AUTOMATIC SYNTACTIC ANALYSIS AND THE
PUSHDOWN STORE'

BY
ANTHONY G. OETTINGER

1. Introductlon. The problems of syntactic analysis have received consider-
able attention in recent vears from three types of investigators, namely: mathe-
matical logicians interested in the structure of formal “artificial” languages, applied
mathematicians concerned with the design and translation of languages suitable
for programming automatic information-processing machines, and mathematical
linguists seeking algorithms for automatic translation among “natural” lan-
guages or for automatic information retrieval., Although these three types of
investigators have different central objectives, a perusal of the works listed
in the bibliography should convince the reader that there is a strong under-
lying kinship not only in the problems under investigation, but also in the
methods of study and in the kinds of solutions sought or obtained.

One important common problem is that of obtaining an algorithm for dis-
tinguishing sentences from nonsentences or, in more formal terms, well-formed
strings from not well-formed strings. Although the pure form of this problem
has received more attention from logicians than from the others, it iz of equal
importance in automatic programming, where a fail-safe translator or compiler
capable of detecting and rejecting not well-formed input data could eliminate
much tedious debugging effort, and in automatic translation, where the problem
of guaranteeing that each sentence is well-formed and has been correctly an-
alyzed still looms large.

A second common problem is that of obtaining the simplest, in some sense,
of a set of otherwise equivalent algorithms. Since this is a problem of practi-
cality and economy rather than of existence, it has been of more vital concern
to applied mathematicians and to mathematical linguists seeking algorithms
that can be executed in a reasonable time at a reasonable cost than to logicians
for whom this matter may have only aesthetic significance, since an exhaustive
treatment of all cases is theoretically sufficient whenever “all” is finite.

In many cases of interest both of these problems seem amenable to solution
by the application of technigues based on the use of what some computer
people have come to call a “pushdown” store, hamely a linear array of storage
locations in which information is entered or removed from one end only, in
accordance with a “last-in-first-out” principle. Although the full range of ap-
plicability of pushdown store techniques still remains to be determined, the
cases studied so far all have structures that can be described in terms of trees
or graphs akin to trees,

The work detailed in this paper and sketched at an eatlier conference (Oet-
tinger [19; 20]) grew out of reflections on a syntactic analysis technique devised

1 This work has been supported in part by the National Science Foundation and by
the Rome Air Development Center of the United States Air Force.

104



AUTOMATIC SYNTACTIC ANALYSIS 105

by Rhodes {22; 23; 24] at the National Bureau of Standards and adopted with
modifications by Sherry [29] and others at Harvard, on the formalization of
the syntax of Eukasiewicz's parenthesis-free notation given by Burks, Warren,
and Wright (3] and applied by Miehle [16] and Qettinger [18], on the analytic
and explanatory linguistic models of Chomsky [5] and Yngve [32; 33], and
the related psychological model of Miller [17], on the syntactic analysis theo-
ries of Wundheiler and Wundheiler [31], Bar Hillel [1; 2], Lambek [14], and
Riguet [25}, and on such theoretical studies of automatic programming as those
by Rutishauser [27], Janov [12], and Ljapunov [15). Several authors, particular-
Iy Kanner [13], Ingerman [9], and Gorn [8], have thought along similar direc-
tions. The importance and the simplicity of the pushdown store have been
clearly and independently recognized by Samelson and Bauer [28], whose paper
appeared just as this.one was being completed.

The Rhodes method of “predictive” syntactic analysis is based on the ob-
servation that in scanning through a Russian sentence from left to right it is
possible, on the one hand, to make predictions about the syntactic structures
to be met further to the right and, on the other hand, to determine the syn-
tactic role of the word currently being scanned by testing what previously
made predictions it fulfills. The predictions are stored in a linear array called
the “prediction pool” which behaves approximately as a pushdown store, Be-
fore a new sentence is scanned, a set of initial predictions is entered in the
pool. The first word of the sentence is then admitted, and a test is made to
see if the topmost prediction in the pool will accept it. If so, the successful
prediction is erased from the prediction pool, and new predictions based both
on lexical data about the word obtained from a dictionary and on syntactic
rules embodied in the predictive analysis system are entered into the predic-
tion pool on top of whatever earlier predictions may have remained there.
The system is then ready to process the next word in the sentence. To a
fair degree of approximation, this technique may be regarded as the inverse
of the system for sentence generation outlined by Yngve [33], in which a
pushdown store is clearly used,

The foregoing is necessarily a grossly simplified account of the predictive
analysis method. Somewhat more detailed descriptions have been given by
Rhodes [22; 23; 24], Sherry {20], and Qettinger [19). Empirical results obtained
for Russian at the National Bureau of Standards and at Harvard are extreme-
Iy encouraging, but it must be strongly emphasized that no claim is made of
any final solution of the problems of automatic translation. Recent work at
Harvard by Bossert, Giuliano, and Grant on the application of predictive an-
alysis to English is equally encouraging. Detailed reports on both Russian
and English are in preparation.

Predictive analysis yields a description of the syntactic structure of a
sentence in terms consonant, although not identical, with old-fashioned pars-
ing, immediate constituent theory (e.g., Wells [30]), or phrase-structure theory
{Chomsky [§]). It remains to analyze the exact relation of the predictive
method to these theories, as well as to those of Bar Hillel, Lambek, and
Riguet, and to those of the logicians who, like Ajdukiewicz, inspired the latter
investigators, A model by Sherry, described in a report in preparation, that
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extends some of the results given later in this paper to account for significant
properties of predictive analysis, may help to shed more light on this question.

For present purposes, the most important properties of predictive analysis are
(1) that in the ideal case and, indeed, in many simple practical cases, a correct
syntactic analysis of a sentence is obtained after a single scan of the sentence
from left to right, each word being used once and only once, and (2) that the
method incorporates very natural checks for well-formation, and therefore has
desirable fail-safe properties. As applied to natural languages in the general
case, the technique of predictive analysis has an empirical, approxirmative and,
in some instances, iterative character. It seemed natural to ask whether an
exact and interesting theoretical counterpart exists for some suitable simple
artificial languages. The remainder of this paper answers this gquestion in
the affirmative. Familiarity with the work of Burks, Warren, and Wright (3]
is assumed in what follows; references to their article will henceforth be
made with the abbreviation “BWW”. It should be noted that the register in
the Evaluator of BWW (p. 56) is essentially a pushdown store.

