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Abstract
We describe Phrasal Rank-Encoding (PR-Enc), a novel method for the compression of word-

aligned target language data in phrase tables as used in phrase-based SMT. This method re-
duces the redundancy in phrase tables which is a direct effect of the phrase-based approach.
A combination of PR-Enc with Huffman coding allows to reduce the size of an aggressively
compressed phrase table by another 39 percent. Using this and other methods for space reduc-
tion in a new binary phrase table implementation, a size reduction by an order of magnitude
is achieved when comparing to the Moses on-disk phrase table implementation. Concerning
decoding speed, all variants of the new phrase table are faster than the Moses binary phrase
table implementation while the PR-Enc encoded variant outperforms all other methods.

1. Introduction

Phrase tables as used in phrase-based statistical machine translation (PB-SMT) are
huge. Their size is a direct consequence of the PB-SMT approach itself and the fact
that precomputed phrase pairs can be accessed efficiently. Precomputation, how-
ever, leads to a combinatorial bloat of phrases and to phrase redundancy since for
any phrase pair all possible subphrase pairs may be included in the phrase table.

Explicitly stored phrase tables are currently the most widely used representation
of translation models in PB-SMT. The main goal of this paper is to describe Phrasal
Rank-Encoding (PR-Enc) — a lossless encoding and compression method dedicated
to explicitly stored phrase tables. PR-Enc aims to reduce redundancy by exploiting the
phrase table itself as a compression dictionary, making use of translational relations
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between subphrases and the repetitiveness of subphrases. Previous approaches con-
centrate only on one of these properties and correspondingly either require additional
resources, like external translation dictionaries, or is restricted to a certain type of
phrasal redundancy, for instance prefixes in trie-based implementations. An efficient
dynamic programming algorithm for the decompression of PR-Enc encoded target
phrases is presented. The described method is employed in a previously introduced
compact phrase table implementation (Junczys-Dowmunt, 2012a,b) for Moses (Koehn
et al., 2007) that can be used as a replacement for the current binary phrase table.

2. Related Work

2.1. Previous Work in Machine Translation

Zens and Ney (2007) describe a phrase table architecture on which the standard bi-
nary phrase table of Moses is based. Memory requirements are low due to on-demand
loading, disk space requirements, however, can become substantial. The only com-
pression technique relies on the application of a trie for the representation of a source
phrase index which collapses common source phrase prefixes into single paths.

Germann et al. (2009) introduce tightly packed tries (TBT) which they use for lan-
guage models and phrase tables in the Portage SMT system (Sadat et al., 2005). TBTs
are stored in byte arrays with variable byte encoding applied to reduce their space
requirements. The section on phrase tables does not provide sufficient information
to compare our approaches, but we have contacted the authors and may be able to
provide a comparison of compression rates in the future.

Suffix-array based implementations of translation models have been introduced
by Callison-Burch et al. (2005). Both sides of a parallel corpus are stored as suffix ar-
rays. If alignment data between the parallel sentences is provided, phrase pairs can
be extracted and scored on demand. The precomputation of phrase pairs is avoided
altogether, which immediately solves the problem of redundancy. On-demand trans-
lation models are a promising alternative to phrase tables, but we do not compare this
approach with ours, instead we concentrate on explicitly stored phrase tables.

Phrase table filtering (e.g. Johnson et al., 2007) can be seen as a type of lossy com-
pression. Reduction rates of more than 80 percent while maintaining or even improv-
ing translation quality are not uncommon. We find this particularly interesting since a
combination of phrase table filtering with our approach can yield a translation model
size reduction by two orders of magnitude.

2.2. Compression of Parallel Corpora

Conley and Klein (2008) propose an encoding scheme of target language data
based on word alignment and translational relations. However, they require the exis-
tence of lemmatizers and a translation lexicon. From the aligned parallel data a lexi-
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con of lemmatized parallel phrases is created. Target phrases are replaced with point-
ers consisting of start and end indexes of the corresponding source phrase, indexes
of translations, and one integer pointer per target word to its inflected form. This
turns the method into a word-based method since no length reduction of the text
is achieved. Actually, there are more pointers after encoding than there were target
words before. Compression is achieved by the application of a Huffman coder.

