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Abstract

We describe in detail a method for translit-
erating an English string to a foreign
language string evaluated on five differ-
ent languages, including Tamil, Hindi,
Russian, Chinese, and Kannada. Our
method involves deriving substring align-
ments from the training data and learning a
weighted finite state transducer from these
alignments. We define anǫ-extension Hid-
den Markov Model to derive alignments
between training pairs and a heuristic to
extract the substring alignments. Our
method involves only two tunable parame-
ters that can be optimized on held-out data.

1 Introduction

Transliteration is a letter by letter mapping of one
writing system to another. Apart from the obvi-
ous use in writing systems, transliteration is also
useful in conjunction with translation. For exam-
ple, machine translation BLEU scores are known
to improve when named entities are transliterated.
This engendered several investigations into auto-
matic transliteration of strings, named entities in
particular, from one language to another. See
Knight and Graehl(1997) and later papers on this
topic for an overview.

Hidden Markov Model (HMM) (Rabiner,
1989) is a standard sequence modeling tool used
in various problems in natural language process-
ing like machine translation, speech recognition,
part of speech tagging and information extraction.
There have been earlier attempts in using HMMs
for automatic transliteration. See (Abdul Jaleel
and Larkey, 2003; Zhou et al., 2008) for exam-
ple. In this paper, we define anǫ-extension Hid-
den Markov Model that allows us to align source
and target language strings such that the charac-
ters in the source string may be optionally aligned

to theǫ symbol. We also introduce a heuristic that
allows us to extract high quality sub-alignments
from theǫ-aligned word pairs. This allows us to
define a weighted finite state transducer that pro-
duces transliterations for an English string by min-
imal segmentation.

The overview of this paper is as follows: Sec-
tion 2 introducesǫ-extension Hidden Markov
Model and describes our alignment procedure.
Section 3 describes the substring alignment
heuristic and our weighted finite state transducer
to derive the finaln-best transliterations. We con-
clude with a result section describing results from
the NEWS 2009 shared task on five different lan-
guages.

2 Learning Alignments

The training dataD is given as pairs of strings
(e, f) wheree is the English string with the cor-
responding foreign transliterationf . The English
string e consists of a sequence of English letters
(e1, e2, . . . , eN ) while f = (f1, f2, . . . , fM ) .

We representE as the set of all English symbols
andF as the set of all foreign symbols.1 We also
assume both languages have a special null symbol
ǫ, that isǫ ∈ E andǫ ∈ F .

Our alignment model is a Hidden Markov
ModelH(X,Y,S, T, Ps), where

• X is the start state andY is the end state.

• S is the set of emitting states withS = |S|.
The emitting states are indexed from 1 toS.
The start stateX is indexed as state 0 and the
end stateY is indexed as stateS + 1.

• T is an(S + 1) × (S + 1) stochastic matrix
with T = [tij] for i ∈ {0, 1, . . . , S} andj ∈
{1, 2, . . . , S + 1}.

1Alphabets and diacritics are treated as separate symbols.
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• Ps = [pef ] is an |E| × |F| matrix of joint
emission probabilities withpef = P (e, f |s)
∀s ∈ S.

We definẽs to be anǫ-extension of a string of
characterss = (c1, c2, . . . , ck) as the string ob-
tained by pumping an arbitrary number ofǫ sym-
bols between any two adjacent characterscl and
cl+1. That is, s̃ = (di1 , . . . , di2 , . . . , dik) where
dij = cj anddl = ǫ for im < l < im+1 where
1 ≤ l < k. Observe that there are countably infi-
nite ǫ-extensions for a given strings since an arbi-
trary number ofǫ symbols can be inserted between
characterscm andcm+1. Let T (s) denote the set
of all possibleǫ-extensions for a given strings.

For a given pair of strings(u, v), we define a
joint ǫ-extension of(u, v) as the pair(ũ, ṽ) s.t. ũ ∈
T (u) and ṽ ∈ T (v) with |ũ| = |ṽ| and ∄i s.t.
ũi = ṽi = ǫ. Due to this restriction, there are finite
ǫ-extensions for a pair(u, v) with the length of̃u
and ṽ bounded above by|u| + |v|. 2 Let J(u, v)
denote the set of all jointǫ-extensions of(u, v).