2. The languages P,, P,, P;, and L. In the following definitions “3,”
designates the kth member of a set of elements of degree 7. Elements &y
are usually called variables, and elements for which 7 = 1 are called functors
or operators of degree . Discussion will be confined to 0 <7 < 2, since the
“parenthetic” languages to be defined do not admit of functors of degree >2.
The symbol “4,” denotes an arbitrary formula in L, while 4" denctes an
arbitrary formula in P, Left and right parentheses designate themselves.
In all cases, “4” designates the null formula, and for any 4, if 4 + 4, d is of
finite length.
Well-formed formulas in the languages P,,P;, P,, and L are defined as
follows:
Dermvtion 1 (Py). (@) 8n; and (b) if 4] and 4, then
(8441, and also (41654},

Dermarion 2 (P,). @)/ 8w; and (b) if 41 and 43, then
81,4h, and also 416543).

Dertrion 3 (Ps). (@) &; and (b) if 4 and 43, then
(81;4%), and also (4i8L,.4%).

Derivrion 4 (L). (@) do; and (b) if 4, and 4, then
31;4] A and alSD 3:&"341 .

P,, P, and Py will be referred to respectively as left-parenthetic, right-
parenthetic, and simple full-parenthetic languages. Except for the restriction
to functors of degree =2, L is the Lukasiewicz parenthesis-free language, as
described in BWW and in Rosenbloom [26), Chapter IV.

Mappings among P., P:, P;, and L are defined as follows:

DerFiNiTioN 5, (a) A+ A, 3y +— 8,,, that is, the null formula and the
variables are, for the sake of simplicity, assumed to be the same in ali four
languages.

(b) if &f— 45— dj— 4,
and 8j +— 8n,f > 0, then
(8158} — 81:dD) — (8,4 — 8,4, ,



AUTOMATIC SYNTACTIC ANALYSIS 107

and also
(A} 5&51 b A?t?;xd?) —_ (dfaixdg) — S dyd, .

Exampie 1. let 8 =x,8i=~,8L=+,8 =, 8 =N, 8 = A, 8 = M,
then

('~((x1 + X Xy Xy X)) - X)) (2 o x) &) — NMxsArex, .

Algorithms for effecting the mappings of Definition 5 can easily be devised
with the aid of a pushdown store, Let p be a pushdown store., Let the input
formula be scanned character-by-character from left to right, and let the out-
put formula be produced by adjoining each new character to the left of those
previously generated. With these conventions, the following simple transla-
tion algorithms may be defined:

Dermnttiow 6, Translation from B to L.

If the current input character is
(1) a variable, adjoin it to the output formula;
(2) a right parenthesis, adjoin the character currently at the top of # to
the output formula, then remove it from p;
(3) a functor, put its image (Definition 5) at the top of p.
DerFmrmion 7. Translation from P, to L,
If the current input character is
(1) a left parenthesis, put a “»” at the top of p;
(2) a functor, replace the character currently at the top of p by the
image (Definition 5) of the functor;
{3) a variable
{a) adjoin it to the output formula; then
(b) check p; if it is empty or has a “o” on top, proceed to the next
input character; otherwise adjoin the character currently at the top of p to
the output formula, then remove it from p, and repeat step (b).

ExaMpLE 2. (For ease in printing, the pushdown store is laid on its side,
opening toward the left; viewed this way, it is obviously analogous to a tape
on a Turing machine or on a real computer,) The formulas are those of Ex-
ample 1. On each line, the current character, the pushdown store p, and the
output formula are shown after application of the rules of Definition 6 or
Definition 7.

P L | P L
~ N A ( ¥ A
& N 1 "~ N 4
+ AN ) { v N A
- AN a2y { vu N A
} N Ay N v N %y
: MN Azxez, + Av N n
s MN Tsdzam, T v N Az
3 N MzsAgex, . MN Az z,
) A NMzs Az 23 A NMzaAxez,
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Note that in both Definition 6 and Definition 7 the characters adjoined to
the output obviously depend on # as well as on the current character, but
that in Definition 6 the sequence of operations depends solely on the current
input character. In Definition 7, “¢” clearly “marks the place” of a left
parenthesis occurrence, and “s” is used instead of ( simply to avoid compound-
ing homography and autonymy. Example 2 also clearly shows that P,, P;,
and P, are equivalent in the sense that grouping remains unambiguous even
when either all left parentheses or all right parentheses are removed from an
expression in P,

3. A notatlon for algorithms. Definitions 6 and 7 are simple enough to
be readily understood as given. More complex algorithms require more formal
and precise definitions, especially if it is of importance to establish certain of
their characteristics by formal proofs. The notation of BWW is adequate
for formal proofs, but it does not lend itself readily to a rapid grasp of the
essence of a given algorithm nor to experimentation with the definition of
new ones. Conventional flow chart notations used in computer programming
lack in rigor and universality, since they often rely on ad hoc devices, or on
devices tailored too closely to the characteristics of specific real machines.
The notation adopted for this paper is a simplified version of a new notation
recently devised by Iverson [19] which shows great promise of Iucidity,
precision, and universality. A detailed definition of the notation and of its
varied applications is given by Iverson and Brooks [11].

BWW use juxtaposition in the syntax language to denote juxtaposition in
the object language. It proves more convenient for our purposes to use a
“yector” notation, for example “[(, &};, 4}]” instead of “(&/,4}” or “[(, ~,({,
X, L, %, 0, -, %,),0]7 for “(~{(x, + x2) + %:3)”. The dimension of a vector is
equivalent to length in the sense of BWW. Thus, if » =[(, du, 80, &:,)],
L(y) =5, and if y = [(, 4, 8],, 43,)], L(») = 3 + L{(&) + L(45). No distinction is
made between a vector of dimension 1 and a scalar.

Vectors whose components are taken from the set {0,1} are called logical
vectors, If, in the logical vector [a,,a:, ---,ds], the first 2 components =1
and the remaining components = 0, the vector is designated by “A*; if the
last # components = 1 and the remaining components = 0, the vector is desig-
nated by “#*; if only the kth component =1, the vector is designated by
“gt*, finally, if all components =1, this “unit” vector is designated by “e”
without any superscript.

The following operations, among those defined by Iverson, will be used in
this paper:

Dernrrion 8. (a) Scalar multiplication.

If ¢ is a scalar, and w is a logical vector, then {cw), = cte;. For example,
if ¢ =20 and w=1[0,1,1,0, 1,1}, then cw = [0, &y, 84,0, 8y, &4,].

(by Compression.

If w is an arbitrary vector, and # a logical vector of the same dimension
as w, then the result #fw of a compression of w by # is a vector whose sole
components are the components w; of w for which #,=1. For example, #f
w =1, 0u,0,0e,)] and ¥« =[1,0,0,0,1], w/w = [(,)].
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(&) Complemeniation,

If % is a logical vector, then v = % is the complement of « if »; = 0 when
#1 =1, and vice versa. In the example of (b), we have # = (0,1,1,1,0], hence
afw = [0n, 8z, 8). Note that if ' =[1,0,0,0,0] then hYw = [(], and Afw =
P = pren-1fyy = [Bor, 82 ’ 603)]-

(d) Reduction.