The most recent work is Sanchez-Martinez et al. (2012) who propose to use “bi-
words” to compress parallel data sequentially. Similar as in Conley and Klein (2008),
translational relations and Huffman coding are employed to take advantage of the im-
proved entropy properties of the encoded data. This method is called Translational
Relation Encoding (TRE). Again, mainly word-based translational relations are used,
allowing at most many-to-one alignments. Sanchez-Martinez et al. include a list of
biwords, a translation dictionary extracted from the alignment, in the compressed file.

2.3. Compact Phrase Table Implementation

Junczys-Dowmunt (2012a) introduces a compact phrase table architecture which
we use for our experiments with PR-Enc. A “baseline” variant is presented that uses
standard compression methods like the Simple-9 algorithm (Anh and Moffat, 2004),
variable-byte encoding (Scholer et al., 2002), and Huffman coding (Huffman, 1952)
of target words, scores, and alignment points. Size reduction for source phrases is
achieved by using a minimal perfect hash function as an index. Junczys-Dowmunt
(2012b) describes the further reduction of the source phrase index and the impact of
false positive assignments of target phrases to source phrases on translation quality.
That implementation achieves a size reduction of more than 77 percent when com-
pared to the Moses binary phrase table with significantly better performance.

Also in Junczys-Dowmunt (2012a) word-based Rank-Encoding is described. This
method is similar to TRE (Sanchez-Martinez et al., 2012), but does not store source
words which are provided during phrase table querying. Target phrase words are
replaced with pairs of pointers. The first pointer indicates the corresponding source
phrase word, the second the rank of the target word among the translations of the
source word. A translation lexicon generated from the alignment is included in the
phrase table. Again, Huffman coding improves the compression rate.

3. Phrasal Rank Encoding

The general idea of Phrasal Rank-Encoding is similar to that of classic dictionary-
based compression methods like LZ77 (Ziv and Lempel, 1977). Repetitive subphrases
are replaced by pointers to subphrases in a phrase dictionary which should result in
a reduction of data length. Decompression relies on the look-up and reinsertion of
subphrases based on the pointer symbols. Something similar, though in an rather
ineffective way, has been attempted by Conley and Klein (2008). If we simplify their
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method by dropping all external data requirements and move it onto the ground of
phrase tables, we get a basic version of Phrasal Rank-Encoding. Instead of compress-
ing a bitext with a translation lexicon of phrases, we compress the lexicon itself. In
Phrasal Rank-Encoding the compressed phrase table is its own phrase dictionary.

Although Phrasal Rank-Encoding shares some properties with word-based Rank-
Encoding and mentioned bitext compression methods, compression is achieved in
a different way: sequential data is implicitly turned into a graph-like structure similar
to a trie or finite-state automaton, which is more visible during the discussion of the
decoding algorithm. Translational relations and entropy coding help to compress the
graph structure itself and not so much the data in it, which is not unlikely to the work
presented by Germann et al. (2009). Phrasal Rank-Encoding could also be used to turn
the target data of the Moses binary phrase table based on Zens and Ney (2007) into
a graph-like structure without changing the underlying implementation (much).

3.1. Encoding Procedure

The encoding procedure is presented in Figure 1. PR-Enc requires the phrase table
to contain word alignment information. In order to perform encoding efficiently, it
should be possible to look-up phrase pairs and to retrieve the rank of a target phrase
relative to its corresponding source phrase. By rank we mean the position of a target
phrase among a list of phrase pairs with the same source phrase. The list is ordered
decreasingly by the translation probability P(t|s), i.e. the most probable translation
has rank 0. In our implementation this is achieved by creating a minimal perfect hash
function with concatenations of source and target phrases as keys which are mapped
to ranks. This searchable phrase table is passed to the algorithm as RankedPT.

We illustrate the algorithm with an example. Given are a Spanish-English phrase
pair and the internal word alignment depicted by the black boxes in Figure 2:

es: Maria no daba una bofetada a la bruja verde
en: Mary did not slap the green witch

Phrase pairs are represented as quadruples where the values correspond to the
source phrase start position, the target phrase start position, the length of the source
phrase, and the length of the target phrase. In line 3 of the algorithm, all true sub-
phrase pairs of the encoded phrase pair are computed. The result is marked in Fig-
ure 2 by filled and empty rectangles — with one exception: the complete phrase pair
itself is ruled out for not being a true subphrase pair. The first condition of the ex-
pression in line 3 requires subphrase pairs to lie within the boundaries of the encoded
phrase. The second, introduced by Zens et al. (2002), defines subphrase pairs that are
consistent with the underlying alignment. The same procedure is used during phrase
pair extraction when the translation model is created. In order to avoid self-references,
the third condition forbids to add the input phrase pair itself.

