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Abstract

We propose a novel source-side dependency tree re-
ordering model for statistical machine translation, in
which subtree movements and constraints are rep-
resented as reordering events associated with the
widely used lexicalized reordering models. This
model allows us to not only efficiently capture the
statistical distribution of the subtree-to-subtree tran-
sitions in training data, but also utilize it directly at
the decoding time to guide the search process. Us-
ing subtree movements and constraints as features in
a log-linear model, we are able to help the reorder-
ing models make better selections. It also allows the
subtle importance of monolingual syntactic move-
ments to be learned alongside other reordering fea-
tures. We show improvements in translation quality
in English→Spanish and English→Iraqi translation
tasks.

1 Introduction

Word movement is a defining characteristic of the ma-
chine translation problem. The fact that word order can
change during translation makes the problem fundamen-
tally different from related tasks such as tagging and au-
tomatic speech recognition. In fact, if one allows un-
restricted changes in word order during translation, that
alone is sufficient to show it to be NP complete, by anal-
ogy to the Traveling Salesman Problem (Knight, 1999).
Despite the importance of word movement, the popular
phrase-based translation paradigm (Koehn et al., 2003)
devotes surprisingly little modeling capacity to the is-
sue. A very simple reordering model is to base the cost
for word movement only on the distance in the source
sentence between the previous and the current word or
phrase during the translation process. Later on, lexical-
ized reordering models, which condition the probabil-
ity of phrase-to-phrase transitions on the words involved,
have been proposed to address the word reordering is-
sue (Tillman, 2004; Koehn et al., 2005; Al-Onaizan and
Papineni, 2006; Kuhn et al., 2006). Alternatively, one

can employ syntax in the modeling of movement. By
viewing sentence in terms of its hierarchical structure,
one can more easily expose regularities in the sorts of
movement that occur during translation. A number of
syntactic methods are driven by formal syntax alone (Wu,
1997; Chiang, 2005; Shen et al., 2008), while others em-
ploy linguistic syntax derived from a parse tree (Galley et
al., 2004; Quirk et al., 2005; Liu et al., 2006). Each of
these approaches requires a parser-like decoder, and rep-
resents a departure from phrase-based decoding. Galley
and Manning (2008) demonstrated how to integrate hier-
archical phrase structures to lexicalized reordering mod-
els.

The well-studied phrase-based architecture can also
benefit from syntactic intuitions. Phrasal decoding can
be augmented easily, either by syntactic pre-processing
or through search-space constraints. Pre-processing ap-
proaches parse the source sentence and use the tree to ap-
ply rules which reorder the source into a more target-like
structure before the translation begins. These rules can
be learned (Xia and McCord, 2004; Rottmann and Vogel,
2007) or designed by hand (Collins et al., 2005; Wang et
al., 2007; Xu et al., 2009). The pre-processing approach
benefits from its simplicity and modularity, but it suffers
from limitation of providing at most a first-best guess at
syntactic movement. Search space constraints limit the
phrasal decoder’s translation search using syntactic intu-
itions. Zens et al.(2004) demonstrated how to incorpo-
rate formally syntactic binary-bracketing constraints into
phrase-based decoding. Recently, it has been shown that
syntactic cohesion, the notion that syntactic phrases in
the source sentence tend to remain contiguous in the tar-
get (Fox, 2002), can be incorporated into phrasal decod-
ing as well, by following the simple intuition that any
source subtree that has begun translation, must be com-
pleted before translating another part of the tree (Cherry,
2008; Yamamoto et al., 2008).

In this paper, we introduce a novel reordering model
for phrase-based systems which exploits dependency
subtree movements and constraints. In order to do, we



must first consider several questions. Should subtree
movements be conditioned on source dependency struc-
tures? How can we estimate reliable probability distri-
butions from training data? How do we incorporate the
reordering model with dependency structures and cohe-
sive constraints into a phrase-based decoder? We in-
vestigate these questions by presenting the model, train-
ing and decoding procedure in Section 2. Furthermore,
we present experimental results on English-Iraqi and
English-Spanish systems in Section 3. Finally, we inves-
tigate the impact of the proposed models in Section 4 .

