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A B S T R A C T  
The time required for our translation system to handle 

a sentence of length I is a rapidly growing function of i. 
We describe here a method for analyzing a sentence into 
a series of pieces that can be translated sequentially. We 
show that for sentences with ten or fewer words, it is pos- 
sible to decrease the translation time by 40% with almost 
no effect on translation accuracy. We argue that for longer 
sentences, the effect should be more dramatic. 

Introduction 

In a recent series of papers, Brown et aL intro- 
duce a new, statistical approach to machine transla- 
tion based on the mathematical theory of communi- 
cation through a noisy channel, and apply it to the 
problem of translating naturMly occurring French sen- 
tences into English [1, 2, 3, 4]. They develop a proba- 
bilistic model for the noisy channel and show how to 
estimate the parameters of their model from a large 

collection of pairs of aligned sentences. By treating a 
sentence in the source language (French) as a garbled 
version of the corresponding sentence in the target 
language (English), they recast the problem of trans- 
lating a French sentence into English as one of find- 
ing that  English sentence which is most likely to be 
present at the input to the noisy channel when the 
given French sentence is known to be present at its 
output .  For a French sentence of any realistic length, 
the most probable English translation is one of a set of 

"This work was supported, in part, by DARPA con- 
tract N00014-91-C-0135, administered by the Office of Naval 
Research. 

English sentences that,  although finite, is nonetheless 
so large as to preclude an exhaustive search. Brown 
et aL employ a suboptimal  search based on the stack 
algorithm used in speech recognition. Even so, as we 
see in Figure 1, the time required for their system to 
translate a sentence grows very rapidly with sentence 
length. As a result, they have focussed their attention 
on short sentences. 
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Figure  1: Search time as a function of sentence length. 

The designatum of some French words is so spe- 
cific that  they can be reliably translated almost any- 
where they occur without regard for the context in 
which they appear. For example, only the most con- 
trived circumstances could require one to translate 
the French techndtium into English as anything but  
technetium. Alas, this charming class of words is woe- 
fully small: for the great majori ty of words, phrases, 
and even sentences, the more we know of the context 
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in which they appear, the more confidently and elo- 
quently we are able to translate them. But the exam- 
ple provided by simultaneous translators shows that 
at the expense of eloquence it is possible to produce 
satisfactory translation segment by segment seriatim. 

In this paper, we describe a method for analyzing 
long sentences into smaller units that can be trans- 
lated sequentially. Obviously any such analysis risks 
rupturing some organic whole within the sentence, 
thereby precipitating an erroneous translation. Thus, 
phrases like (potatoes frites I French fries), (pommes 
de discorde I bones of contention), (potatoes de terre I 
potatoes), and (pommes sauvages I crab apples), offer 
scant hope for subdivision. Even when the analysis 
avoids splitting a noun from an associated adjective 
or the opening word of an idiom from its conclusion, 
we cannot expect that  breaking a sentence into pieces 
will improve translation. The gain that  we can ex- 
pect is in the speed of translation. In general we must 
weigh this gain in translation speed against the loss in 
translation accuracy when deciding whether to divide 
a sentence at a particular point. 

Rifts 

Brown et al. [1] define an alignment between an 
English sentence and its French translation to be a di- 
agram showing for each word in the English sentence 
those words in the French sentence to which it gives 
rise (see their Figure 3). The line joining an English 
word to one of its French dependents in such a dia- 
gram is called a connection. Given an alignment, we 
say that  the position between two words in a French 
sentence is a rift provided none of the connections to 
words to the left of that position crosses any of the 
connections to words to the right and if, further, none 
of the words in the English sentence has connections 
to words on both the left and the right of the position. 
A set of rifts divides the sentence in which it occurs 
into a series of segments. These segments may, but  
need not, resemble grammatical phrases. 

If a French sentence contains a rift, it is clear that  
we can construct a translation of the complete sen- 
tence by concatenating a translation for the words to 
the right of the rift with a translation for the words 
to the left of the rift. Similarly, if a French sentence 
contains a number of rifts, then we can piece together 
a translation of the cbmptete sentence from transla- 
tions of the individual segments. Because of this, we 
assume that breaking a French sentence at a rift is 

less likely to cause a translation error than breaking 
it elsewhere. 

Let Pr(e,  a l f  ) be the conditional probability of the 
English sentence e and the alignment a given the 
French sentence f = f l f 2 . . . f M .  For 1 < i < M,  let 
I(i; e, a , f )  be ] if there is a rift between fi and fi+l 
when f is translated as e with alignment a, and zero 
otherwise. The probability that  f has a rift between 

fi and fi+l is given by 

p(rli;f) _= ~ I ( i ; e , a , f )  Pr(e ,  alf) .  
e j a  

(1) 

Notice that p(r[i,f) depends on f,  but  not on any 
translation of it, and can therefore be determined 
solely from an analysis of f itself. 