Next, the subphrase pairs are inserted into a queue (line 4) according to the follow-
ing order: subphrase pairs are ordered decreasingly by length and increasingly by
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1 Function EncodeTargetPhrase(s, t, A,Order,RankedPT)
2 t̂← ⟨ ⟩; Â← A

3

P ← {⟨i, j,m, n⟩ : (0 ≤ i < i +m ≤ |s| ∧ 0 ≤ j < j + n ≤ |t|)
∧ ∀⟨i′, j′⟩ ∈ A : (i ≤ i′ < i +m⇔ j ≤ j′ < j + n)
∧ (m < |s| ∨ n < |t|)}

4 Q← Queue(P,Order)
5 while |Q| > 0 do
6 ⟨i, j,m, n⟩← Pop(Q)
7 s′ ← Substring(s, i,m)
8 t′ ← Substring(t, j,n)
9 if ∃r : ⟨s′, t′, r⟩ ∈ RankedPT then

10 T [j]← ⟨i − j, |s| − (i +m), r⟩
11 S[j]← n

12 Â← Â \ {⟨i′, j′⟩ ∈ Â : i ≤ i′ < i +m∧ j ≤ j′ < j + n}

13
P ← P \ {⟨i′, j′,m′, n′⟩ : i ≤ i′ < i +m∨ j ≤ j′ < j + n

∨ i′ ≤ i < i′ +m′ ∨ j′ ≤ j < j′ + n′}

14 Q← Queue(P,Order)
15 j← 0

16 while j < |t| do
17 if S[j] > 0 then
18 t̂← t̂ · ⟨T [j]⟩
19 j← j + S[j]

20 else
21 t̂← t̂ · ⟨tj⟩
22 j← j + 1

23 return ⟨t̂, Â⟩

Figure 1. Algorithm for Phrasal Rank-Encoding

the start position of the target phrase, then by length and start position of the source
phrase. For our example, the first phrase pair popped from the queue is

es: no daba una bofetada a la bruja verde
en: did not slap the green witch

which is checked for inclusion in the ranked phrase table (line 9). A rank of 0 is as-
signed. The target subphrase is replaced with a pointer symbol

es: Maria no daba una bofetada a la bruja verde
en: Mary (0,0,0)

The integer values of the pointer triple have the following interpretation:
• The first is the difference of source and target start positions of the subphrase

pair. Due to general monotonicity this yields smaller integers than positions.

67



PBML 98 OCTOBER 2012

Maria no daba una
bofetada

a la
bruja

verde

Mary

witch

green

the

slap

not

did

Figure 2. Archetypical example for phrase pair extraction by Knight and Koehn (2003)

• The second value is the distance of the right source subphrase boundary from
the end of the encoded phrase.

• The last value is the rank of the selected subphrase pair.
All alignment points lying within the boundaries of the chosen subphrase pair are

removed (line 12) and all subphrase pairs that overlap with the subphrase pair are
deleted from the queue (line 13 and 14). Only one phrase pair is left in the queue:

es: Maria
en: Mary

Applying the same procedure again, the following encoded phrase pair is produced:
es: Maria no daba una bofetada a la bruja verde
en: (0,8,0) (0,0,0)

Target subphrases for which no substitution has been found are kept as plain words.