2 Source-tree Reordering Models

Nowadays most statistical machine translation systems
are based on log-linear model which tries to provide a pa-
rameterized form of the probability of translating a sen-
tencefJ

1
to eI

1
, subject to

êÎ
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A common feature set includes reordering models
which provide the decoder the capability to determine the
orientation sequence of phrases. The beam search strat-
egy is used during decoding, in which the intermediate
states correspond to partial translations. The decoding
process advances by extending a state with the translation
of a source phrase and the final state is reached when each
source word has been translated exactly once. Reordering
occurs when the source phrase to be translated does not
immediately follow the previously translated phrase. The
reordering is integrated into the target function by using
discriminatively-trained distortion penalties, such as the
widely used lexicalized reordering model (Koehn et al.,
2005). It can be parameterized as follows:

p(O|e, f) =

n
∏

i=1

p(oi|ēi, f̄ai
, ai−1, ai) (3)

wheref is the input sentence;e = (ē1, . . . , ēn) is the tar-
get language phrases;a = (a1, . . . , an) is phrase align-
ments; f̄ai

is a source phrase which has a translated
phraseēi defined by an alignmentai. O is the orienta-
tion sequence of phrase where eachoi has a value over
three possible orientations, (M) monotone, (S) swap with
previous phrase, or (D) discontinuous.O={M, S, D} and
is defined as follows:

oi =







M if ai − ai−1 = 1
S if ai − ai−1 = −1
D if |ai − ai−1| 6= 1

(4)

2.1 Models

A lexicalized reordering model is defined in terms of
transitions between phrases - two phrases in sequence,
previous andnext, have a specific relationship to each
other, such asmonotone, swap or discontinuous.
Statistics on those relationships make up the model.

Lexicalized reordering models are well-defined for flat
word surface structures. However, the models do not
leverage source-side syntactic structures which are al-
ways available during the decoding time. Previous stud-
ies, such as Cherry (2008), show improvements when us-
ing source-side dependency structures as soft cohesive
constraints. Cohesion constraints tell the decoder which
cohesive movements are available, but the decoder has no
opinion on the likelihood of these moves.

In a source-tree reordering model, we would condi-
tion monolingually and syntactically phrase movements
on the source dependency tree. A source-tree reorder-
ing model considers in terms of previous source depen-
dency structures. One can think about the phrase move-
ments as the movement of the subtreeinside oroutside a
source subtree when the decoder is leaving from thepre-
vious source state to the current source state. The notions
of moving inside (I) andoutside (O) a subtree can be
interpreted as tracking facts about the subtree-to-subtree
transitions observed in the source side of word-aligned
training data. With extra guidance on subtree movements,
our expectation is that source-tree reordering models will
help the decoder make smarter distortion decisions.

An example of the source-tree reordering movements
is illustrated in Figure 1 that contains a word/phrase
alignment matrix of a English-Spanish sentence pair,
source-dependency tree and reordering movements. The
lexicalized orientation sequence is{D, S, D, M} while
the subtree movement sequence is{I, O, I, I}. The lexi-
calized reordering model assignedD for phrase “ask you”
because the previous extracted phrase “I would therefore”
was not continuous with “ask you”. At the same time, the
source-tree movement assignedI since “ask you” is mov-
ing inside the subtree rooted at “would”. In addition,
“once more” received O from the source-tree reorder-
ing model since it isswap with “ask you” and moving
outside the subtree rooted at “ask”.

