
Proceedings of the NAACL HLT Student Research Workshop and Doctoral Consortium, pages 61–65,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Loss-Sensitive Discriminative Training of Machine Transliteration Models

Kedar Bellare
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003, USA
kedarb@cs.umass.edu

Koby Crammer
Department of Computer Science

University of Pennsylvania
Philadelphia, PA 19104, USA
crammer@cis.upenn.edu

Dayne Freitag
SRI International

San Diego, CA 92130, USA
dayne.freitag@sri.com

Abstract

In machine transliteration we transcribe a
name across languages while maintaining its
phonetic information. In this paper, we
present a novel sequence transduction algo-
rithm for the problem of machine transliter-
ation. Our model is discriminatively trained
by the MIRA algorithm, which improves the
traditional Perceptron training in three ways:
(1) It allows us to consider k-best translitera-
tions instead of the best one. (2) It is trained
based on the ranking of these transliterations
according to user-specified loss function (Lev-
enshtein edit distance). (3) It enables the user
to tune a built-in parameter to cope with noisy
non-separable data during training. On an
Arabic-English name transliteration task, our
model achieves a relative error reduction of
2.2% over a perceptron-based model with sim-
ilar features, and an error reduction of 7.2%
over a statistical machine translation model
with more complex features.

1 Introduction and Related Work

Proper names and other technical terms are fre-
quently encountered in natural language text. Both
machine translation (Knight and Graehl, 1997) and
cross-language information retrieval (Jeong et al.,
1999; Virga and Khudanpur, 2003; Abdul-Jaleel and
Larkey, 2003) can benefit by explicitly translating
such words from one language into another. This
approach is decidedly better than treating them uni-
formly as out-of-vocabulary tokens. The goal of ma-
chine transliteration is to translate words between

alphabets of different languages such that they are
phonetically equivalent.

Given a source language sequencef =
f1f2 . . . fm from an alphabetF , we want to produce
a target language sequencee = e1e2 . . . en in the al-
phabetE such that it maximizes some score function
s(e, f),

e = arg max
e′

s(e′, f).

Virga and Khudanpur (2003) model this scoring
function using a separatetranslation and language
model, that is,s(e, f) = Pr(f |e)Pr(e). In con-
strast, Al-Onaizan and Knight (2002) directly model
the translation probabilityPr(e|f) using a log-linear
combination of several individually trained phrase
and character-based models. Others have treated
transliteration as a phrase-based transduction (Sherif
and Kondrak, 2007). All these approaches are adap-
tations of statistical models for machine transla-
tion (Brown et al., 1994). In general, the parame-
ters of the scoring function in such approaches are
trained generatively and do not utilize complex fea-
tures of the input sequence pairs.

Recently, there has been interest in applying
discriminatively-trained sequence alignment mod-
els to many real-world problems. McCallum et al.
(2005) train a conditional random field model to
discriminate between matching and non-matching
string pairs treating alignments as latent. Learning
accurate alignments in this model requires finding
“close” non-match pairs which can be a challenge.
A similar conditional latent-variable model has been
applied to the task of lemmatization and genera-
tion of morphological forms (Dreyer et al., 2008).

61

Zelenko and Aone (2006) model transliteration as
a structured prediction problem where the letterei

is predicted using local and global features derived
from e1e2 . . . ei−1 and f . Bergsma and Kondrak
(2007) address cognate identification by training a
SVM classification model using phrase-based fea-
tures obtained from a Levenshtein alignment. Both
these models do not learn alignments that is needed
to obtain high performance on transliteration tasks.
Freitag and Khadivi (2007) describe a discrimina-
tively trained sequence alignment model based on
averaged perceptron, which is closely related to the
method proposed in this paper.

Our approach improves over previous directions
in two ways. First, our system produces betterk-best
transliterations than related approaches by training
on multiple hypotheses ranked according to a user-
specified loss function (Levenshtein edit distance).
Hence, our method achieves a 19.2% error reduction
in 5-best performance over a baseline only trained
with 1-best transliterations. This is especially help-
ful when machine transliteration is part of a larger
machine translation or information retrieval pipeline
since additional sentence context can be used to
choose the best among top-K transliterations. Sec-
ond, our training procedure accounts for noise and
non-separability in the data. Therefore, our translit-
eration system would work well in cases where per-
son names were misspelled or in cases in which a
single name had many reasonable translations in the
foreign language.

The training algorithm we propose in this pa-
per is based on theK-best MIRA algorithm which
has been used earlier in structured prediction prob-
lems (McDonald et al., 2005a; McDonald et al.,
2005b). Our results demonstrate a significant im-
provement in accuracy of 7.2% over a statistical
machine translation (SMT) system (Zens et al.,
2005) and of 2.2% over a perceptron-based edit
model (Freitag and Khadivi, 2007).