If » and y are arbitrary vectors of equal dimension, and 5% is a binary
relation defined on their components, the reduction x<%y is a logical vector
# of the same dimension such that u; = 1 if £,5%v, holds and #, = 0 otherwise.
For example, let x = {1,2,3,4,5),y = [5,4,3,2,1],and 5% = >. Thenx >y =
[0,0,0,1,1].

Exampie 3. Leta =[(,{,), 6u, 8, 00,0k, 04land b= [s,0,u,u,t, 8Os, L, Oul.
Then if ¢ = 8, and ¢ is the unit vector we have by reduction, (g = ce) =
0,0,0,0,1,1,0,0], and by a subsequent compression we obtain {g = ce)fh =
[t, 8.]. Similarly, if ¢ =), (@ = ce)th = u.

In Iverson’s notation, as in conventional computer programming, an algorithm
is specified by a sequence of statements, as illustrated in Figure 1, where a
formal expression of Definition 6 is shown. The expression “x 42, for example,

1
x A2
2 A
Y
3
o A
4
_““ x A - ==
5
c hilx
6 _
x hix
7
¢ A I-—
° {c, ¥]
¥ ¥
9
c ) —
10 - e —y
y [B'p, 5]
1 hY
b P
12
b la = cefb, p .
13
5.
A= {3“}
a= Eail, et ;5{1,6;1, e ’a;k]

b=[8y, -, 8s,0n, -, 0]

Translation from FP; to L
Figure 1
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may be read as “x is specified to be 427, and “y [e, ¥]” is equivalent to “y is
specified to be [¢, ¥]” or to “the new y is the result of juxtaposing ¢ to the
left of the old y”. Equivalent expressions in many common flow chart
notations would be “4 — y” and “[c, ¥] — ", but arrows are superfluous within
elementary statements.

The diagram of Figure 1 is normally read from top to bottom, and the order
of execution of the statements is normally the order of listing. A line directed
outward from a statement indicates a branch point, namely a break in the
normal sequence. If the line is unlabeled, the statement next to it is read
according to the definition of the preceding paragraph, but the next statement
to be executed is never the one listed next, but always that to which the
directed line leads. The unlabeled line thus marks an unconditional branch.
For example, “x 4" and not “c )’ follows “y e, ¥]”. If the directed line is
labeled, the statement next to it is interpreted as a comparison, not as a
specification, and the branch is a conditional one. Thus, “c .A” is equivalent
to “ce A?” or to “does ¢ belong to the set A?”, and the mark “€” on the line
indicates that “c A” is followed by “c }” if “c¢€ A and by “y [c, ) if ce A,
The reader may now easily verify, with the aid of Definition 8, that the
diagram of Figure 1 is indeed a precise version of Definition 6.

A notation for paths through a diagram will be useful. For purposes of
reference to statements, each statement is associated with the number im-
mediately above it. For purposes of reference to paths, each number is as-
sociated with the #mtervgl in which the numeral appears. The expression
“({m, m)” designates any path starting at interval m and terminating at interval
n, without restriction as to allowable intermediate subpaths. For example
“(1,4)" designates a path encompassing the first three statements of the
algorithm S; in Figure 1, and “{4,4)” designates any nontrivial path starting
at interval 4 and terminating at the same interval after one or more cycles
with arbitrary subpaths. '

At a branch point, twe intervals are coalesced into one. The expression
“yis? indicates that interval » is to be treated as equivalent to the interval s.
The expression “(4, 9/4)" designates a path starting at 4 and returning via the
unconditional branch which identifies interval 9 with interval 4. The path
{4, 8/9, 12/4) is one taken when ¢ =)}, while (4, 8/9, 10/12, 13/4) is followed when
¢ is a functor, No confusion results if the latter path is simply labeled
“(4, 13/4)”,

The expressions “a:y=a” or “(m, 5#): y = a” indicate that at interval =
(possibly following a prior passage through interval m) y has the value
a before the statement following the interval is executed. Thus, in S,
(1, 4):x=4%,y=4A, and p = A4,

4, 4d,-theorems; fall-safe translation. An algorithm 73, for translation
from L to P, and an algorithm S,, for translation from F, to L, are given
in §85 and 6, respectively, These algorithms have the following interesting
properties:

(1) Internal storage consists essentially of a single pushdown store.

(2) The input formula is scanned in one direction only.
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Each character in the input formula is used once and only once and in sequence,
eliminating the need either for storing the input formula in internal memory
or else for repeated backward and forward reading of tapes, as is required in
Rautishauser’s method and its derivatives.

{3) The amount of internal storage is independent of the length of the
input formula, and depends only on the depth of the deepest nest in the
formula.

(4) The characters of the output formula are generated practically simult-
aneously with the scanning of the input characters, so that translation is com-
pleted almost as soon as the last input symbol is read. In translation from
P; to L, the characters of the output formula are generated in proper sequence
either for immediate evaluation by a pushdown evaluator in the manner of
BWW or for further translation into a computer program by a device quite
analogous to the BWW pushdown evaluator, which is essentially what Samelson
and Bauer propose.

(6} It will be shown that each algorithm operates successfully if and only
if the input formula is well-formed. The algorithms are therefore ideally
fail-safe,

(6) For each algorithm, a theorem of the following type (dx-theorem) can
be proved:

Let 4 = [dg, dx, 47] be any formula of the domain of translation, split into
a head dg, a middle 4y, and a tail 4. The formula 4y is assumed to be
well-formed in the domain, while dg and 4, are arbitrary residues, possibly
nuil, determined by the choice of 4x. At a certain point in the execution of
the algorithm, the remaining input formula will be [dx, 4-], an image 45 of
4z will have been generated, and p (as defined in Definition 6 or Definition ¥)
will be p(dn), namely a function of 45 cnly, While the characters of 4y are
being scanned, p naturally becomes a function of dy as well as of 4z, but
all contributions to p due to dx will be “above” those due to 4z in the push-
down store, The dy-theorem effectively guarantees that, once the remaining
input formula has become 45,

(a) p will again be p(dp), that is, no contributions due to dx remain at
the top of the pushdown store; and

(b} the image 44 of di, which is well-formed in the range of translation,
will have been adjoined to 45.

5. TYranslation from L to FP,. An algorithm 7T, for translating from L
to P, is given in Figure 2, The propertics of this algorithm are presented
in a series of theorems. In the following, all paths are paths in T;.