The Data 

We have at our disposal a large collection of 
French sentences aligned with their English transla- 
tions [2, 4]. From this collection, we have extracted 
sentences comprising 27,2]7,234 potential rift loca- 
tions as data  from which to construct a model for es- 
t imating p(r[i; f) .  Of these locations, we determined 
13,268,639 to be rifts and the remaining 13,948,592 
not to be rifts. Thus, if we are asked whether a par- 
ticular position is or is not a rift, but  are given no 
information about  the position, then our uncertainty 
as to the answer will be 0.9995 bits. We were sur- 
prised that  this entropy should be so great. 

In the examples below, which we have chosen from 
our aligned data,, the rifts are indicated by carets ap- 
pearing between some of the words. 

I. LaAr6ponseA~t^laAquestion #2^estAouiA. 

2. Ce^chiffreAcomprisAla rEmunEration 

du temps supplSmentaire^. 

3. La^Soci6t5 du cr6dit agricole^ 

fair savoirAce qui suit: 

The exact positions of the rifts in these sentences de- 
pends on the English translation with which they are 
aligned. For the first sentence above, the Hansard 
English is The answer to part two is yes. If, instead, 
it lind been For part two, yes is the answer, then the 
only rift in the sentence would have appeared imme- 
diately before the final punctuation.  
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T h e  D e c i s i o n  T r e e  

Brown et al. [3] describe a method for assigning 
sense labels to words in French sentences. Their idea 
is this. Given a French word f ,  find a series of yes- 
no questions about the context in which it occurs so 
that  knowing the answers to these questions reduces 
the entropy of the translation of f .  They assume that  
the sense of f can be determined from an examination 
of the French words in the vicinity of f .  They refer 
to these words as informants and limit their search to 
questions of the form Is some particular informant in 
a particular subset of the French vocabulary. The set 
of possible answers to these questions can be displayed 
as a tree, the leaves of which they take to correspond 

to the senses of .f. 

We have adapted this technique to construct a de- 
cision tree for estimating p(r[i,f). Changing any of 
the words in f may affect p(r] i , f ) ,  but we consider 

only its dependence on fi-1 through fi+2, the four 
words closest to the location of the potential rift, and 
on the parts of speech of these words. We treat each 
of these eight items as a candidate informant. For 
each of the 27,217,234 training locations, we created 
a record of the form vl v~ v3 v4 v5 v6 v7 vs b, where vs 
is the value of the informant at site s and b is 1 or 
0 according as the location is or is not a rift. Us- 
ing 20,000,000 of these records as data, we have con- 
structed a binary decision tree with a total of 245 

leaves. 

Each of the 244 internal nodes of this tree has 
associated with it one of the eight informant sites, a 
subset of the informant vocabulary for that  site, a left 
son, and a right son. For node n, we represent this 
information by the quadruple (s(n),S(n), l(n), r(n)>. 
Given any location in a French sentence, we construct 
vl v2 v3 v4 v5 v6 v7 vs and assign the location to a leaf 
as follows. 

1. Set a to the root node. 

2. If a is a leaf, then assign the location to a and 

stop. 

3. If v~(~) E 8(a) ,  then set a to l(a), otherwise set 
a to r(a). 

4. Go to step 2. 

We call this process pouring the data  down the tree. 
We call the series of values that  a takes the path of 

the data  down the tree. Each path begins at the root 
node and ends at a leaf node. 

We used this algorithm to pour our 27,217,234 
training locations down the tree. We estimate p(r[i, f)  
at a leaf to be the fraction of these training locations 
at the leaf for which b -- 1. In a similar manner, we 
can estimate p(r[i, f)  at each of the internal nodes of 
the tree. We write p¢(n) for the estimate of p(r[i, f)  
obtained in this way at node n. The average entropy 
of b at the leaves is 0.7669 bits. Thus, by using the de- 
cision tree, we can reduce the entropy of b for training 

data  by 0.2326 bits. 

To warrant our tree against idiosyncrasies in the 
training data, we used an additional 528,509 locations 
as data  for smoothing the distributions at the leaves. 
We obtain a smooth estimate, p(n), ofp(r]i,f) at each 
node as follows. At the root, we take p(n) to equal 
pc(n). At all other nodes, we define 

p(n) = A(bn)p~(n) + (l - A(b~))p(the parent of n), 
(2) 

where bn is one of fifty buckets associated with a node 
according to the count of training locations at the 
node. Bucket I is for counts of 0 and l, bucket 50 
is for counts equal to or greater than 1,000,000, and 
for 1 < i < 50, bucket i is for counts greater than 
or equal to zl - ox/~7 and less than x~ + a x / ~ ,  with 
x2 - ax/~72 = 2, x49 + a,~/~ff = 1,000,000, and xl + 
a ,v/~ = x i + l - a ~ / ~ q f o r  1 < i < 49. ltere, x2 = 438, 
and a = 21. 