2 Sequence Alignment Model

Let e = e1e2 . . . en and f = f1f2 . . . fm be se-
quences from the target alphabetE and source al-
phabetF respectively. Leta = a1a2 . . . al be a se-
quence of alignment operations needed to convertf
into e. Each alignment operation either appends a

letter to the end of the source sequence, the target
sequence or both sequences. Hence, it is a member
of the cross-productak ∈ E∪{ǫ}×F∪{ǫ}\{(ǫ, ǫ)},
where ǫ is the null character symbol. Letak

1 =
a1a2 . . . ak denote the sequence of firstk alignment
operations. Similarlyek

1 andfk
1 are prefixes ofe and

f of lengthk.
We define the scoring function between a word

and its transliteration to be the a maximum over all
possible alignment sequencesa,

s(e, f) = max
a

s(a, e, f) ,

where the score of a specific alignmenta between
two words is given by a linear relation,

s(a, e, f) = w · Φ(a, e, f),

for a parameter vectorw and a feature vec-
tor Φ(a, e, f). Furthermore, letΦ(a, e, f) =∑l

k=1 φ(ak, e, i, f , j) be the sum of feature vec-
tors associated with individual alignment operations.
Here i, j are positions in sequencese, f after per-
forming operationsak

1 . For fixed sequencese andf
the functions(e, f) can be efficiently computed us-
ing a dynamic programming algorithm,

s(ei
1, f

j
1) =

max

s(ei−1
1 , f j

1) + w · φ(〈ei, ǫ〉, e, i, f , j)
s(ei

1, f
j−1
1) + w · φ(〈ǫ, fj〉, e, i, f , j)

s(ei−1
1 , f j−1

1) + w · φ(〈ei, fj〉, e, i, f , j).
(1)

Given a source sequencef computing the best scor-
ing target sequencee = arg maxe′ s(e′, f) among
all possible sequencesE∗ requires a beam search
procedure (Freitag and Khadivi, 2007). This pro-
cedure can also be used to produceK-best target
sequences{e′1, e′2, . . . , e′K} such thats(e′1, f) ≥
s(e′2, f) ≥ . . . ≥ s(e′K , f).

In this paper, we employ the same features as
those used by Freitag and Khadivi (2007). All lo-
cal feature functionsφ(ak, e, i, f , j) are conjunc-
tions of the alignment operationak and forward or
backward-looking characterm-grams in sequences
e and f at positions i and j respectively. For
the source sequencef both forward and backward-
looking m-gram features are included. We restrict
them-gram features in our target sequencee to only

62

be backward-looking since we do not have access to
forward-lookingm-grams during beam-search. An
order M model is one that usesm-gram features
wherem = 0, 1, . . . M .

Our training algorithm takes as input a data set
D of source-target transliteration pairs and outputs
a parameter vectoru. The algorithm pseudo-code
appears in Fig. (1). In the algorithm, the function
L(e′, e) defines a loss incurred by predictinge′ in-
stead ofe. In most structured prediction problems,
the targets are of equal length and in such cases the
Hamming loss function can be used. However, in
our case the targets may differ in terms of length and
thus we use the Levenshtein edit distance (Leven-
shtein, 1966) with unit costs for insertions, deletions
and substitutions. Since the targets are both in the
same alphabetE this loss function is well-defined.
The user also supplies three paramters: (1)T - the
number of training iterations (2)K - the number
of best target hypotheses used (3)C - a complex-
ity parameter. A lowC is useful if the data is non-
separable and noisy.

The final parameter vectoru returned by the al-
gorithm is the average of the intermediate parameter
vectors produced during training. We find that av-
eraging helps to improve performance. At test time,
we use the beam search procedure to produceK-
best hypotheses using the parameter vectoru.

3 Experimental Results

We apply our model to the real-world Arabic-
English name transliteration task on a data set of
10,084 Arabic names from the LDC. The data set
consists of Arabic names in an ASCII-based alpha-
bet and its English rendering. Table 1 shows a
few examples of Arabic-English pairs in our data
set. We use the same training/development/testing
(8084/1000/1000) set as the one used in a previ-
ous benchmark study (Freitag and Khadivi, 2007).
The development and testing data were obtained
by randomly removing entries from the training
data. The absence of short vowels (e.g. “a” in
〈NB”I, nab’i〉), doubled consonants (e.g. “ww”
in 〈FWAL, fawwal〉) and other diacritics in Arabic
make the transliteration a hard problem. Therefore,
it is hard to achieve perfect accuracy on this data set.