3.2. Decoding Procedure

A naive decoding procedure processes a mainly-binary tree (Figure 3) in poten-
tially exponential time. However, if all target phrases for a sentence are considered,
a dynamic programming algorithm with linear time-complexity per phrase can be
constructed. Moses queries the phrase table processing sentences in a left-to-right
fashion, starting with subphrases of length 1 and increasing the length until a limit is
reached. Then it moves to the next word, starting at length 1. Hence, if a phrase is re-
trieved, its prefixes have already been processed. If all queried phrases are cached for
decoding and all phrases used for decoding are cached for look-up, the total number
of phrase table accesses is the same as in a linear phrase table. With caching, a target
phrase for “Maria no daba una bofetada” would be found immediately, avoiding the
descent into the left branch of the graph. The subphrase “a la” will still be processed,
but when Moses queries that phrase, it will be retrieved from the cache.
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0 (0,4,0) (1,2,1) green witch

Maria no daba una bofetada a la

Maria did not slap the green witch

0 (0,3,0) (-1,0,0)
0
1
...

for the
the
...

Maria did not slap

Maria no daba una bofetada

Maria no daba una bofetada a la bruja verde

0 (0,1,0) (0,0,2)
0
1
...

slap
hit
...

Maria did not

Maria no0 Maria

0
1
2
...

not
no

did not
...

Figure 3. Phrasal Rank-Decoding without Caching

This is implemented in the algorithm in Figure 4. A target phrase collection for
a source phrase is created. If a target phrase with the given rank has been seen be-
fore, it is retrieved from the cache. Otherwise an encoded version is loaded from the
phrase table and passed to DecodeTargetPhrase. If t̂j is a plain word, the symbol is
concatenated with the decoded target phrase. If not, a pointer for the subphrase s′

is reconstructed and the rank r′ of the target phrase is determined. If the target sub-
phrase t′ has been decoded before, it is retrieved from the cache, else the encoded
versions of t′ and Â′ are fetched from the phrase table. t′ and A′ are obtained by
recursively calling DecodeTargetPhrase. The decoded target subphrase is then con-
catenated with the current target phrase and subphrase alignment points are added
to the output alignment, shifted accordingly. Results are cached before return.

4. Results
Coppa, the Corpus Of Parallel Patent Applications (Pouliquen and Mazenc, 2011)

is used for phrase table generation. It comprises ca. 8.7 million parallel segments,
198.8 million English and 232.3 million French tokens. The generated phrase table
consists of 247 million phrase pairs. All phrase table variants include alignment in-
formation, a requirement for several WIPO applications. Performance test were con-
ducted on an Amazon EC2 server with 8 cores and 70 GB RAM. The first unique 1000
sentence pairs from the WIPO test set1 are translated for performance tests using all

1http://www.wipo.int/patentscope/translate/coppa/testset2011.tmx.tgz
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1 Function GetTargetPhraseCollection(s)
2 T ← ⟨ ⟩; r← 0

3 while r < NumberOfTargetPhrases(s) do
4 if InCache(s, r) then
5 ⟨t, A⟩← GetFromCache(s, r)
6 else
7 ⟨t̂, Â⟩← GetFromPhraseTable(s, r)
8 ⟨t, A⟩← DecodeTargetPhrase(s, r, t̂, Â)

9 T ← T · ⟨⟨t, A⟩⟩
10 r← r + 1

11 return T

12 Function DecodeTargetPhrase(s, r, t̂, Â)

13 t← ⟨ ⟩; A← Â

14 j← 0

15 while j < |̂t| do
16 if Type(t̂j) = Pointer then
17 ⟨k, l, r′⟩← t̂j
18 i← k + |t|

19 m← |s| − l + 1

20 s′ ← Substring(s, i,m)
21 if InCache(s′, r′) then
22 ⟨t′, A′⟩← GetFromCache(s′, r′)
23 else
24 ⟨t̂′, Â′⟩← GetFromPhraseTable(s′, r′)
25 ⟨t′, A′⟩← DecodeTargetPhrase(s′, r′, t̂′, Â′)

26 t← t · t′
27 A← A ∪ {⟨i + i′, j + j′⟩ : ⟨i′, j′⟩ ∈ A′}

28 else if Type(t̂j) = Word then
29 t← t · ⟨t̂j⟩
30 j← j + 1

31 AddToCache(s, r, ⟨t, A⟩)
32 return ⟨t, A⟩

Figure 4. Retrieving a set of target phrases

cores. Results are reported in Table 1 for: translation model size (Files), peak resident
memory usage (RSS), peak operation system cache usage (Cached), warm-up time
(Load), translation time without warm-up (Trans.), and time until the first transla-
tion is produced after warm-up (First). Before za “1st run” the operation system I/O
caches have been dropped. During the “2nd run” all I/O caches of the first run are
available.
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System name Memory (GB) 1st run (s) 2nd run (s)
Files RSS Cached Load Trans. First Load Trans. First

