation equivalence rather than translation
correspondence. Three other students at the end of the list were not native speakers
of either German or English. We therefore decided to exclude these 4 students from
the following comparison.

The student alignments allow for the investigation of a number of interesting
questions:

 How did the students’ alignments differ from the gold standard?
 Which were the alignments done by all students?
 Which were the alignments done by single students only?
 Which alignments varied most between exact and fuzzy alignment?

TC3, Vol. 1, No. 1 15

Building and querying parallel treebanks

2.2.4 Inter-Annotator Agreement Results

The remaining 8 students reached between 81% and 48% overlap with our gold
standard on the Sophie part, and between 89% and 66% overlap with our gold
standard on the Economy texts. This can be regarded as their recall values if we
assume that the gold standard represents the correct alignments. These students
additionally had between 2 and 22 own alignments in the Sophie part and between
12 and 55 own alignments in the Economy part.

So the interesting question is: What kind of alignments have they missed, and
which were the additional own alignments that they suggested (alignments that are
not in the gold standard)? We first checked the students with the highest numbers of
own alignments. We found that some of these alignments were due to the fact that
students had ignored the rule to align as close to the tokens as possible (principle 3
above).

Another reason was that students sometimes aligned a word (or some words)
with a node. For example, one student had aligned the word natürlich to the phrase of
course instead of to the word sequence of course. Our alignment tool allows that, but
the alignment guidelines discourage such alignments. There might be exceptional
cases where a word-to-phrase alignment is necessary in order to keep valuable
information, but in general we try to stick to word-to-word and phrase-to-phrase
alignments.

Another discrepancy occurred when the students aligned a German verb group
with a single verb form in English (e.g. ist zurückzuführen vs. reflecting). We have
decided to only align the full verb to the full verb (independent of the inflection).
This means that we align only zurückzuführen to reflecting in this example.

The uncertainties on how to deal with different grammatical forms led to the most
discrepancies. Shall we align the definite NP die Umsätze with the indefinite NP
revenues since it is much more common to drop the article in an English plural NP
than in German? Shall we align a German genitive NP with an of-PP in English (der
beiden Divisionen vs. of the two divisions)? We have decided to give priority to form
over function and thus to align the NP der beiden Divisionen with the NP the two
divisions. But of course this choice is debatable.

When we compute the intersection of the alignments done by all students
(ignoring the difference between exact and fuzzy alignments), we find that about
50% of the alignments done by the student with the smallest number of alignments is
shared by all other students. All of the alignments in the intersection are in our gold
standard file. This indicates that there is a core of alignments that are obvious and
uncontroversial. Most of them are word alignments.

When we compute the union of the alignments done by all students (again
ignoring the difference between exact and fuzzy alignments), we find that the
number of alignments in the union is 40% to 50% higher than the number of
alignments done by the student with the highest number of alignments. It is also

16

about 40% to 50% higher than the number of alignments in the gold standard. This
means that there is considerable deviation from the gold standard.

Other discrepancies concern cases of differing grammatical forms, e.g. a German
definite singular noun phrase (die Hand) that was aligned to an English plural noun
phrase (hands) in the gold standard but missed by all students. Finally there are a few
cases where obvious noun phrase correspondences were simply overlooked by all
students (sich - herself) although the tokens themselves were aligned. Such cases
should be handled by an automated process in the alignment tool that projects from
aligned tokens to their mother nodes (in particular in cases of single token phrases).

2.2.5 Working with the TreeAligner

The tree alignments in SMULTRON and in the experiments above were done with a
tool called TreeAligner. Let us look at the alignment process in more detail.

When our monolingual treebanks were finished, the trees were exported from the
editor system and converted into TIGER-XML, an XML format for encoding syntax
graphs with crossing dominance branches and secondary edges. TIGER-XML has
been defined as input format for TIGERSearch, a query tool for monolingual
treebanks (see section 3.1). We use TIGER-XML also as input format for the
TreeAligner (Volk et al., 2006).

The TreeAligner program is a graphical user interface to specify (or correct) word
and phrase alignments between pairs of 7syntax trees. The TreeAligner is roughly
similar to alignment tools such as I*Link (Ahrenberg et al., 2002) or Cairo (Smith and
Jahr, 2000) but it is especially tailored to visualize and align full syntax trees. The
TreeAligner is unique in that it allows the alignments of linguistically motivated
phrases via node alignments in parallel constituent structure trees (cf. (Samuelsson
and Volk, 2007)).