Let T denote the source dependency tree andT (n)
stands for the subtree rooted at noden. A spanf̄ indi-
cates the last source phrase translated to create the cur-
rent state and each̄f has a dependency structuresh. A
subtreeT (n) covers a span of contiguous source words is
constructed by dependency structuressh; for subspanf̄
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(a) Alignment matrix with lexicalized orientation events
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(b) Inside/Outside subtree movements on the source dependency tree

Figure 1: Source-tree reordering extraction examples for the English-Spanish sentence pair “I would therefore once
more ask you to ensure that we get a Dutch channel as well”- “ Por lo tanto quisiera pedirle nuevamente que se
encargue de que podamos ver tambin un canal neerlands”

covered byT (n), we sayf̄ ∈ T (n). We define a subtree
that has begun translation but not yet complete, anopen
subtree. On the other hand, when all words under a node
have been translated then we call acompleted subtree. A
phrasef̄ is movinginside (I) a T (n) if f̄ helpsT (n) to
be completed, in other words,T (n) covers more contigu-
ous words. A phrasēf is movingoutside (O) a T (n) if
f̄ leavesT (n) to be open, in other words,T (n) contains
some words which have not been covered yet.inside and
outside are the two subtree movements we are going to
model.

Mathematically speaking, a source-tree reordering
model is defined as follows:

p(D|e, f) =

n
∏

i=1

p(di|ēi, f̄ai
, ai, si−1, si) (5)

wheresi and si−1 are dependency structures of source
phrasesf̄ai

and f̄ai−1
respectively;D is a random vari-

able which represents the sequence of syntactical phrase
movements over the source dependency tree; eachdi

takes a value eitherinside (I) or outside (O). p(D|e, f) is
the probability of the subtree movement likelihood over
the source phrase sequence and their target movements.
Since the model essentially constraints phrase move-
ments on the source dependency tree however it does
not explicitly provide orientations for a phrase-based de-
coder. Therefore, we combine our model with the lexi-
calized reordering model, as a result, a set of events con-
tainsD = ok dj = {M I, S I, D I, M O, S O, D O}. The
source dependency tree is used here to refine the reorder-
ing events provided by a lexicalized reordering model.
Finally, the source-tree reordering model is derived as

follows:

p(D|e, f) =

n
∏

i=1

p((o d)i|ēi, f̄ai
, ai−1, ai, si−1, si) (6)

2.2 Training

To train the model, the system needs to extractok dj

events for phrase pairs. First, the source side dependency
trees of the bilingual training data are provided by using
a dependency parser. Given a sentence pair and source
dependency tree, when performing the phrase-extract al-
gorithm (Och and Ney, 2004) we also extract the source
dependency structure of each phrase pair. The values of
ok are obtained by lexicalized reordering models. To
determine whether the current source phrase is moving
inside or outside a subtreeT (n) with respect to previ-
ously extracted phrases we apply the exhaustive interrup-
tion check algorithm (Bach et al., 2009). This algorithm
essentially walks through the dependency subtrees of pre-
viously extracted phrases and checks whether the subtree
is open or completed. The value ofdj is I when the ex-
haustive interruption check algorithm returns false andO

otherwise.
Table 1 is a snapshot of the output of the reordering

extraction procedure. The third column shows source-
tree reordering features.

Table 2 displays the overall event distributions of
source-tree reordering models. It appears clearly that oc-
currences ofS I andS O are too sparsely seen in the
training data which assigns nearly 98% of its probabil-
ity mass to other events. The table strongly suggests
that from training data the source-tree reordering models



Lexicalized Source-tree
...

ask you # pedirle dis swap DI ∗
ask you # pedirle mono mono MI
ask you # pedirle mono mono MO
once more # nuevamente swap dis SO ∗

once more # nuevamente dis swap DO
once more # nuevamente que swap dis SO

...

Table 1: Extracted reordering events;∗ indicates events
extracted from the example in Figure 1

observedmonotone andinside movements more often
than other categories.