Given a pair of strings(e, f) with e =
(e1, e2, . . . , eN ) and f = (f1, f2, . . . , fM ), we
compute the probabilityα(e, f, s′) that they are
transliteration pairs ending in states′ as

α(e, f, s′) =

∑

(ẽ,̃f)∈J(e,f)

∑

0=s0,...,s|ẽ|=s′

t0,s1

|ẽ|
∏

i=1

tsi,si+1
P (ẽi, f̃i|si)

In order to compute the probabilityQ(e, f) of a
given transliteration pair, the final state has to be
the end stateS + 1. Hence

Q(e, f) =

S
∑

s=1

α(e, f, s)ts,S+1 (1)

We also write the probabilityβ(e, f, s′) that they
are transliteration pairs starting in states′ as

β(e, f, s′) =

∑

(ẽ,̃f)∈J(e,f)

∑

s′=s0,...,s|ẽ|+1=S+1

ts0,s1

|ẽ|
∏

i=1

tsi,si+1
P (ẽi, f̃i|si)

Again noting that the start state of the HMM

H is 0, we haveQ(e, f) =

S
∑

s=1

β(e, f, s)t0,s. We

2|ũ| = |ṽ| > |u| + |v| would imply ∃i s.t. ũi = ṽi = ǫ
which contradicts the definition of jointǫ-extension.

denote a subsequence of a stringu as um
n =

(un, un+1, . . . , um) . Using these definitions, we
can defineα(ei

1, f
j
1 , s) as



















1 i = j = 0, s = 0

0 i = j = 0, s 6= 0

t0,sP (e1, f1|s) i = j = 1
PS

s′=1
ts′,sα(ei

1, f
j−1

1 , s′)P (ǫ, fj |s) i = 1, j > 1
PS

s′=1
ts′,sα(ei−1

1 , f
j
1 , s′)P (ei, ǫ|s) i > 1, j = 1

Finally for i > 1 andj > 1,

α(ei
1, f

j
1 , s) =

∑

s′∈S

ts′,s[α(ei
1, f

j−1
1 , s′)P (ǫ, fj |s)+

α(ei−1
1 , f

j
1 , s′)P (ei, ǫ|s)+

α(ei−1
1 , f

j−1
1 , s′)P (ei, fj|s)]

Similarly the recurrence forβ(eN
i , fM

j , s)











ts,S+1 i = N + 1,

j = M + 1
PS

s′=1
ts,s′β(eN

i , fM
j+1, s

′)P (ǫ, fj |s
′) i = N, j < M

PS

s′=1
ts,s′β(eN

i+1, f
M
j , s′)P (ei, ǫ|s

′) i < N, j = M

For i < N andj < M , β(eN
i , fM

j , s) =

∑

s′∈S

ts,s′[β(eN
i , fM

j+1, s
′)P (ǫ, fj |s

′)+

β(eN
i+1, f

M
j , s′)P (ei, ǫ|s

′)+

β(eN
i+1, f

M
j+1, s

′)P (ei, fj|s
′)]

In order to proceed with the E.M. estimation
of the parametersT and Ps , we collect the
soft countsc(e, f |s) for emission probabilities by
looping over the training dataD as shown in Fig-
ure 1.

Similarly the soft countsct(s
′, s) for the tran-

sition probabilities are estimated as shown in Fig-
ure 2.

Finally the probabilitiesP (e, f |s) andtij are re-
estimated as

P̂ (e, f |s) =
c(e, f |s)

∑

e∈E,f∈F c(e, f |s)
(2)

t̂s′,s =
ct(s

′, s)
∑

s ct(s′, s)
(3)

We can also compute the most probable align-
ment(ẽ, f̃ ) between the two stringse andf as
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c(e, f |s) =
∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

∑

s′

α(ei−1
1 , f

j−1
1 , s′)ts′,sP (ei, fj |s)β(eN

i , fM
j , s)1(ei = e, fj = f)

+
∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

∑

s′

α(ei−1
1 , f

j
1 , s′)ts′,sP (ei, ǫ|s)β(eN

i , fM
j , s)1(ei = e, fj = f)