The TreeAligner operates on an alignment file in an XML format developed by us.
This file describes the alignments between two TIGER-XML treebanks (specified in
the alignment file) holding the trees from language one and language two
respectively. For example the alignment between two nodes is represented as:

<align type="good">

 <node treebank_id="de" node_id="s153_11"/>

 <node treebank_id="en" node_id="s144_10"/>

</align>

This says that node 11 in sentence 153 of the German treebank (de) is aligned with
node 10 in sentence 144 of the English treebank (en). The node identifiers refer to the

7 The TreeAligner was implemented in Python by Joakim Lundborg and Torsten Marek. It is freely

available at http://www.cl.uzh.ch/treealigner.html

TC3, Vol. 1, No. 1 17

Building and querying parallel treebanks

IDs in the TIGER-XML treebanks. The alignment is given the label “good” or “fuzzy”
depending on the degree of meaning correspondence.

The alignment file might initially be empty when we start manual alignment from
scratch, or it might contain automatically computed alignments for correction. The
TreeAligner displays tree pairs with the trees in mirror orientation (one top-up and
one top-down) exemplified in figure 1. The trees are displayed with node labels, edge
labels and part-of-speech tags.

Each alignment is displayed as a dotted line between two nodes (or words) across
two trees. Clicking on a node (or a word) in one tree and dragging the mouse pointer
to a node (or a word) in the other tree inserts an alignment line. The type of the
alignments is represented by its color. Our experiments indicate that eventually more
alignment types than just the two used in SMULTRON will be needed to precisely
represent fine-grained translation differences. In its most recent version, the
TreeAligner supports arbitrarily many alignment types, which can describe many
different levels or modes of alignment. These distinctions could prove useful when
exploiting the aligned treebanks for Machine Translation and other applications.

Often one tree needs to be aligned to two (or more) trees in the other language.
The TreeAligner therefore provides the option to browse the trees independently.

The TreeAligner is designed as a stand-alone tool (i.e. it is not prepared for
collaborative annotation). It stores every alignment in an XML file (in the format
described above) as soon as the user moves to a new tree pair.

Lately we have included an interactive module that suggests word and phrase
alignments. It follows an alignment memory strategy in analogy to translation
memories. This means that the module stores each alignment made by the human
annotator. If a new tree pair is to be aligned, the module checks whether any token
sequence in the current trees has been previously aligned. If so, it suggests the stored
alignment to the annotator.

2.2.6 Consistency Checks over Alignments

Based on the lessons learned in the inter-annotator agreement experiments, we have
improved our alignment guidelines. The question is how we can ensure that the
guidelines are followed. We would like to determine whether the alignments are
complete and consistent, in similarity to quality checks over treebanks.

For consistency checking of the alignments, we checked for all aligned single
tokens and all aligned token sequences whether they are aligned in the same way
(i.e. with the predicate ‘exact’ or ‘fuzzy’) to the same corresponding tokens. We also
checked whether the aligned token sequences differ in length (calculated as number
of characters). Large length differences point to possibly erroneous alignments.

Additionally, we examined those cases where different types of nodes are aligned
across the languages (e.g., when an adjective phrase in one language is aligned with
a prepositional phrase in the other). These consistency checks were initially done
manually over an extracted table of the aligned token sequences (with their node
labels). This allowed us to sort the token sequences according to different criteria and

18

to abstract away from the dense forest of syntactic information and alignment lines in
the TreeAligner.

In order to provide faster feedback about internal alignment link consistency,
recent versions of the TreeAligner contain a module for consistency checks that are
computed during annotation. We distinguish between two different methods,
general structural constraints and association probability. Structural constraints are
applied regardless of language or corpus, as they express certain invalid subgraphs.
One structural constraint that has proven useful to the annotators is branch link
locality, which demands that if two phrases p1, p2 are aligned, any transitive
successor of p1 may only be aligned to a successor of p2. While there are some
systematic problems with this constraint, it is very effective in exposing
inconsistencies among the monolingual annotations and spotting simple mistakes.

The other approach relies on measuring association strength between collocates.
In our case, we define an alignment link to be our collocate and check if, given the
totality of all alignment links in the current corpus, we can reject it as an improbable
hypothesis. For this, we use contingency tables and a 2 statistic for non-parametric
data.