DeFiitTioN 9. Any path (4, 13/4) such that at no time 4:x = A and p = 4,
is called a formula cycle of T;.

Derivirion 10. T is strictly effective for a formula 4 of L if and only if:

{a) 4d=4d; or
(b for 4 # 4, a formula cycle of T, is traversed once and only once to
obtain (4,13/4): 2 = A.

Dermrrion 11, 7y is effective for a formula 4 of L if and only if, for

4 # 4, a formula cycle of T is traversed a finite number of time to obtain
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1
— . y
2
¥ A
3
b A
4
X A — =—
5
¢ R'x
6 "
X htix
7
¢ A e —
8
y D, 51
9
b la = cefb, (, p]
10
¥ le, ¥
11
—e— ¢ 12 B
13
¢ RUyp
o
] ‘g
15
Ts
A = {8u}
B = {8}

a= {6, --,8y,08, -+, 0]
bxlaih"') {1)8;1;"'33;3]

Translation from L to Ps
Figure 2

4,134):x = A.
Dermirrion 12. When 4:x = 4,4:y = Tyd = 4% is the Ty-image of 4 in P;.

LeMma 1. (@) (L4 :x=d,y=4,p= 4,
by 4,13/ ):p = A.

The proof is obvicus.

Lemma 2, Tid = A and T, is strictly effective or effective for 4 if and only
if 4= A,

Proor. Obviously if 4 = 4, Thd = 4, and T} is strictly effective. If Th\d = A
and T, is strictly effective or effective for 4, but 4 + 4, either 4 contains an
element of A, hence when 4:x = A4,y = 4, or it contains no element of A,
hence when 4:x =4, p = 4, hence T, can be neither effective nor strictly
effective. Therefore 4 = A.
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The definition of well-formation given by BWW (Definition 3F) is shown to
be eguivalent to Definition 4 by the following lemma:

Lemma 3. 4 + A is a well-formed formula if and only if i is of the form
4=18 4dpa, -+, 4], where eack 4; is well-formed.

Proor. (a) If 4=1[8,4dp4,---, 4.}, then either
(i) D& =0, hence W(d) =1, and 4 =3 is positive and well-
formed; or
(ity D(@)>0; then ®=[dpw, +++, 4] is a positive formula (BWW,
Theorem 1A) and W) = D8 > 0. Since W(§) =1 — D(d), we have W(d) =
W)+ W@ =1— D8+ D@ =1. Hence 4 is positive and of weight 1,
that is, well-formed.

(by If 4 is well-formed, then 4 =[5, @], where either & = 4 or 0,
being the tail of a positive formula, is positive. If @ = A4, the result follows
atoncethat 4 =8, and D@ =1— W =0. If 0 # 4, thensince 1 = W{4) =
W)+ W)=1— D&+ W), we have WP = D4), and by Theorem
IA (BWW) & = [@pw, ---, P] whence the conclusion follows at once that 4
is of the form 8, dpa@, ++ -, 4d:).

Lemma 4. Every well-formed formula can be written in the form d=[dy ,dy , 47],
where 4y is some well-formed formula embedded in A, and where 4z and 4, are
respectively the residual (possibly null) head and tail of 4.

Proor. Note that any 4, of Lemma 3 can serve as Jx and that, since 4;
itself has a decomposition 4; = [8, djpw, -+, dy] any 4y likewise, and so on,
Lemua 5. For arbitrary 4 = [dx, dx, d7], there exisis a path
(1, 4) such that
(1,4):x = [A",AT] ,
y=ydg) =y,
b= P.r(dx) =pr.
Proor. Clearly (1,4):x = [dx, d7] sometime. Consider a path leading to 4

at this time. Since (4,6):¢ = h'/x = AY4y marks the first appearance of a
character of 4 not belonging to dgz, (1,4):y = y(dg), p = pldg).

THEOREM 1 (4,-THEOREM). For arbitrary 4 = [dg,dx,d7] + A, where dx is
well-formed, there exislts a path (4, 13) stariing at

4:x, = [du, 47,
Ye =21
P: =pr ]
such that
{A) 13:xy=4dr,
Yr=[yAdu), ¥i1,
br=1pr;
(BY yAdy) = Teudu = 4% and is unigue, and T is strictly effective for dx.
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The proof is by induction on the length L{dx) > 0 of 4.
(a) L{dy) =1. Since 4z is well-formed by hypothesis, 4y = 8x. The path
(4, 8/10, 13} is followed, and

(A) 13:x, = hYx, = dr,
¥r= [C,y:] = [hln‘rxl)yl] = [3059)’!] ¥

br=1pr;
(B) Let 4g = dp = A then yr = pr = 4 (Lemma 1), and
13:2, =4,
Yy = 6o = y(da) ,
pr=4;

hence the path continues to 4. Since 4:x = 4, y,(dx) = 8y = 4%, and is unigue
by (A). Since 4: p = 4,{4,8/10,13/4) is a formula cycle traversed once and
only once, and T, is strictly effective for dg.
(b} L{dx) > 1.
Case 1. dy = [84;, 4],
(A) The path (4, 10/4) is followed and
(4, 10/4) : x5 = [4y, 47]) ,
ys = D) y!] ¥
pﬂ = [8{.’: (! Pr] D

Applying the induction hypothesis to 4,, we obtain a path (4, 10/4,13) such
that

(4,13): 1, = 47,
Yo = [41,), ¥ s
P =pa.
Since p» = [81, (, &1] # 4, the path (13, 15/10,13) is traversed twice yielding
(4,13): 2, = 47,
=1l 3{;,1.15, oy,

br=1pr.
(B) Let dg = 4r = A; then y: = pr = 4 (Lemma 1), and
13:2, =4,
2 =[G 80, 4,01 = yAdw) ,
br=4;

hence the path continues to 4.

Since 4: 5= A, yAdx) =1[(, 85, 41, )] = 4%, and is unique by (A). Since 4:p= 4,
(4, 13/4) is a formula cycle traversed once and only once, and T, is strictly
effective for dy.