M I S I D I M O S O D O
En-Es 0.38 0.01 0.14 0.3 0.01 0.15
En-Ir 0.62 0.01 0.13 0.16 0.01 0.07

Table 2: Distributions of the six source-tree reordering
events estimated from English-Spanish and English-Iraqi
training data

After having all extracted phrase pairs with de-
pendency features, we need to estimate parameters
of source-tree reordering models for a particular pair
p((oj dk)i|ēi, f̄ai

). An event, such asM I, can be inter-
preted by three possibilities. First,M I is a joint proba-
bility of monotone andinside given a phrase pair. Sec-
ond,M I can be a conditional probability ofmonotone

given a phrase pair and it isinside. Finally, M I can be
a conditional probability ofinside given a phrase pair
and it ismonotone. The parameterp((oj dk)i|ēi, f̄ai

) is
estimated by the maximum likelihood estimation criteria
with a smoothing factorγ as

p((oj dk)i|ēi, f̄ai
, oj , dk) =

count(ok dj) + γ
∑

k

∑

j(count(ok dj) + γ)
(7)

if it is a joint probability of subtree movements and lexi-
calized orientations (DO) or

p((oj dk)i|ēi, f̄ai
, dk) =

count(ok dj) + γ
∑

k(count(ok dj) + γ)
(8)

if it is conditioned on subtree movements (DOD) or

p((oj dk)i|ēi, f̄ai
, oj) =

count(ok dj) + γ
∑

j(count(ok dj) + γ)
(9)

if it is conditioned on lexicalized orientations (DOO).
Table 3 displays source-tree reordering estimated prob-

abilities for a phrase pair “ask you”- “ pedirle”. Each
probability was put under one of the three parameter es-
timation methods.

M I S I D I M O S O D O
DO 0.691 0.003 0.142 0.119 0.009 0.038
DOD 0.827 0.003 0.170 0.719 0.053 0.228
DOO 0.854 0.250 0.790 0.146 0.750 0.210

Table 3: inside and outside probabilities for phrase
“ask you”- “ pedirle” according to three parameter esti-
mation methods

2.3 Decoding

The beam search strategy is unchanged from the phrase-
based system. Our proposed source-tree reordering mod-
els concern monolingualy and syntactically movements
in the source sentence. However, computing source-tree
reordering model scores can be done in two scenarios 1)
not using and 2) using cohesive constraints. Cohesive
constraints can be enforced by the interruption check al-
gorithm (Cherry, 2008; Bach et al., 2009). One can con-
sider the first scenario as the decoder does not have any
information about the source dependency tree during de-
coding time, therefore, we allow the decoder to consider
both eventsinside andoutside. The decision of select-
ing a preferable feature is made by the tuning procedure.
On the other hand, when the source dependency tree is
available, subtree movements are informed to the decoder
via cohesive constraints, as a result, we are able to allow
the decoder to make a harder choice to consider either
inside or outside.

More specifically, if the decoder chooses to decode
without cohesive constraints then after detecting the ori-
entation of the current phrase, for exampleswap, the de-
coder will trigger two subtree movement featuresS I and
S O and sum up both features in the log-linear combina-
tion. In other words, the decoder considers both events
that the current phrase is movinginside andoutside a
subtreeT (n) given it is swap orientation on flat word
structures.

In the second scenario, the decoder uses cohesive
constraints after detecting the orientation of the current
phrase, for exampleswap. The decoder only considers
one source-tree reordering feature. The choice of feature
depends on the output of the interruption check algorithm
on the current phrase. If the return isinside thenS I will
be used otherwiseS O.

3 Experimental Results

We built baseline systems using GIZA++ (Och and
Ney, 2003), Moses’ phrase extraction with the grow-
diag-final-and heuristic (Koehn et al., 2007), a standard
phrase-based decoder (Vogel, 2003), the SRI LM toolkit
(Stolcke, 2002), the suffix-array language model (Zhang
and Vogel, 2005), a lexicalized reordering model with a
reordering window of 3, and the maximum number of
target phrases restricted to 5. Results are reported using



lowercase BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006). All model weights were trained on de-
velopment sets via minimum-error rate training (MERT)
(Venugopal and Vogel, 2005) with an unique 200-best
list and optimizing toward BLEU. To shorten the train-
ing time, a multi-threaded GIZA++ version was used to
utilize multi-processor servers (Gao and Vogel, 2008).
We used the MALT parser (Nivre et al., 2006) to get
English dependency trees. We perform experiments on
English→Spanish and English→Iraqi tasks. Detailed
corpus statistics are shown in Table 4.