Another (forthcoming) method for consistency checking of alignment draws on
the variation n-gram approach for syntactic annotation (Dickinson and
Meurers, 2003b, 2005). It considers alignment as a string-to-string mapping and,
treating the target string as a label, examines each source string and their labels, to
find inconsistencies in the alignment. Several heuristics are used to filter the set of
variations, based on source language context and based on the nature of alignments
in aligned corpora. One additional, complementary, method predicts what phrasal
node (if any) a constituent should be aligned to, based on the word alignment.

3 Searching Parallel Treebanks

Since the inception of treebanks, many languages and tools for querying syntactically
annotated corpora have been developed. Most of the tools and query languages have
been designed for a specific corpus and a specific annotation format.

Our survey focuses on TGrep and TIGERSearch since they were most influential
for our own work. We are well aware of related approaches on searching parallel
treebanks such as (Nygaard and Johannesen, 2004) and (Petersen, 2006).

3.1 Setting the Standard: TGrep and TIGERSearch

TGrep28 (Rohde, 2005) is a tool for querying structured syntax trees in traditional
Penn Treebank “bracketed notation”. It supports a wide range of structural operators
apart from normal dominance or precedence checks and aims for maximal
succinctness of corpus queries. Corpora can be queried using a command line
interface, either in interactive or batch mode.

8 TGrep can be found at http://tedlab.mit.edu/~dr/TGrep2/

TC3, Vol. 1, No. 1 19

Building and querying parallel treebanks

TIGERSearch is a powerful treebank query tool developed at the University of
Stuttgart by Wolfgang Lezius (cf. (König and Lezius, 2002, Lezius, 2002a). The TIGER
query language is similar in expressiveness to TGrep2, but comes with a graphical
user interface and highlighting of the syntax trees, frequency tables for objects
identified in the query, and support for exporting query result sets. TIGERSearch has
been implemented in Java and is freely available for research purposes. Because of its
clearly defined input format and its powerful query language, it has become the
corpus query system of choice for many linguists.

The TIGER query language is based on feature-value descriptions of all linguistic
objects (tokens and constituents), dominance, precedence and sibling relations in the
tree, node predicates (e.g. with respect to token arity and continuity), variables for
referencing objects, regular expressions over values for varying the query precision,
and queries over secondary edges (which constitute a secondary graph level).

A complex query might look like the following example with > denoting direct
dominance, >* denoting general dominance, the dot denoting immediate
precedence, and the # symbol introducing variables. This query is meant to find
sequences of a noun phrase followed by two prepositional phrases where both PPs
are attached to the noun in the NP:

 #np:[cat="NP"] >* #n1:[pos="NN"]&

 #np > #pp1:[cat="PP"] &

 #n1 . #pp1 &

 #pp1 >* #n2:[pos="NN"] &

 #np > #pp2:[cat="PP"] &

 #n2 . #pp2

This query says: Search for an NP (call it #np) that dominates a noun #n1 (line 1) and
two PPs (lines 2 and 5). #pp1 must follow immediately after the noun #n1 (line 3),
and #pp2 must follow immediately after the noun within the #pp1 (lines 4 and 6).
This query finds, for instance, the German noun phrase “Die Anhörung vor dem
Konkursgericht zur Offenbarungserklärung” (English “a hearing on the Disclosure
Statement before the Bankruptcy Court”) where both PPs are attached to the noun
“Anhörung” in our SMULTRON economy treebank.

Like TGrep2, TIGER is a language for querying monolingual treebanks and thus
needed to be extended for our goal of querying parallel treebanks. More generally,
the design of the input format influences the design of the query language to a large
degree, since it defines what can be queried. For instance, the TIGER object model
supports crossing branches, leading to non-terminal nodes whose terminal
successors are not a proper substring of the sentence. The TIGER query language

20

thus has special functions for dealing with discontinuous nodes. In contrast, the Penn
Treebank formalism does not support crossing branches, and thus TGrep2 has no
means for this notion.

3.2 The TreeAligner Search Module

Merz and Volk (2005) listed the requirements for a parallel treebank search tool.
Based on these we have re-implemented TIGERSearch for parallel treebanks and
integrated it into the TreeAligner.