CASE II‘ Al & [823, Ag, d;].
(A) The path (4, 10/4) is followed and
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(4,10/4) 1 xa = [4:, 4y, 44] ,
Ya=0,31,
bu= [651: f (, Pr] .
Applying the induction hypothesis to 4., we obtain a path (4, 13} such that
4,13): xy = [4,, d7] ,
yo=1[4,), 5],
Do =18, ( il
The path (13, 15/10, 12/4) is followed next, yielding
4,4): 2% = [4,,45] ,
Yo = [83 ,d:.),yll »
bo=1(pi1].
Applying the induction hypothesis to 4,, we obtain a path (4, 13) such that
4,13y : xa = 47,
Ya =4, 04, 4,031,
pa=1[(DiJ -
Finally, the path (13, 15/10, 13) is followed, yielding
(4,13} 1 x, = 47,
V=[G4, 8%, 4,51,
br=pr.
{B) Proof parallel to that for Case I,

THEOREM 2. For every POSITIVE dy = [dw wamy, -~ -, 1] = A (BWW, Theorem 1}
there exists a path (4,13/4) starting at

42x|=[dl:‘di"] ]

Ye =21,
b= pr,
such that if p; = A, then
(A) (4, 13/4): x, =47,
Ys = [yAdu), 311,
br=pr=4,

B yAdw) = Todu =[4i, -+, S wsn] = 4% and is unique, T, is effective for
du, and the formula cycle is traversed W(dy) fimes.

The proof is by induction on W(da).
Applying Theorem 1 to dwis,; we obtain
(4, 13) T Xg = [.dr' A Jr}, dp = [A'II'{JI:I—I y i, 1.'[1] N
Ya= [A:avu,],}'r] '
Pa=pr=4d.
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Since p, = 4, the path may be continued to (4, 13/4) with the same values of
2,7, and p, and constitutes a formula cycle, the first traversed. Since T; is
strictly effective for dwu,, (Theorem 1) it is also effective (Definitions 10 and
11) and 4% 4, is unique (Theorem 1),

H Wds) =1, dwuy = du, 87 = A, hence these results provide the basis for
the induction. If W(dx) > 1, the same results give the first part of the in-
duction step.

Applying the induction hypothesis to 4, W{dr) = Widy) — 1, we obtain
at once

(A) 4:x,=47,

¥r= [A;"t‘dslfl‘_.hyl} = [A:) e ,Afrwm-ndirulhyr] *
pr=pr=4;

(BY y,dx) clearly has the requisite form and is unique, T} is effective for
dx, and the formula cycle has been traversed 1 + Wid;.) = W{(dy) times,

TueoreM 3. If 4= [dww, -+, 4] # A is positive (BWW Theorem 1), then
T is effective, Tod =[Tedy, -+, Tedw ] =18, -, &y ) =4 is the unique
Ts-image of 4, and the formula cycle is traversed precisely W(d) times.

Proor. Let 4 =[4,d, A], and the proof follows directly from Lemma 1 and
Theorem 2.

Tureorem 4. If 4 + A4 is well-formed, then T, is strictly effective and T\d = £
is the unique Ty-image of d.

Proor, This result follows directly from Definitions 10 and 11 and the
speciatization of Theorem 3 to the case W) =1.

Tueorem 5. T, is effective only if A # A is positive.

Proor. If 4 is not positive, then for some integer { < L{4) there exists a
@ = fi{4 such that W(®) < 1. Let § + 1 be the smallest such integer. Then
¢ = #{4 is either nuil or positive, and ¢/t'/4 = § is such that —1 5 W(d) < 1,
ie,8 =38 0r8§=28y. Letd = [dg, 8, ¢] =4z, du, 47], where dg = LD ~I1/4,

With the aid of Lemma 5 we obtain, at some time

4:2, =18, 41,
Yo = yuldz) ,
Pa= pu(dﬂ’) .

Since 8¢ A, there is a path {4, 10/4) such that
4,10/ : xy = ¢,
Ye=[), 3],
D=1, ( P .

If ¢ = A4, then, since p # A, no formula cycle is possible and 7, cannot be
effective. If ¢ = A4, W(¢) =1 since for W{() > land W = W@+ W($) <1
we would require W(8) < —1 which is impossible in L as defined. Therefore
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¢ is well-formed. In this case, & = 8, since if & = d,x we would have W) =
;V(é'u) + W{$)=0+1=1 contrary to hypothesis, Applying Theorem 1 to
=[¢, 4]

13: 34, =4,
¥r= [4”! ): ya] »
pf = [B;k’ (s.pﬂ] *
The path (13, 15/10, 12/4} is followed next, yielding
. !
X 41
2
¥ A
3
b t
4
¢ Bx
] _
x h\x
hip ’ £
¢ —_X
# hf
P 8 24
——e— ¢ A
10
c ( — =
11
T —— )
2 fe, 1
c'
y 13 y
L htfp B ¢-—x
14
¥y [Ap, 51
15
Rp ¥ #— X
16 —
p . Ryp
T = o, 2
a = cefb,
) 2 18
A
A= {6.{) ’ a;l'}

8= {311, 5:3}
a=[({ ) 8u, 8,81, 0, 0l
b=1[s,v,0,u,t,8,,¢ dul

Translation from Ps to L
Figure 3
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d:x=4,
y={3;k) w))iyﬂ] ¥
p=Ipa = 4,

No formula cycle is possible, hence T, cannot be effective, and the proof is
complete.

TueoreM 6. T is effective if and only if 4+ A is positive, and strictly ef-
Jective if and only if 4 is well-formed or 4 = A.

Proor. Theorems 3 and 5 together account for the case of positive 4. By
Theorem 5, Ty is effective only if 4 + A4 is positive, but the number of tra-
versals of the formula cycle will be precisely 1 only if 4 is also well-formed.
Hence T is strictly effective only if 4 is well-formed; this result, together
with Theorem 4, accounts for the case of well-formed 4. The case of 4= 4
is covered by Definition 10.

6. Translation from P; to L. An algorithm S. for translating from P;
to L is given in Figure 3. It is characteristic of L that there are no restric-
tions on the order in which characters may appear in well-formed formulas,
a property reflected in the absence of any test for order in T, and in the
dependence of the proof of Theorem 5 on arguments based on tail weight
only. The situation is different in S;. Figure 4 shows that occurrence of a
character of a given type influences the type of character that may occur
next, either immediately or after intervening characters. The compatibility
of adjacent characters is tested by the statement on line 7 of S;, where “<=”

Character Predictors Predicts
{ [s, #] (, Buor, 81y
L {t, 8:] (; Ot
i1 ft, da] (, St
dos i 8;h )
) u 5, )
Predictions
Figure 4

is to be interpreted as “is compatible with”. This feature of S; is analogous
to the pair test of Perlis (Carr, [4, pp. 2-223]). The conditions under which
hipz¢ are given in Figure 5. Compatibility across intervening characters is
tested by the statements on lines 13 and 15. For the elementary language
P, at least, these tests, analogous to the use of predictions in the syntactic
analysis of Russian or English, achieve in a very simple manner what Carr
attempts to do with production trees (Carr, [4, pp. 2-233ff]). While the mode
of operation of the tests is accounted for in the theorems that follow, the
reader may find it illuminating at this point to get an intuitive feeling for
their operation by applying S, to a few short formulas, both well-formed and
not,
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Character Accepted by
( s, ¢
&5 s
aék 3
¥ s, ¢
) u
Compatibility Conditions
Figure 5

Derinition 13, S, is strictly effective for a formula 4% of P; if and only if
a) £ = A4; or (b) for 4* = A

(i) atno time 4:xr= A and p + «; and

(ii) at no time 7:¢ # h/p,

(iii) at no time 13: B'/p€ B,

(iv) at no time 15: hYp # v,
& path in which all the conditions of (b) are met is an effective path; otherwise
t is fneffective.