English→Spanish English→Iraqi
English Spanish English Iraqi

sent. pairs 1,310,127 654,556
uniq. pairs 1,287,016 510,314
avg. sent. length 27.4 28.6 8.4 5.9
# words 35.8 M 37.4 M 5.5 M 3.8 M
vocabulary 117 K 173 K 34 K 109 K

Table 4: Corpus statistics of English→Spanish and
English→Iraqi systems

We experiment systems in different configurations of
the source-tree reordering model such as DO, DOD and
DOO means parameters estimation using Equation 7, 8
and 9 respectively. Moreover, Coh means the decoder
triggers cohesive constraints for source-tree reordering
models (Cherry, 2008). Bold type is used to indicate
highest scores.

Our first step in validating the proposed approach is
to check with the English→Spanish system. We used
the Europarl and News-Commentary parallel corpora for
English→Spanish as provided in the ACL-WMT 20081

shared task evaluation. We built the baseline system
using the parallel corpus restricting sentence length to
100 words for word alignment and a 4-gram SRI LM
with modified Kneyser-Ney smoothing. We used nc-
devtest2007(ncd07) as the development set; nc-test2007
(nct07) as in-domain and newstest2008 (net08) as out-
domain held-out evaluation sets. Each test set has 1 trans-
lation reference. Table 5 shows that the best obtained
improvements are+0.8 BLEU point and-1.4 TER score
on the held-out evaluation sets. Moreover, the proposed
methods also obtained improvements on the out-domain
test set (net08).

We also validated the proposed approach on
English→Iraqi. However, we have a smaller train-
ing corpus which comes from force protection domains
and is spoken language style. This data is used in the
DARPA TransTac program. The English→Iraqi pair
also differs according to the language family. English
is an Indo-European language while Iraqi is a Semitic
language of the Afro-Asiatic language family.

1http://www.statmt.org/wmt08

nct07 net08
BLEU TER BLEU TER

Baseline 32.89 65.25 20.11 83.09
Coh 33.33 64.72 19.80 82.84
DO 32.99 65.05 20.27 82.65
DO+Coh 33.28 64.77 20.61 82.35
DOD 33.17 64.54 20.33 82.12
DOD+Coh 33.46 64.41 20.58 82.05
DOO 33.10 64.51 20.51 82.12
DOO+Coh 33.67 64.03 20.71 81.70

Table 5: Scores of baseline and improved base-
line systems with source-tree reordering models on
English→Spanish

june08 nov08
BLEU TER BLEU TER

Baseline 25.18 56.70 18.40 62.91
Coh 25.34 57.30 18.01 61.52
DO 25.31 57.30 18.43 60.98
DO+Coh 25.53 57.20 19.13 61.45
DOD 25.34 57.53 18.90 61.81
DOD+Coh 25.50 56.29 19.15 60.93
DOO 25.25 56.76 18.40 60.64
DOO+Coh 25.58 56.37 18.59 61.45

Table 6: Scores of baseline and improved base-
line systems with source-tree reordering models on
English→Iraqi

We used 429 sentences of TransTac T2T July 2007
(july07) as the development set; 656 sentences of
TransTac T2T June 2008 (june08) and 618 sentences of
November 2008 (nov08) as the held-out evaluation sets.
Each test set has 4 reference translations. We used a
suffix-array LM up to 6-gram with Good-Turing smooth-
ing. In Table 6, source-tree reordering models produced
the best improvements of+0.8 BLEU point and-2.3 TER
score on the held-out evaluation sets.