We allow the power of TIGERSearch queries on both treebanks plus additional
alignment constraints. For example, a typical query could ask for a sentence S
dominating a prepositional phrase PP in treebank one. This query can be combined
with the constraint that the S in treebank one is aligned to a verb phrase VP in
treebank two which also dominates a PP. Such a query would be expressed in 3 lines
as:

German treebank #t1:[cat="S"] > [cat="PP"]

English treebank #t2:[cat="VP"] > [cat="PP"]

Alignment #t1 -- #t2

These three lines are entered into three separate input fields in the user interface
(cf. the three input fields in the bottom left in figure x1-1500122). Lines 1 and 2
contain the queries over the two monolingual treebanks. Line 3 contains the
alignment constraint. Note that the treebank queries 1 and 2 closely follow the
TIGERSearch syntax. In particular they allow the binding of variables (marked with
#) to specific linguistic objects in the query. These variables are used in the alignment
constraint in line 3. The reuse of the variables is the crucial idea which enabled a clear
design of the TreeAligner Search Module by keeping the alignment constraints
separate from the queries over the two treebanks.

The above query will find the tree pair in figure 2 because it matches the
alignment between the English VP closed the front door behind her and the elliptical
German sentence schloß hinter sich die Tür (which lacks the subject, but is still
annotated as S).

The Search Module in the TreeAligner is intended for any parallel treebank where
the monolingual treebanks can be converted into TIGER-XML and where the
alignment information can be converted to the SMULTRON XML alignment format.
The separation of these parts makes it possible to query each treebank separately as
well. The system is divided into a monolingual query facility and an alignment query
facility that makes use of the former to perform its job. This design choice made it
necessary to (re)implement TIGERSearch, the alignment query facility, and the
integration into the TreeAligner.

TC3, Vol. 1, No. 1 21

Building and querying parallel treebanks

We chose to reimplement TIGERSearch in Python which influenced the feature

set. Even though the implementation of TIGERSearch is well documented (in
(Lezius, 2002a) among others) and the Java source codes are available under an Open
Source license, the reimplementation is not a trivial task.

The query language for the alignment constraints is kept simple as well. The user
can specify that two linguistic objects must be aligned (with exact alignment or
approximate alignment). And such constraints can be combined with AND
statements into more complex constraints. We cannot foresee all options on how a
parallel treebank will be queried. We have therefore focused on a clear design of the
Search Module rather than overloading it with features. This will facilitate the
integration of more features as they are requested by users.

3.2.1 Limitations of the TIGER Query Language

While certain limitations of query languages are due to the original design and could
only be approximated, other valid queries may simply be missing from the query

Figure 2: Screenshot of the TreeAligner with the Search Module

22

language. Lai and Bird (2004) give a list of seven sample queries that each query
formalism should support, regardless of the annotation formalism.

Here we deal with queries that contain universal quantification, i.e. selecting a
tree by stating constraints over sets of nodes rather than individual nodes. The
sample queries contain two examples where this is needed (Lai and Bird, 2004):

Q2. Find sentences that do not include the word “saw”.

Q5. Find the first common ancestor of sequences of a noun phrase

followed by a verb phrase.

With the TIGER query language and its implementation TIGERSearch
(Lezius, 2002a), these queries can only be approximated. The result set generated for
the approximated queries will likely contain errors.

Because of the technical nature of the discussion in this section we speak of syntax
graphs rather than trees. These graphs are directed, acyclic and do not contain
structure sharing (i.e. each node has exactly one direct ancestor). However, due to
crossing branches, TIGER trees cannot be stored as nested lists or XML DOM trees
directly, which is the usual understanding of trees.

Node descriptions are boolean expressions of feature constraints of the form
”(feature=value)”. They are the basis for finding nodes (assignments) in the corpus
which are then used for the constraint resolution in TIGER queries.

In the TIGER query language, every node variable is implicitly existentially
quantified, i.e. the query

#s:[cat="S"] !>* #w:[word="saw"]

returns all combinations of two nodes #s, #w in all graphs, such that #s does not
dominate #w (the exclamation mark is the negation operator). From the graphs that
were requested in Q2, it will only contain the graphs that do contain the word “saw”
outside of an S node. All graphs that do not contain any “saw” will not show up in
the result set. Another attempt to formulate Q2 is the query

#s:[cat="S"] >* #w:[word!="saw"]

which returns all combinations of all words except “saw” that are dominated by an S
node.

Lezius (2002b) already acknowledges this restriction and proposes to extend the
TIGER query formalism with a universal quantifier and the implication operator.
While this is natural given the unification-based evaluation of queries in
TIGERSearch, an implementation comes at great computational cost. For each

TC3, Vol. 1, No. 1 23

Building and querying parallel treebanks

universal quantifier in a query, all nodes in the graph have to be iterated to find out
if they satisfy the implication.