DermTion 14, When 4: x = A4,4:y = 5:4"= 4 is the S-image of 4* in L.

Lemma 6. (1,4):x=4d,y=4,p=¢F

The proof is obvious,

Lemma 7. S:f* = A and S, is strictly effective for &* if and only if 4°* = A.

Proor. Obviously, if 4* = A, S:4* = A and S, is strictly effective. If Sid? = 4
ind S, is strictly effective but 4% + A, then either 4* contains a variable,
1ence when 4:x = A4, ¥ # A4, or it contains no variable and ends;

(i) with a right parenthesis; then either 13:AYp = A¢B and S, is not
strictly effective, or 13: AYp +# 4, hence when 4:x= A,y # 4; or

(i) with a left parenthesis or a functor; then, when 4:x= A4, 2 # u and 5
s not strictly effective.

Therefore 4°* = A.

Lemma 8. Every well-formed formula can be written in the form £ =
Ay, &y, 4%\, where dx is some well-formed formula nested in 4%, and where &y
and 4% are respectively the residual (possibly null) head and tail of 4.

The proof is a direct consequence of the definition of well-formation in P,
‘Definition 3).

LEMMA 9. For every 8 = [d%, 8%, dv) # A, there exists a path (1,4, 18/4) such
that

4:x =4, 47],
y = yi(dy) =¥,

B -
P = [LP!]; pf = klfﬁ *
-
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where pr = p(dy) either = A or conlains only instances of “v™ or of members
of B.

Proor. Showing that x and y have the stated properties and that p, =
(%) is trivial (see Lemma 5). The remainder may be proved by induction
on Lidg).

If L{d%) =1 we have

Ly:p=t4,9:p=4.
A path (16, 17) cannot add characters to p. Eventually, therefore, the path
1,4, 9,18/4) is followed resulting in4:hYp =s,u, or ¢, and 4:hYd = v, 8,5, 6u,
or A, as a consequence of the definition of the vectors a and » (Figure 3).
For L{d%) > 1, applying the induction hypothesis to T[4y vields

s
4:P - [t!pf] »
u

where p; has the desired properties. Applying an argument similar to that for
L(4%) = 1 to the remainder #/4% of 4% is then sufficient to complete the proof.

DerivrTion 15, If, in Lemma 9, p = [?, Pr |, da is properly nested.

THEoREM 7 (43-THEOREM), For every 4* = [d%, &% . 47), where &' is well-formed
and properly nested, there exisis a path (4, 18/4) starting at

4 x, =4k, 4],

Ys = Y1,
p: = [‘;‘) PI:I '
such that
(A) (4,18/4): x, = 47,
¥Yr = {J’.r(dif)' ¥,
pr=1[u 03,
(B) YA d5%) = Sidiy = dx

and is unique, and S, is strictly effective for &y.

CoroLLary. If, in Theorem 7, dx is not properly mested, S is not strictly
effective for 4.

The proof of the corollary follows directly from Definitions 13 and 15, and
the compatibility conditions (Figure 5). If p = [u, #r], then since every well-
formed formula begins either with ( or with &,, it follows at once that
7:c# h/p, hence S, cannot be strictly effective.

The proof of Theorem 7 is by induction on the length L(4%) of 4k.

@) L(d%)=1. Since 4 is well-formed by hypothesis, 4% = . The path
(4, 13/17, 18/4) is followed; hence we have

(A) 4:x, =47,
¥yr=[8,1],
p.f = [u: PI] .

(B) Let dg = 4y = 4. Then yr = A and p,={ (Lemma 6}, hence p, =[¢, 4],
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that is, p; = 4. We have, therefore

4:,1.’;=A,
J’_r=30¢,
P_r=£¢.

Clearly yAdy) = 8u is the S,-image of 4% and is unique. Since 4:x = 4 and
P =u#, and since, in {A), 7:c = A'/p and there are no subpaths (13, 14) or (15, 16),
S, is strictly effetive for 4%.
(by Lidy) > 1.
CASE I- d::f = [() a{,f) A?) )]'
(A) The path (4,7, 11117, 18/4) vields
4 Xg = [3{1 » df; ); dg‘} »
VYa = ¥r,
pﬂ = [S. U’ p!] g
We note that 7; ¢ = AYp =5 or {. Continuing with the path {4, 7, 10/15, 18/4),
we obtain
4:xb == [di,],d;] ]
Ye=Vr,
pl‘»‘ = [tr 311'151] +
noting that 7:c=M/p=3, and 15:hYp =v. Now, applying the induction
hypothesis to 45, we obtain
4!1’1: = [)!A:"] H
Ye=1[4d1, 5,
pc = [u: al.f! pf] -
Finally, the path (4, 7,12/13, 15/16, 18/4} is followed, yielding

4:x, = 4%,
XYr= [311,41»3’:] '
P.f:[“;f’!] .

(B) Let dg = AT = A. Then Yr=pr= A, It follows that y;(dag} =
(85, 4)] = 4x. The process of (A) shows that dix is unique and that 5 is
strictly effective.

Case IL 43 =1(, 4, 8.,4,)].
(A} As in Case I, the path (4,7, 11/17, 18/4) yields

4: 7. =4}, 8, 4,), 1] ,
Ya =1,
Pa=Is,0,8:],

and 7: e= h'/p = s or t. Applying the induction hypothesis to 4}, we obtain

4:x, = [80, £3,), 47),
»o =4, ¥,
po=[u,0,p1].
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The path (4,7, 10/15, 18/4) then yields
4:x° = [d:r )t‘d;'] E
Ye= [A 1y 1 ] H
P =L, B, i),

and 7:c=hifp = u, and 15: hi/p = ». Now, applying the induction hypothesis
to 43, we obtain

4:x4=D,47],
Yo =1ds, 41, 31],
Pa = [%, 8, p1) .
Finally, the path (4,7, 12/13, 15/16, 18/4) is followed, yielding

4:x,= 4%,
Yr=[8u, 4, 40,51,
pf = [“;ﬁ!] .

(B) As in Case L.

Treorem B. I 8 + A is well-formed, then S, is strictly effective, and S,4° = 4
is the unique Sy-image of 4.