4 Discussion and Analysis

In this section we perform detail error analysis from
where different scenarios emerge and questions arise for
our assumptions.

4.1 Breakdown improvement analysis

As we can see from the results, there are improvements
on all the different test sets. However, one could ex-
pect that the methods may work for a portion of the data
but not others. We divide the test sets into three por-
tions based on sentence-level TER of the baseline sys-
tem. Letµ andσ be the mean and standard deviation of
the sentence-level TER of the whole test set. We define
three subsetshead, tail andmid as the sentence whose
TER score is lower thanµ− 1

2
σ, higher thanµ + 1

2
σ and

the rest, respectively. We then fix the division of the three
subsets, and calculate the BLEU and TER scores on them



En-Ir En-Es
jun08 nov08 nc07 nt08

System BLEU TER BLEU TER BLEU TER BLEU TER

tail 29.45 76.50 24.41 87.69 23.36 92.93 24.41 134.04
Baseline mid 38.61 53.60 35.89 61.07 31.08 66.75 22.61 86.32

head 61.38 25.80 60.90 28.16 44.58 47.45 35.34 59.54

tail +0.56 +1.35 +1.29 +5.27 +0.67 +1.80 +0.07 +1.27
Coh mid +0.14 -0.91 +0.48 +1.08 +0.22 +0.07 -0.02 -0.19

head +0.37 -1.69 -3.11 -4.68 -0.17 -0.73 -0.48 +1.27
tail +0.28 +0.66 +1.91 +7.03 +0.49 +1.94 +0.87 +2.32

DO mid +0.07 -1.15 +0.58 +1.44 +0.24 +0.45 +0.12 +0.28
head -0.28 -2.48 -1.31 -3.07 -0.28 -0.71 -0.11 -0.77
tail +1.07 +1.95 +1.72 +5.19 +0.66 +1.78 +0.52 +1.60

DO+Coh mid +0.80 -0.85 +0.92 +1.32 +0.19 +0.21 +0.13 +0.25
head -0.37 -2.41 -1.59 -3.62 -0.25 -0.75 -0.01 -1.11
tail +0.46 +0.06 +1.96 +4.84 +0.35 +1.91 +0.75 +2.84

DOD mid +0.53 -1.35 +0.43 +0.29 +0.01 -0.15 +0.05 +0.41
head +0.27 -1.03 -0.61 -2.33 -0.79 -1.33 -0.37 -1.37
tail +1.19 +2.70 +2.10 +5.89 +0.49 +0.43 +0.27 +1.30

DOD+Coh mid +0.44 -0.37 +0.42 +1.16 +0.01 -0.85 +0.12 +0.99
head +0.32 -1.25 -0.66 -2.02 -0.37 -1.35 -0.26 -2.05
tail +1.18 +2.41 +2.37 +7.36 +0.35 +1.92 +0.59 +0.39

DOO mid +0.13 -0.62 +0.28 +1.83 +0.01 -0.15 +0.06 -0.38
head -0.50 -2.13 -0.58 -2.63 -0.79 -1.34 -0.47 -1.52
tail +1.28 +2.70 +2.03 +5.88 +0.65 +1.61 +0.69 +1.10

DOO+Coh mid +0.74 -0.52 +0.19 +0.82 +0.18 -0.02 +0.12 -0.05
head +0.22 -1.02 -1.61 -4.16 -0.40 -1.07 -0.22 -1.00

Table 7: Distribution of improvements over different portions of the test sets, where for TER the sign is reversed so
that positive numbers means improve in TER, i.e., lower TER score. The improvements are marked by bold text.

for every system. From Table 7, the proposed methods
tend to output better TER and BLEU for thetail subsets,
the improvements on themid subsets are smaller, and
loss can be observed on thehead subsets. The splitting
of different sets also reflects on the length of sentences,
as shown in Table 8, the tail parts are generally long sen-
tences. The breakdown analysis suggests a more sub-
tle model taking into account the sentence lengths could
bring in more improvements, especially, on thetail set in
which the baseline model loses.