3.2.2 Extensions of the Query Language in the TreeAligner

The solution suggested by Lezius (2002b) builds upon the query calculus that is at
the core of TIGERSearch’s query evaluation engine. In contrast, the query engine in
the TreeAligner is based on node sets, and combinations of nodes from the different
sets to satisfy the constraints given in a query. We summarize our approach in the
following. More details can be found in (Marek et al., 2008).

In the previous analysis of Q2, we showed that it is possible to rephrase the query
using logical equivalents. Therefore, the query “get all S nodes that do not contain
the word ‘saw’ ” can be rephrased into “get all graphs where all instances of ‘saw’, if
any, are not dominated by a specific S node”. We already demonstrated that it is not
possible to express this query within the old formalism, because one of the operands
(“all instances of ‘saw’, if any”) is a set of nodes rather than a single node. In order to
get correct results, we introduce a new type into the query language, the node set.

3.2.3 Node Sets

Traditional node descriptions are still bound by an existential quantifier. A node set,
in contrast, is bound by a variable that starts with a percentage symbol:

#s:[cat="S"] !>* %w:[word="saw"]

If one operand in a constraint is a node set instead of a node, the semantics of the
constraint are changed. In this case, only those assignments to #s are returned where
the constraint holds for each node in the node set %w. In the example at hand, only
those S nodes are returned that do not dominate any word ”saw” in a graph.

The semantics of the node predicates that are defined in the TIGER query
language do not change, they still operate at the node level. In the query

%np:[cat="NP"] & tokenarity(%np, 2)

the node set %np will contain all NPs whose token arity is 2. In other words, the
query matches all NPs that consist of two tokens (e.g. “Cash flow” or “this increase”).

If each variable is bound by an existential quantifier, evaluation of a query (or
rather, one term in a query in Disjunctive Normal Form) can terminate as soon as one
node description does not yield any results. Graphs that do not contain matching
nodes for any of the descriptions will also be disregarded. In the presence of node
sets, this behavior is wrong. But graphs without any occurrence of “saw” are valid
results for the query. Because of that, the semantics of node descriptions bound to
node sets are changed. In contrast to nodes, which may not be undefined, they can be
the empty set. If this is the case, a constraint is trivially true.

24

With this change in place, TIGER is in Cantor’s paradise, and no one shall expel it
from there. With the basic semantics of set types defined, new set predicates can be
introduced to refine queries. As an example, consider the query “Return all NPs that
do not contain any prepositional phrase PP, but only if the graph contains PPs”. With
empty node sets allowed, the query would have to be written as

[cat="NP"] !>* %pp:[cat="PP"] & [cat="PP"]

to ensure that at least one PP exists. As a side effect, the result set contains one entry
for each combination of NP and PP in a matching graph, which is slightly more than
what the query was supposed to yield. If a node set must not be empty, set algebra
operations like cardinality, element containment, union and intersection could be
added to TIGER.

Instead of adding support for set operations, we introduced two new predicates
that operate exclusively on node sets: empty and nonempty. The semantics of the
predicates can be inferred from the names, and the previous query can be written in
a straightforward manner:

[cat="NP"] !>* %pp:[cat="PP"] & nonempty(%pp)

This makes it possible to search for graphs that do not contain a specific kind of
nodes by using the predicate empty. The query

%w:[pos="DT"] & empty(%w)

returns all graphs that do not contain any determiner. For example, in our SMULTRON
economy treebank we find determinerless English headlines such as “Group orders
grew 8 percent, revenues 10 percent”.

4 Conclusions

We have shown that building parallel treebanks is a complex process. For our
SMULTRON treebank we have used separate tools for creating the monolingual
treebanks and the alignment. We have improved the process by automatic treebank
deepening, interactive visualisation tools, automatic alignment suggestions and
consistency checking over trees and alignments.

Still the process remains burdensome in particular since the alignments constitute
semantic annotations. We have shown that good alignment guidelines are important.
Our experiments have helped us to realize that the guidelines need to contain a host
of fine-grained alignment rules and illustrative examples to clarify critical cases.