Proor, Let &4* = [4, 4, 4], and the proof follows directly from Lemma 6
and Theorem 7.

TueoreMm 9. S, is strictly effective only if 8 + A is well-formed.

Proor. The proof is by induction, following a pattern illustrated by Figure
6. The crosses mark the ends of ineffective paths, the Roman numeral in the
square box indicating which of the conditions of Definition 13(b) is violated.
The heavy squares and dots each mark a return to line 4 of S,; the circled
numerals next to these are for reference. The value 4:p is given in each
case, and the Roman numeral in the square box denotes a violation of the
conditions of Definition 13(b) in case 4:x = A. Dots are associated with pos-
sible terminals of effective paths, while squares denote that a path terminat-
ing at the point is ineffective. Connectors are used in the conventional flow
chart fashion. The notation “m(” indicates the presence of s left parentheses
in #,mz=1.

{A) L{4)=1. Reference to S: and to Definition 13 shows that for L{4#) =1,
only 4% = g, leads to an effective path.

(B) Lg% >1.

Pomnr 0 (Figure 6). Clearly formulas beginning with ), 8, or &, lead at
once to ineffective paths in S,.

If h'j4* = 3,, point 1 is reached. If 4* = &, it is well-formed and L(£*) =1,
a case already covered. If 4° = [8y, 47}, 47 + A, then, since p = [«, 4] at point
1, all characters & = hi/d}, except ) and 3}, lead to ineffective paths in S, by
virtue of condition (ii) of Definition 13b). The characters ) and &3 in turn
lead to ineffective paths by virtue of conditions (iii) and (iv) of Definition 13(b),
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respectively. Hence 4* can begin with 8, and S, be strictly effective only if
4* = 8y and therefore is well-formed.

The remaining case is A'/4* = (. Here the situation is complicated (a) by
the possibility that s > 1 initially, namely that several left parentheses occur
in succession, and (b) by the possibility that m > 1 also after the points lead-
ing to the connectors, in which case i > 1,m; = 1.

When i =1, m, =1, it is easy to verify that, if 4 is well-formed, the paths
from point 0 to points 9 and 6 correspond respectively to Case 1 and Case II
in the proof of Theorem 7.

(Bl) Consider now i =1,m, = 1, 4% # A arbitrary except L(4*) >1. Since
h'/# =( by hypothesis, a path leads tc point 2, where p={[s,¢]. Since
L{(#) > 1 by hypothesis, we have 4 = [(, 43], 4% + A.

Powwr 2. If A4 =) or &84, there exists no further effective path in 5;.
Consideration of the case hYdy = 8}, will be deferred. If h¥/dh =(, and ( is
not the head of a well-formed formula, then s, > 1, contrary to hypothesis.
The only remaining cases are hlds = 8, or k4% = (, where { is the head of
a well-formed head of 4%. In either case, 4% has a well-formed head 4% .
Since 4% is well-formed, Theorem 7 guarantees that there is a path to point
3, where p = [, v]. If 4° = [(, 4], the corresponding path in S, is ineffective,
since p = #. Consider therefore 4% = [(, 4}, 4%], 4% + A.

Pomr 3. There is a further effective path in S; only if A4y = 6% . Such
a path corresponds to one leading to point 4, where p=[f, 8] If £#2=
[(, 41, 8], the corresponding path in S; is ineffective, since p = w. Consider
therefore 4% = [(, &, 8, &3], 4% * A.

Point 4. If h'/dy =), 8, or &, there exists no further effective path in
Sy. If Widr = (, and ( is not the head of a well-formed formula, then i > 1,
contrary to hypothesis. The only remaining cases are h'/dy = 8y or h'/dy =,
where ( is the head of a well-formed head of 4%. In either case, 4% has a
well-formed head 43, Since & is well-formed, Theorem 7 guarantees that there
is a path to point 5, where p = [w, 8u). If 4° = [(, 4, 8, 48], the correspond-
ing path in S, is ineffective, since p # x. Consider therefore 4 = [(, 43, &,
£, 8), 45 = A,

Point 5. There is a further effective path in S; only if A4y =). Such a
path corresponds to one leading to point 6, where p=[y, 4] =u. If 4# =
[(, 48, 8%, 43, )], the corresponding path in S, is effective, but 4° is also clear-
ly well-formed. It remains only to consider #* = [(, 43, 8L, 43,), 43), 4% + A.

Point 6. There is a further effective path in §; only if kY4 =) or 8.
Since p = [u, 4], ( and &% in turn lead to ineffective paths by virtue of condi-
tions {iii) and (iv) of Definition 13(b), respectively.

The conclusion is that for § =1, s, =1, there is an effective path in S, only
if & =1[(4,5%,4,)], namely only if 4* is well-formed, provided that, at
point 2, /4% # 8};. It remains now to consider the case where AYdy = &), at
point 2,

Point 2 (B'/dy = 8iy). Since h'/4y = 8);, a path leads to point 7, where p =
[z, 8.4]. If 4 ={(, &), the corresponding path in S, is ineffective, since p + u,
Consider therefore 4° = {(, 8l;, 47}, 47 # 4.

It can easily be verified that the transitions from point 7 to points § and 9
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are completely analogous to those from point 4 to points 5 and 6, and that,
with obvious substitutions, identical arguments apply. This, together with
the result for L{4*) =1, demonstrates that for i =1, m; =1, L(4*) = 1, there is
an effective path in S; only if £* is well-formed.

(B2) Consider now i > 1, m; =1 for all § =4, 4* # A arbitrary except L{4*) > 1.

We note that termination of the formula at all points except 6 or 9 never
corresponds to an effective path in S, since either hifp == u, or, if A'Yp = u,
then &'/p + A, since a4 = 1. Furthermore, since the path through S for any
given ¢ = kY« depends only on p, it is evident from Figure 6 that points 6
and 9 may be treated as equivalent.

Since 4% is finite, it will have a rightmost left parenthesis, which may (a)
lead to an ineffective path in S, and terminate the process; or (b) increase
mq, for a given i; or (¢} increase { and set m; =1; or (d) be the head of a
well-formed head of a tail 4r of 4. Case (a) obviously need not be considered
further. In either case (b) or case (c) this left parenthesis leads to point 2.
In case {d), one of the points 3, 5, or 8 will be reached from points 2, 4, or
7, respectively. Let % be the value of i at point 2 in cases (b) and (¢}, and
at the immediately preceding passage through point 2 in case (d).

It can easily be verified, by arguments parallel to those in (Bl), that paths
leaving these points must either correspond to ineffective paths in 5, or lead
to point 6 (or 9), where p = [#, Vmy—1, ==, 01, fe-1]. Since p#u, if £ is ex-
hausted by the right parenthesis leading to point 6 {(or 9), the corresponding
path in S; cannot be effective. It remains only to consider the case where
point 6 (or 9) is reached, but the remaining 4% + 4.