jun08 nov08 nc07 nt08
head 7.92 6.27 20.39 13.07
mid 12.31 11.09 28.07 22.78
tail 13.91 14.08 35.29 25.33

Table 8: Average reference lengths

4.2 Interactions of reordering models

To further investigate the impact of the proposed models,
we perform several analyses to examine whether there are
significant differences in 1) the average phrase length that
the decoder outputs; 2) the total number of reorderings
occurred in the hypothesis and 3) the average reordering
distance for all the reordering events. Table 9 shows the
statistics on the four aspects for all the test sets. For the
average phrase length, we can observe a smaller value
when applying the proposed models on English-Spanish
tasks. However, on English-Iraqi the picture is contra-
dicting when on one set the phrase length is generally
longer and on the other set both longer and shorter statis-

tics can be observed in different systems. Generally, there
is no evidence to support a claim that the proposed mod-
els have consistent impact on the length of phrases chosen
by the decoder. The observation is not surprising since
the proposed reordering models are more likely to affect
the decoder’s behavior on reorderings.

When analyzing the average reordering distance, a
more consistent picture can be discovered. The aver-
age reordering distance is larger than the correspond-
ing systems with only inside/outside subtree movements.
Whereas we cannot observe similar phenomenon com-
paring the system with only cohesive constraints and the
baseline, which indicates that the cohesive constraints ac-
tually have the effect of restricting long distance reorder
generated by the inside/outside subtree movements. The
most interesting observation is thenumber of reorder-
ings in the hypothesis. To make it easier to think about
how sparse the reordering events are, we present the oc-
currence rate of reorderings, i.e. the number of words
divided by the number of reorderings, as listed in the
parentheses inside Table 9. An interesting phenomenon is
that in English-Iraqi tasks, the output is generally mono-
tone in the baseline, and the number of reorderings in-
creases dramatically by applying the inside/outside sub-
tree movements. However, solely applying cohesive con-
straints does not increase the number of reorderings. In
English-Spanish tasks, although all the features generate
more reordering events than the baseline, applying only
the cohesion constraints also increases the number of re-
orderings dramatically.

When combining the statistics of Table 9 the most



Number of Reorderings Frequency of Reordering Average Phrase Length Average Reordering Distance
En-Es En-Ir En-Es En-Ir En-Es En-Ir En-Es En-Ir

nc07 nt08 jun08 nov08 nc07 nt08 jun08 nov08 nc07 nt08 jun08 nov08 nc07 nt08 jun08 nov08

Baseline 1507 1684 39 24 16.3 16.4 119 164 2.02 1.80 2.20 2.34 2.61 2.44 2.79 2.17
Coh 2045 2903 46 21 10.0 12.8 99 178 1.90 1.71 2.25 2.48 2.67 2.58 2.81 2.50
DO 2189 2113 97 58 11.6 13.4 47 64 1.95 1.76 2.25 2.47 2.57 2.46 2.88 3.05
DO+Coh 1929 1900 155 88 13.6 15.3 30 44 1.89 1.71 2.17 2.37 2.47 2.33 2.74 2.88
DOD 1735 2592 123 60 14.9 10.7 38 65 1.92 1.88 2.17 2.36 2.73 2.57 2.79 2.93
DOD+Coh 2070 2021 148 90 12.8 14.5 32 43 1.88 1.70 2.18 2.37 2.50 2.39 2.64 2.81
DOO 1735 1785 164 49 14.9 16.1 30 79 1.92 1.73 2.10 2.37 2.73 2.60 2.72 2.98
DOO+Coh 1818 1959 247 66 14.1 14.6 19 59 1.93 1.74 2.15 2.37 2.53 2.42 2.64 2.88