Moses 22.01 2.54 3.48 14 251 9 0 151 9
Moses+LR 68.40 4.00 5.84 15 470 8 3 215 8

Compact 4.77 1.76 4.85 18 195 2 4 135 1
Compact+LR 6.19 2.02 5.84 17 330 4 4 192 1

PR-Enc 2.93 1.84 3.98 15 170 1 3 137 <1
PR-Enc+LR 4.36 2.11 4.69 15 256 2 3 199 <1

PR-Enc (mem) 2.93 4.49 4.16 51 137 <1 5 138 1
PR-Enc+LR (mem) 4.36 5.91 5.59 66 196 <1 8 198 <1

Table 1. Comparison of phrase table implementations

We compare the following configurations: the standard Moses binary phrase ta-
ble (“Moses”), the compact phrase table from Junczys-Dowmunt (2012a) without any
encoding methods (“Compact”) and with PR-Enc (“PR-Enc”). Additionally, phrase
tables are combined with corresponding implementations of lexical reordering mod-
els (“+LR”), i.e. the Moses phrase table is used with the Moses binary reordering table,
the compact phrase table is combined with a reordering model based on the compact
implementation. In-memory variants of the compact phrase and reordering tables
are denoted by “(mem)”. All systems use the same 3-gram KenLM (file size 1.1 GB),
which is responsible for a part of the load time and memory usage.

To sum up the results in Table 1: during second runs, speed is nearly identical for
both variants of the compact table — with or without PR-Enc — and always better
than for the Moses binary tables. During first runs, however, we see how reduced file
size and reduced disk access result in increased speed. The complex PR-Enc decom-
pression procedure has only a minor influence on speed, visible during second runs.
PR-Enc reduces the size of the compact phrase table by another 39 percent. Compared
to the Moses phrase table, size reduction reaches an order of magnitude, for lexical
reordering models even more (46.4 GB versus 1.4 GB). Memory requirements for on-
disk access are also more modest. If the phrase table and reordering table are loaded
into memory, RSS memory usage is higher than for the Moses tables, but read cache
usage is comparable. Translation speed, however, is much better despite increased
load time. For more than 1000 sentences, cache usage will keep increasing in case of
the Moses binary tables, for the compact in-memory version, it remains constant.

5. Conclusions

We introduced Phrasal Rank Encoding, a new method for the compression of
translation phrase tables. The size reduction and performance improvement com-
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pared to the Moses binary phrase table and a basic version of our phrase table are
significant. Our implementation can be successfully used in place of the Moses bi-
nary phrase table. Experiments were performed for a medium sized phrase table and
it is planned to repeat them with a phrase table that contains billions of phrase pairs.
We suspect that increasing phrase table size might work to the advantage of our im-
plementation, as should the usage of much weaker machines.

6. Usage

We include only basic instructions, see the Moses website for more information on
compact phrase tables2nd lexical reordering tables3

Download and install the CMPH library4, next recompile a current Moses version:
./bjam --with-cmph=/path/to/cmph

For PR-Enc, the phrase table should include alignment information. The following
command creates a compact binary phrase table phrase-table.minphr from a stan-
dard text version with PR-Enc enabled by default:

mosesdecoder/bin/processPhraseTableMin -in phrase-table.gz \
-out phrase-table -use-alignment -threads 4

The compact phrase table variant without PR-Enc can be created by adding the option
-encoding None. In the Moses config file, the filename stem phrase-table has to be
specified and the type is to be set to 12, i.e.:

[ttable-file]
12 0 0 5 phrase-table

A compact lexical reordering model reordering-table.minlexr can be created
with the following command:

mosesdecoder/bin/processLexicalTableMin -in reordering-table.gz \
-out reordering-table -threads 4

If only the file stem is given in the configuration file, the compact model is loaded
instead of any other present lexical reordering model.

In-memory storage of the phrase table and the reordering model can be forced by
running Moses with the options -minphr-memory and -minlexr-memory correspond-
ingly. These can also be specified in the configuration file.
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