Assume that for i = & — 1, any path leaving point 6 (or 9) is effective only
if 4% = [4%, 45] is well-formed, where 4% is the head of 4* processed by S,
prior to arrival at point 6 (or 9) and 4% % 4 is the tail remaining to be pro-
cessed by S,.

If m, > 1, then my — 1 = 1. There is a further effective path in S, only if
ids=)or 8. Since my—121,) leads to an ineffective path by virtue of
condition (iii} of Definition 13(b). Note that except for a difference in the
subscripts of », point 3 and point 6 (or 9) have, in this case, equivalent con-
figurations of . An occurrence of 8% therefore leads to point 4 with p =
{0, 0m s, *++, 0, Px-). Since there are no further left parentheses by
hypothesis, any path leaving point 4 either corresponds to an ineffective path
in §;, or leads to point 6 with p = [, U2, """, 01, Pr—1). Repetition of this
process, if feasible, must eventually lead back to point 6 with p = [«, pe_t]) =
{2, 8as , V=15 "2 41 ,P:k—n—l]- If m =1, this condition is the original one
at point 6 {(or 9).

The condition p = [%, 8ay, Vm,_ -15 *** s 1, Py ] Is associated with point 5
if 8a» = 8 and with point 8 if 8, = &;. There is a further effective path in
S: only if AY4y =), corresponding to a transition to point 6 (or 9) where b=
(26, Vg -15 =", 015 Pre-n-i] By the induction hypothesis, any further path is
effective only if 4* is well-formed, which completes the proof.

Tureorem 10. S is strictly effective if and only if &* is well-formed or 4% = A.
The proof follows directly from Theorems 8 and 9, and Definition 13.
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7. Some conclusions. The central role of dy-theorems (Theorems 1 and
7) in translation both from L to P, and from F; to L is evident in §§5
and 6. Intuitively, this role may be explained by pointing out that any
algorithm for which a Jdy-theorem holds treats any nested well-formed sub-
formula independently of the rest of the formula, As a consequence, such
algorithms, if fail-safe, are fail-safe in a particularly satisfactory way: as one
example, taken from natural languages, prepositional phrases or subordinate
clauses can emerge unscathed, even though the sentence in which they are
embedded may not be well-formed as a whole; as another example, taken from
automatic programming, all the well-formed statements or subroutines of a pro-
gram could be found at a single pass through a compiler, even though the
program as a whole might not be well-formed. Debugging could therefore be
considerably easier than it is in contemporary practice. Since L, P, F., and
P; may all be regarded as representations of trees, the foregoing is equivalent
to saying that any branch of a tree can be satisfactorily analyzed even if it
has been broken off its parent branch.

In view of the underlying similarity of L and P, as tree representations, it
may seem surprising that the proof of Theorem 9 for P is so much less
elegant than the proof of its counterpart for L, Theorem 5. There is, of
course, the possibility that this may simply be due to a deficiency in the
perception or ingenuity of the writer, who would gladly learn of a simpler
proof. There may, however, be a deeper reason. The nonrecursive definition
of well-formation or positiveness in L in terms of tail weight readily yields
a nonrecursive definition of nonpositiveness, which is the essence of the proof
of Theorem 5. An equally simple nonrecursive definition is lacking at present
for Py, hence the complexity of the proof of Theorem 9. In this light, it is
gratifying that the complexity of S; is hardly greater than that of T,.

Numerous extensions of the present study suggest themselves. For example,
P; is a rather restrictive language for practical applications, and an extension
to languages where parentheses may be omitted either in the presence of as-
sociative operators or in the presence of operators with a hierarchy, would be
desirable. Such an extension has been given by Fischer [7] and turns out to
be equivalent to that devised independently by Samelson and Bauer. In
neither case has a check for well-formation been incorporated as yet, but the
prospects for doing so are good. Samelson and Bauer have made it abundant-
ly clear that the pushdown store techmique, as they have applied it to the
language ALGOL, is of unguestionable practical importance and, furthermore,
that it can perform a great variety of functions not considered in the present
paper. Their finding that “sequential treatment is not feasible in the case of
certain optimizing processes such as recursive address calculation” is only one
facet of the general problem of precisely characterizing the scope and the
limitations of pushdown techniques, and of defining the place of these tech-
niques i relation to syntactic theory, the theory of automata, algehra, and the
topology of graphs.

The system described by Samelson and Bauver in Table 1 and Example 1 of
their paper is essentially a translator from a parenthetic language with as-
sociative operators and an operator hierachy, feeding into an evaluator of the
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BWW type. The control of transitions “by admissible state-symbol pairs” is
not an essential feature of pushdown translators, since it is obviously absent
in the algorithms of Figure 1 and 2; it is a feature introduced to account for
operator hierarchy, much as state-symbol pairs are used to check for well-
formation in the algorithm of Figure 3. Achievement of a deeper understand-
ing of the rules wherehy distinct pushdown algorithms may be combined and
of the relation between the syntactic structures of languages and the features
that algorithms must have to account for these structures is an important goal.

The development of a theory of pushdown algorithms should hopefully lead
to systematic techniques for generating algorithms satisfying given require-
ments to replace the ad hkoc invention of each new algorithm. It may be
noted, for example, that Theorem 2 for T, applied to L has no equivalent
for S; applied to P;, due to the fact that the sequence “}(” is rejected by S;.
An appropriate theory would indicate, among other things, what modifications
to §s should be made to accept the parenthetic equivalent of positive formulas
in parenthesis-free notation. Such a theory would not only aid in devising
appropriate algorithms for dealing with such languages as ALGOL, but also
in the synthesis of languages which may be translated or analyzed by algo-
rithms of the maximum simplicity and safe-failing characteristics consonant
with other constraints such as the desired richness of expression and simpli-
city of the languages.

The results described in this paper provide a theoretical model that explains
at least one essential feature of the predictive analysis technique for natural
languages. Preliminary results obtained by Sherry suggest that this model
can easily be extended to account for other important features of practical
predictive analysis which, once fully understood, might find applications to
the analysis and synthesis of artificial languages as well,

8. Acknowledgments. I am indebted for valuable criticisms and sugges-
tions to my colleagues at the Computation Laboratory, to Professor V. H.
Yngve of the Massachusetts Institute of Technology, and to several students
in my course on Mathematical Linguistics, where much of the material in
this paper was presented in the fall of 1959, especially to Patrick C. Fischer,
who simplified an earlier version of T essentially to the form given in §5.
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