Table 9: Statistics on four aspects of the final hypothesis over different systems; 1. the number of reorderings, 2.
the number of words in the hypotheses divided by the number ofreordering, i.e. a larger number means more sparse
observation of reorderings, 3. the average phrase length and, 4. the average reordering distance

significant effect the source-tree reordering models con-
tribute is the number of reorderings. Instead of constrain-
ing the reordering, the models enable more reorderings
to be generated. As shown in Table 2, in the training data
there are generally more reorderings than we observed in
the decoding results. It indicates the baseline reordering
model is not subtle enough to encode accurately infor-
mation in a more generalized way, so that more reorder-
ings can be generated without losing performance. The
source-tree reordering models provide a more discrimi-
native mechanism to estimate reordering events. For ex-
ample, in Table 2 the probability mass of monotone and
discontinuous events are different given that the phrase
is encoded with inside or outside subtree movements.
Moreover, the reordering issue is more language-specific
than general translation models, and the conditions for a
reordering event to happen vary among languages. Pro-
viding more features that are conditioned on different in-
formation, such as include inside/outside subtree move-
ments and cohesive constraints presented in this paper,
could benefit the system performance by enabling MERT
to choose the most prominent ones from a larger basis.

4.3 The effect of inside/outside events

En-Es En-Ir
nc07 nt08 jun08 nov08

Baseline 29.35 38.52 9.30 9.39
Coh 20.23 29.40 8.23 8.90
DO 30.34 32.57 12.35 11.65
DO+Coh 12.26 13.07 15.40 13.11
DOD 32.39 37.64 12.65 11.00
DOD+Coh 15.94 23.99 11.89 11.97
DOO 28.75 32.08 12.35 11.65
DOO+Coh 18.44 25.50 16.77 10.68

Table 10: The percentage of sentences havingoutside

subtree events

All the analysis above inspired us to carry out a more
direct analysis of the decoder behaviors. As the main mo-
tivation of the proposed approach is to model the behav-
ior of inside/outside subtree events, natural assumptions
could be that 1) different target languages should have
different probabilities of generating a sequence that has
outside subtree events on the same source language and

2) whether the model could change the behavior of gener-
ating outside subtree events. Further more, comparing to
baseline system, do the changes, i.e. generating more or
less outside subtree events than baseline, bring improve-
ments to those sentences? From Table 10, the number of
sentences having outside subtree events has not changed
much when decoding with subtree movement features in
English-Spanish tasks, while this number generally in-
creases in English-Iraqi tasks. Moreover, when decoding
with both subtree movements and cohesive constraints,
we observe that the number of sentences having outside
subtree events sharply decreases, whereas it increases in
English-Iraqi. This result shows an interesting correla-
tion with the performance improvements in Table 5 and
6, where the systems with cohesive constraints generally
outperform those without. If we consider the cohesive
constraints as hard constraints, then the outside subtree
events are considered as violations, however in English-
Iraqi tasks, the performance becomes better with more
“violations”. The observation further consolidates our
suggestion that subtle models should be preferred for fu-
ture developments, because the features may encode the
information that the violation of constraints is actually
preferred, no matter whether it is because of the nature of
the particular language or the style of the source (spoken,
written, etc.).

5 Conclusions and Future Work

In this study, our major contribution is a novel source-
tree reordering model that exploits dependency subtree
movements and constraints. These movements and con-
straints enable us to efficiently capture the subtree-to-
subtree transitions observed both in the source of word-
aligned training data and in decoding time. Represent-
ing subtree movements as features allows MERT to train
the corresponding weights for these features relative to
others in the model. We show that this model provides
improvements for four held-out evaluation sets and for
two language pairs. In future work, we plan to extend
the parameterization of our models to explicitly represent
source-side subtree movements during the decoding time.



We also plan to combine our models with the hierarchi-
cal phrase reordering model (Galley and Manning, 2008).
We believe such extensions will generalize more subtle
reordering events on source dependency trees.
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