Segmenting 
[Jet t(l) be the expected time requited by our sys- 

tem to translate a sequence of I French words. We can 
estimate t(1) for small values of 1 by using our system 
to translate a number of sentences of length I. If we 
break f into m + l  pieces by splitting it between fh and 

f h + l ,  between fie and f,:2+1, and so on, finishing with 
a split between fire and f i , ,+l ,  1 _< il < i2 < " "  < 
im< M, then the expected time to translate all of the 
pieces is t( il )+t( i2- i l  )+. . "+ t( im- i , , - l )+ t (  M - i m  ). 
Translation accuracy will be largely unaffected ex- 
actly when each split falls on a rift. Assuming that  

rifts occur independently of one another, the proba- 
bility of this event is I-I~=lp(r[ik,f). We define the 
utility, S~(i , f ) ,  of a split i = (i l , i2, . . .  ,ira) for f by 

~n 

S~(i , f )  = o~ logp ( r [ i k , f ) - -  
k = l  
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(1 - a ) ( t ( i l )  + t(i2 - i l )  + 

" " + t ( i m - i m - 1 ) + t ( M - i m ) ) .  

Here, cr is a parameter  weighing accuracy against 
translation time: when c~ is near 1, we favor accuracy 
(and, hence,, few segments) at the expense of transla- 
tion time; when oz is near zero, we favor translation 
time (and, hence, many segments) at the expense of 
accuracy. 

Given a French sentence f and the decision tree 
mentioned above for approximating p ( r l i , f ) ,  it is 
straightforward using dynamic programming to find 
the split that  maximizes Sa. 

If we approximate t ( l )  to be zero for l less than 
some threshold and infinite for l equal to or greater 
than that threshold, then we can discard o~. Our util- 
ity becomes simply 

m 

SO, f )  = ~ l o g p ( r l i k , f )  
k = l  

provided all of the segments are less than the thresh- 
old. If the length of any segment is equal to or greater 
than the threshold, then the utility is -exp. 

Decoding 

In the absence of segmentation, we employ an 
anMysis-transfer-synthesis paradigm in our decoder as 
described in detail by Brown et al. [5]. We have in- 
sinuated the segmenter into the system between the 
analysis and the transfer phases o f o u r  processing. 
The analysis operation, therefore, is unaffected by the 
presence of the segmenter. We have also modified the 
transfer portion of the decoder so as to investigate 
only those translations that  are consistent with the 
segmented input, but have otherwise left it alone. As 
a result, we get the benefit of the English language 
model across segment boundaries, but save time by 
not considering the great number of translations that  
are not consistent with the segmented input. 

Results 

To test the usefulness of segmenting, we decoded 
400 short sentences four different ways. We compiled 
the results in Table l, where: Tree is a shorthand for 
segmentation using the tree described above with a 
threshold of 7; Every 5 is a shorthand for segments 
made regularly after every five words; Every  4 is a 
shorthand for segments made regularly after every 

four words; and None is a shorthand for using no seg- 
mentation at all. We see from the first line of the ta- 
ble that the decoder performed somewhat better with 
segmentation as determined by the decision tree. If 
we carried out an exhaustive search, this could not 
happen, but because our search is suboptimal it is 
possible for the various shortcuts that  we have taken 
to interact in such a way as to make the result better  
with segmentation than without. The result with the 
decision tree is clearly superior to the results obtained 
with either of the rigid segmentation schemes. 

In Table 2, we show the decoding time in min- 
utes for the four decoders. Using the segmentation 
tree, the decoder is about 41% faster than without 
it. We use a trigram language model to provide the a 
priori  probability for English sentences. This means 
that  the translation of one segment may depend on 
the result of the immediately preceding segment, but 
should not  be much affected by the translation of any 
earlier segment provided that  segments average more 
than two Words in length. Because of this, we expect 
translation time with the segmenter to grow approxi- 
mately linearly with sentence length, while translation 
time without the segmenter grows much more rapidly. 
Therefore, we anticipate that  the benefit of segment- 

ing to decoding speed will be greater for longer sen- 
tences. 

Tree vs. None 
Every 5 vs. None 
Every 4 vs. None 
Tree vs. Every 5 
Tree vs. Every 4 

Better Worse Equal 
8 12 380 

16 55 329 
11 61 328 
54 18 328 
59 11 330 

Table 1. Comparison of segmentation schemes 

Method 

None 
Every 5 
Tree 
Every 4 

Translation time 
(in minutes) 

8716 
4628 
5124 
4414 

Average Segment 
Length 

9.35 
4.12 
3.67 
3.44 

Table 2. Translation times and segment lengths 
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