+
∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

∑

s′

α(ei
1, f

j−1
1 , s′)ts′,sP (ǫ, fj |s)β(eN

i , fM
j , s)1(ei = e, fj = f)

Figure 1: EM soft countc(e, f |s) estimation.

ct(s
′, s) =

∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

α(ei−1
1 , f

j−1
1 , s′)ts′,sP (ei, fj|s)β(eN

i , fM
j , s)

+
∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

α(ei−1
1 , f

j
1 , s′)ts′,sP (ei, ǫ|s)β(eN

i , fM
j , s)

+
∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

α(ei
1, f

j−1
1 , s′)ts′,sP (ǫ, fj|s)β(eN

i , fM
j , s)

+
∑

(e,f)∈D

1

Q(e, f)
α(eN

1 , fM
1 , s′)ts′,S+11(s = S + 1)

Figure 2: EM soft countct(s
′, s) estimation.
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arg max
(ẽ,̃f)∈J(e,f)

∑

0=s0,...,s|ẽ|+1=S+1

t0,s1

|ẽ|
∏

i=1

tsi,si+1
P (ẽi, f̃i|si)

The pair(ẽ, f̃) is considered as an alignment be-
tween the training pair(e, f).

3 Transduction of the Transliterated
Output

Given an alignment(ẽ, f̃), we consider all possi-
ble sub-alignments (ẽj

i , f̃
j
i ) as pairs of substrings

obtained from(ẽ, f̃ ) such thatẽi 6= ǫ, f̃i 6= ǫ,
ẽj+1 6= ǫ and f̃j+1 6= ǫ . We extract all pos-
sible sub-alignments of all the alignments from
the training data. LetA be the bag of all sub-
alignments obtained from the training data. We
build a weighted finite state transducer that trans-
duces any string inE+ to F+ using these sub-
alignments.

Let (u,v) be an element ofA. From the train-
ing dataD, observe thatA can have multiple re-
alizations of(u,v). Let N(u,v) be the number
of times (u,v) is observed inA. The empirical
probability of transducing stringu to v is simply

P (v|u) =
N(u,v)

∑

v:(u,v′)∈A N(u,v′)

For every pair(u,v) ∈ A , we also compute the
probability of transliteration from the HMMH as
Q(u,v) from Equation 1.

We construct a finite state transducerFu,v that
acceptsonly u and emitsv with a weightwu,v

defined as

wu,v = − log(P (v|u))−λ log(Q(u,v))+δ (4)

Finally we construct a global weighted finite
state transducerF by taking the union of all the
Fu,v and taking its closure.

F =





⋃

(u,v)∈A

Fu,v





+

(5)

The weightδ is typically sufficiently high so
that a new english string is favored to be broken
into fewest possible sub-strings whose translitera-
tions are available in the training data.

We tune the weightsλ andδ by evaluating the
accuracy on the held-out data. Then-best paths
in the weighted finite state transducerF represent
ourn-best transliterations.

4 Results

We evaluated our system on the standard track data
provided by the NEWS 2009 shared task orga-
nizers on five different languages – Tamil, Hindi,
Russian, and Kannada was derived from (Ku-
maran and Kellner, 2007) and Chinese from (Li et
al., 2004). The results of this evaluation on the test
data is shown in Table 1. For a detailed description

Language Top-1 mean MRR
Accuracy F1 score

Tamil 0.327 0.870 0.458
Hindi 0.398 0.855 0.515
Russian 0.506 0.901 0.609
Chinese 0.450 0.755 0.514
Kannada 0.235 0.817 0.353

Table 1: Results on NEWS 2009 test data.

of the evaluation measures used we refer the read-
ers to NEWS 2009 shared task whitepaper (Li et
al., 2009).

5 Conclusion

We described a system for automatic translitera-
tion of pairs of strings from one language to an-
other usingǫ-extension hidden markov models and
weighted finite state transducers. We evaluated
our system on all the languages for the NEWS
2009 standard track. The system presented is lan-
guage agnostic and can be trained for any language
pair within a few minutes on a single core desktop
computer.
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