For training, we setK = 20 best hypotheses and

Input parameters
Training Data D
Complexity parameter C > 0
Number of epochs T

Initialize w0 = 0 (zero vector) ;τ = 0 ; u = 0
Repeat T times:
For Each (e, f) ∈ D :

1. a = arg maxâ wτ · Φ(â, e, f) (Find best scoring
alignment betweene andf using dynamic program-
ming)

2. Generate a list ofK-best target hypotheses
{e′

1, e
′
2, . . . , e

′
K} given the current parameterswτ .

Let the corresponding alignments for the targets be
{a′

1,a
′
2, . . . ,a

′
K}.

3. Setwτ+1 to be the solution of :

minw
1
2 ||w −wτ ||2 + C

∑K
k=1 ξk

subject to(for k = 1 . . .K) :
w · (Φ(a, e, f)− Φ(a′

k, e′
k, f)) ≥ L(e, e′

k)− ξk

ξk ≥ 0

4. u← u + wτ+1

5. τ ← τ + 1

Output Scoring functions(a, e, f) = u · Φ(a, e, f)

Figure 1: The k-best MIRA algorithm for discriminative
learning of transliterations.

Arabic English

NB”I nab’i
HNBLI hanbali
FRIFI furayfi
MLKIAN malikian
BI;ANT bizant
FWAL fawwal
OALDAWI khalidawi
BUWUI battuti
H;? hazzah

Table 1: Examples of Arabic names in the ASCII alpha-
bet and their English transliterations.

C = 1.0 and run the algorithm forT = 10 epochs.
To evaluate our algorithm, we generate1-best (or5-
best) hypotheses using the beam search procedure
and measure accuracy as the percentage of instances
in which the target sequencee is one of the1-best
(or 5-best) targets. The input features are based on
characterm-grams form = 1, 2, 3. Unlike previ-

63

ous generative transliteration models, no additional
language model feature is used.

We compare our model against a state-of-the-art
statistical machine translation (SMT) system (Zens
et al., 2005) and an averaged perceptron edit
model (PTEM) with identical features (Freitag and
Khadivi, 2007). The SMT system directly models
the posterior probabilityPr(e|f) using a log-linear
combination of several sub-models: a character-
based phrase translation model, a character-based
lexicon model, a character penalty and a phrase
penalty. In the PTEM model, the update rule only
considers the best target sequence and modifies the
parameterswτ+1 = wτ + Φ(a, e, f) − Φ(a′, e′, f)
if the scores(e′, f) ≥ s(e, f).

Model (train+dev) 1-best 5-best

SMT 0.528 0.824
PTEM 0.552 0.803
MIRA 0.562 0.841

Table 2: The 1-best and 5-best accuracy of differ-
ent models on the Arabic-English transliteration task.
At 95% confidence level, MIRA/PTEM outperform the
SMT model in 1-best accuracy and MIRA outperforms
PTEM/SMT in 5-best accuracy.

Table 2 shows the1-best and5-best accuracy of
each model trained on the combinedtrain+dev data
set. All the models are evaluated on the sametest
set. Both MIRA and PTEM algorithms outperform
the SMT model in terms of1-best accuracy. The
differences in accuracy are significant at 95% con-
fidence level, using the bootstrapping method for
hypothesis testing. The difference in1-best per-
formance of MIRA and PTEM is not significant.
At 5-best, the MIRA model outperforms both SMT
and PTEM model. We conjecture that using the
problem-specific Levenshtein loss function helps fil-
ter bad target sequences from theK-best outputs
during training.

In a second experiment we studied the effect
of changingC on the performance of the algo-
rithm. We ran the algorithm with the above set-
tings, except varying the value of the complexity
parameter to one of7 values in the rangeC =
0.00001, 0.0001, . . . , 0.1, 1.0, training only using
the train set, and evaluating the resulting model on

Model (train) 1-best 5-best

C = 1.0 0.545∗ 0.832
C = 0.5 0.548∗ 0.83
C = 0.2 0.549∗ 0.834
C = 0.01 0.545 0.852∗

C = 0.001 0.518 0.843
C = 0.0001 0.482 0.798
C = 0.00001 0.476 0.798

Table 3: The effect of varying model parameterC on1,5-
best accuracy on thetest set. All the models are trained
with Levenshtein loss and 20-best targets. The super-
script ∗ indicates the models that achieved the greatest
performance on thedev set for a particular column.

the test set. The results are summarized in Table 3.
The entry marked with a star∗ indicates the model
that achieved the best performance on thedev set for
a particular choice of evaluation measure (1-best or
5-best). We find that changingC does have an effect
on model performance. As the value ofC decreases,
the performance at lower ranks improves:C = 0.01
is good for5-best accuracy andC = 0.001 for 20-
best accuracy (not in table). AsC is further reduced,
a greater number of iterations are needed to con-
verge. In our model, where the alignments are not
observed but inferred during training, we find that
making small incremental updates makes our algo-
rithm more robust. Indeed, settingC = 0.01 and
training on thetrain+dev set improves5-best per-
formance of our model from0.841 to 0.861. Hence,
the choice ofC is important.