Our alignment work would have been impossible without the TreeAligner, our
tool for interactive alignment and searching of parallel treebanks. The alignment
module provides for quick drag-and-click alignments and supports various views on

TC3, Vol. 1, No. 1 25

Building and querying parallel treebanks

the aligned trees. The search module allows powerful treebank searches combining
constraints over trees and alignments. We have implemented a query language that
was inspired by TIGERSearch but which supersedes TIGERSearch with support for
universal quantification.

Future research may go in various directions. We would like to move from a split
development of monolingual treebanks and subsequent alignment to a more
integrated development process. This should include annotation projection and
cross-language consistency checks in every phase of the development process.
Moreover recent work on automatic word and phrase alignment should be better
integrated into the TreeAligner.

Annotating a parallel treebank is labor-intensive but it provides such a wealth of
cross-language observations that make it worthwhile and rewarding.

5 References

Abeillé, A. (Ed.) 2003. “Building and Using Parsed Corpora”. Text, Speech and
Language Technology, 20. Kluwer, Dordrecht.

Ahrenberg, L. 2007. “LinES: An English-Swedish parallel Treebank”. Proc. of Nodalida
2007.

Ahrenberg L., Merkel, M. & Andersson, M. 2002. “A system for incremental and
interactive word linking”. In Proc. of LREC-2002, 485–490.

Ahrenberg L., Merkel, M. & Petterstedt, M. 2003. “Interactive word alignment for
language engineering”. In Proc. of EACL-2003.

Ambati V. & Lavie, A. 2008. “Improving syntax driven translation models by re-
structuring divergent and non-isomorphic parse tree structures”. Proceedings of
the Student Research Workshop at the Eighth Conference of the Association for
Machine Translation in the Americas (AMTA 2008).

Brants, T., Hendriks, R., Kramp, S., Krenn, B., Preis, C., Skut, W. & Uszkoreit, H.
1997. Das NEGRA-Annotationsschema. Technical report, Universität des
Saarlandes, Saarbrücken, Germany. Available at: http://www.coli.uni-
sb.de/sfb378/negra-corpus/negra-corpus.html.

Burchardt, A., Erk, K., Frank, A., Kowalski, A., Padó, S. & Pinkal, M. 2006. ”The
SALSA corpus: A German corpus resource for lexical semantics”. Proceedings of
LREC 2006, 969–974.

Cmejrek, M., Curin, J. & Havelka, J. 2003. “Treebanks in machine translation”. Proc.
Of the 2nd Workshop on Treebanks and Linguistic Theories, 209–212.

Dickinson, M. & Detmar Meurers, W. 2003a. “Detecting errors in part-of-speech
annotation”. Proceedings of EACL-03, 107–114.

Dickinson, M. & Detmar Meurers, W. 2003b. “Detecting inconsistencies in
treebanks”. In Proceedings of TLT-03, 45–56.

Dickinson, M. & Detmar Meurers, W. 2005. “Detecting errors in discontinuous
structural annotation”. Proceedings of ACL-05, 322–329.

26

Groves, D., Hearne, M. & Way, A. 2004. “Robust sub-sentential alignment of phrase-
structure trees”. Proceedings of Coling 2004, 1072–1078.

Hansen-Schirra, S., Neumann, S. & Vela, M. 2006. “Multi-dimensional annotation
and alignment in an English-German translation corpus”. Proceedings of the
EACL Workshop on Multidimensional Markup in Natural Language Processing
(NLPXML-2006), 35– 42.

Hearne, M. & Way, A. 2006. “Disambiguation strategies for data-oriented
translation”. Proceedings of the 11th Conference of the European Association for
Machine Translation 2006 (EAMT 2006), 59–68.

Järborg, J. 1986. SynTag Dokumentation. Manual för SynTaggning. Technical report,
Department of Swedish, Göteborg University.

König, E. & Lezius, W. 2002. The TIGER language - a description language for syntax
graphs. Part 1: User’s guidelines. Technical report.

Kruijff-Korbayová, I., Chvátalová, K. & Postolache, O. 2006. “Annotation guidelines
for the Czech-English word alignment”. Proceedings of LREC 2006.

Lai, C. & Bird, S. 2004. “Querying and updating treebanks: A critical survey and
requirements analysis”. Proceedings of the Australasian Language Technology
Workshop 2004.

Lezius, W. 2002a. “Ein Suchwerkzeug für syntaktisch annotierte Textkorpora”. PhD
thesis, IMS, University of Stuttgart. Arbeitspapiere des Instituts für Maschinelle
Sprachverarbeitung (AIMS), 8(4).

Lezius, W. 2002b. “TIGERSearch – Ein Suchwerkzeug für Baumbanken”. In S.
Busemann (Ed.), Proceedings der 6. Konferenz zur Verarbeitung natürlicher Sprache
(KONVENS 2002), 107–114.

Loftsson, H 2009. “Correcting a POS-tagged corpus using three complementary
methods”. Proceedings of EACL-09, 523–531, Athens, Greece.

Lundborg, J., Marek, T., Mettler. M. & Volk, M. 2007. “Using the Stockholm
TreeAligner”. Proc. of The 6th Workshop on Treebanks and Linguistic Theories 2007.

Marek, T., Lundborg, J. & Volk, M. 2008. “Extending the TIGER query language with
universal quantification”. Proceeding of KONVENS, 3–14.

Melamed, D. 1998. Manual annotation of translational equivalence: The Blinker project.
Technical Report 98-06, IRCS, Philadelphia PA.

Merz, C. & Volk, M. 2005. “Requirements for a parallel treebank search tool”.
Proceedings of GLDV-Conference, Sprache, Sprechen und Computer / Computer
Studies in Language and Speech 2005. Peter Lang Verlag.

Nivre, J. 2002. “What kinds of trees grow in Swedish soil? A comparison of four
annotation schemes for Swedish”. Proceedings of First Workshop on Treebanks and
Linguistic Theory, Sozopol, Bulgaria.

Nivre, J., de Smedt, K. & Volk, M. 2005. “Treebanking in Northern Europe: A white
paper”. In H. Holmboe (Ed.), Nordisk Sprogteknologi. Nordic Language Technology.
Årbog for Nordisk Sprogteknologisk Forskningsprogram 2000-2004, 97–112. Museum
Tusculanums Forlag, Copenhagen.

TC3, Vol. 1, No. 1 27

Building and querying parallel treebanks

Nygaard L. & Bondi Johannesen, J. 2004. “SearchTree - a user-friendly treebank

search interface”. Proc. of 3rd Workshop on Treebanks and Linguistic Theories, 183–
189.

Petersen, U. 2006. “Querying both parallel and treebank corpora: Evaluation of a
corpus query system”. Proc. of LREC 2006.

Rios, A., Göhring, A. & Volk, M. 2009. “A Quechua-Spanish parallel Treebank”.
Proceedings of the 7th Workshop on Treebanks and Linguistic Theories.

Rohde, D. L. T. 2005. TGrep2 User Manual. MIT. Available from http://tedlab.mit.edu/
~dr/Tgrep2/.

Samuelsson, Y. & Volk, M. 2006. “Phrase alignment in parallel treebanks”. In J. Hajic
& J. Nivre (Eds.), Proc. of the Fifth Workshop on Treebanks and Linguistic Theories,
91–102.

Samuelsson, Y. & Volk, M. 2007. “Alignment tools for parallel treebanks”. Proceedings
of GLDV Frühjahrstagung 2007.

Smith, N. A. & Jahr, M. E. 2000. “Cairo: An alignment visualization tool”. Proc. of
LREC-2000.

Telemann, U. 1974. Manual För Grammatisk Beskrivning Av Talad Och Skriven Svenska.
Inst. för nordiska språk, Lund.

Tiedemann, J. & Kotzé, G. 2009. “Building a large machine-aligned parallel
treebank”. Proceedings of the 8th International Workshop on Treebanks and Linguistic
Theories, 197–208.

Tinsley, J., Zhechev, V., Hearne, M. & Way, A. 2007. “Robust language pair-
independent sub-tree alignment”. Machine Translation Summit XI Proceedings.

Ule, T., & Simov, K. 2004. “Unexpected productions may well be errors”. Proceedings
of LREC-04, Lisbon, Portugal.

Volk, M., Gustafson-Capková, S., Lundborg, J., Marek, T., Samuelsson, Y. &
Tidström, F. 2006. “XML-based phrase alignment in parallel treebanks”. Proc. of
EACL Workshop on Multi-dimensional Markup in Natural Language Processing 2006.

Volk, M., Marek, T. & Samuelsson, Y. 2008. “Human judgements in parallel treebank
alignment”. Proceedings of the COLING Workshop on Human Judgements in
Computational Linguistics, Manchester, UK.

Zhechev, V. 2009. Automatic Generation of Parallel Treebanks. An Efficient Unsupervised
System. PhD thesis, School of Computing at Dublin City University.

28