4 Conclusions and Future Work

We have shown a significant improvement in accu-
racy over state-of-the-art transliteration models by
taking into consideration the ranking of multiple
hypotheses (top-K) by Levenshtein distance, and
making the training algorithm robust to noisy non-
separable data. Our model does consistently well
at high (K = 1) and low ranks (K = 5), and can
therefore be used in isolation or in a pipelined sys-
tem (e.g. machine translation or cross-language in-
formation retrieval) to achieve better performance.
In a pipeline system, more features of names around
proper nouns and previous mentions of the name can
be used to improve scoring ofK-best outputs.

64

In our experiments, the Levenshtein loss function
uses only unit costs for edit operations and is not
specifically tuned towards our application. In fu-
ture work, we may imagine penalizing insertions
and deletions higher than substitutions and other
non-uniform schemes for better transliteration per-
formance. OurK-best framework can also be easily
extended to cases where one name has multiple for-
eign translations that are equally likely.

References

Nasreen Abdul-Jaleel and Leah S. Larkey. 2003. Statis-
tical transliteration for English-Arabic cross language
information retrieval. InCIKM ’03, pages 139–146,
New York, NY, USA. ACM.

Yaser Al-Onaizan and Kevin Knight. 2002. Machine
transliteration of names in arabic text. InProceed-
ings of the ACL-02 Workshop on Computational Ap-
proaches to Semitic Languages, pages 1–13.

Shane Bergsma and Greg Kondrak. 2007. Alignment-
based discriminative string similarity. InACL, pages
656–663, June.

Peter F. Brown, Stephen Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1994. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19(2):263–311.

Markus Dreyer, Jason Smith, and Jason Eisner. 2008.
Latent-variable modeling of string transductions with
finite-state methods. InProceedings of the 2008 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1080–1089, Honolulu, Hawaii, Oc-
tober. Association for Computational Linguistics.

Dayne Freitag and Shahram Khadivi. 2007. A sequence
alignment model based on the averaged perceptron. In
EMNLP-CoNLL, pages 238–247.

K.S. Jeong, S. H. Myaeng, J.S. Lee, and K.-S.
Choi. 1999. Automatic identification and back-
transliteration of foreign words for information re-
trieval. Information Processing and Management,
35:523–540.

Kevin Knight and Jonathan Graehl. 1997. Machine
transliteration. In Philip R. Cohen and Wolfgang
Wahlster, editors,Proceedings of the Thirty-Fifth An-
nual Meeting of the Association for Computational
Linguistics and Eighth Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 128–135, Somerset, New Jersey. Associa-
tion for Computational Linguistics.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals.Soviet
Physics Doklady, 10(8):707–710.

Andrew McCallum, Kedar Bellare, and Fernando Pereira.
2005. A conditional random field for discriminatively-
trained finite-state string edit distance. InUAI.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005a. Flexible text segmentation with structured
multilabel classification. InHLT-EMNLP, pages 987–
994, Vancouver, BC, Canada, October. Association for
Computational Linguistics.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005b. Online large-margin training of dependency
parsers. InACL, pages 91–98, Ann Arbor, Michigan,
June.

Tarek Sherif and Grzegorz Kondrak. 2007. Substring-
based transliteration. InACL, pages 944–951, Prague,
Czech Republic, June. Association for Computational
Linguistics.

Paola Virga and Sanjeev Khudanpur. 2003. Translit-
eration of proper names in cross-lingual information
retrieval. InProceedings of the ACL 2003 workshop
on Multilingual and Mixed-language Named Entity
Recognition, pages 57–64, Morristown, NJ, USA. As-
sociation for Computational Linguistics.

Dmitry Zelenko and Chinatsu Aone. 2006. Discrimi-
native methods for transliteration. InEMNLP, pages
612–617, Sydney, Australia, July. Association for
Computational Linguistics.

R. Zens, O. Bender, S. Hasan, S. Khadivi, E. Matusov,
J. Xu, Y. Zhang, and H. Ney. 2005. The RWTH
Phrase-based Statistical Machine Translation System.
In Proceedings of the International Workshop on Spo-
ken Language Translation (IWSLT), Pittsburgh, PA,
USA.

65

