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Abstract

This paper reports on progress towards de-

veloping the first broad coverage English

surface realizer for Combinatory Catego-

rial Grammar (CCG). The paper provides

initial automatic evaluation results which

are roughly comparable to those reported

with other formalisms when using a (non-

blind) grammar derived from the develop-

ment section of the CCGbank; the results

are worse, though still respectable, when us-

ing the standard dev/train/test splits, high-

lighting the need for better lexical smooth-

ing and more focused search. The paper also

shows that factored language models that in-

terpolate word-level n-grams with n-grams

over POS tags and supertags provide simi-

lar absolute performance improvements over

word-level n-grams as have been observed

with parsing-inspired log-linear models.

1 Introduction

In this paper, we report on progress towards devel-

oping the first broad coverage English surface real-

izer for Combinatory Categorial Grammar (Steed-

man, 2000, CCG), using a grammar engineered

from the CCGbank (Hockenmaier, 2003)—a cor-

pus of CCG derivations created by transforming

the Penn Treebank—together with the OpenCCG

(White, 2006b; White, 2006a) realizer, enhanced

for robustness. In previous work, OpenCCG has

been used with precise, manually developed gram-

mars for dialogue systems. By developing a broad

coverage English grammar for OpenCCG, we aim

to greatly reduce the effort required to make the

realizer work in a new domain, and to enable

open domain text-to-text applications. In princi-

ple, OpenCCG could also be used to investigate

methods of assembling NLP component technolo-

gies into a high quality MT system based on seman-

tic transfer, as in (Lønning and Oepen, 2006); since

OpenCCG supports disjunctive logical forms as in-

put, such a system could employ transfer rules on

packed representations, along the lines of (Emele

and Dorna, 1998), rather than making hard disam-

biguation choices during parsing and transfer.

Our efforts to engineer a grammar from the CCG-

bank suitable for realization with OpenCCG involve

adding semantic representations to the lexical cate-

gories and, where feasible, converting the corpus to

reflect more precise analyses. While we are find-

ing this process to be a time-consuming and non-

trivial one, we expect our efforts to yield a linguisti-

cally informed and moderately precise, broad cover-

age English grammar—suitable for both parsing and

realization—in much less time than it would take to

scale up a manually written grammar to cover all

the phenomena in the Penn Treebank. Our approach

may be contrasted with those of (Langkilde-Geary,

2002; Callaway, 2003), who developed converters

for the outputs of Treebank parsers to produce in-

puts for their realizers, rather than pursue parsers

and realizers that share a bidirectional grammar. In-

stead, our approach is more similar to the ones pur-

sued by (Carroll and Oepen, 2005; Nakanishi et al.,

2005; Cahill and van Genabith, 2006) with HPSG

and LFG grammars, except for our greater focus on
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engineering a broad coverage grammar where the

logical forms more closely resemble those used tra-

ditionally in generation.

The rest of the paper is organized as follows. In

Section 2, we give an overview of surface realiza-

tion with OpenCCG. In Section 3, we describe our

approach to engineering a grammar from the CCG-

bank suitable for realization with OpenCCG. In Sec-

tion 4, we describe our scoring methods, provide

initial automatic evaluation results, and discuss con-

cerns about relying too heavily on automatic met-

rics for judging realization quality. In this section,

we also contribute to the debate that has arisen re-

cently over the relative merits of language mod-

els and syntactic features in realization ranking, by

showing that factored language models that inter-

polate word-level n-grams with n-grams over part-

of-speech tags and supertags provide similar abso-

lute performance improvements over word-level n-

grams as have been observed with log-linear models

using parsing-inspired features, as in (Velldal and

Oepen, 2005). Finally, in Section 5 we conclude

with a summary and discussion of future work.

2 Surface Realization with OpenCCG

The OpenCCG open source surface realizer is based

on Steedman’s (2000) version of CCG elaborated

with Baldridge and Kruijff’s multi-modal extensions

for lexically specified derivation control (Baldridge,

2002; Baldridge and Kruijff, 2003) and hybrid

logic dependency semantics (Baldridge and Kruijff,

2002). OpenCCG implements a hybrid symbolic-

statistical chart realization algorithm (Kay, 1996;

Carroll et al., 1999; White, 2006b) combining (1)

a theoretically grounded approach to syntax and se-

mantic composition with (2) factored language mod-

els (Bilmes and Kirchhoff, 2003) for making choices

among the options left open by the grammar.

In OpenCCG, the search for complete realizations

makes use of n-gram language models over words

represented as vectors of factors, including surface

form, part of speech, supertag and semantic class.

The search proceeds in one of two modes, anytime

or two-stage (packing/unpacking). In the anytime

mode, a best-first search is performed with a con-

figurable time limit: the scores assigned by the n-

gram model determine the order of the edges on

be<TENSE>pres,<MOOD>dcle

<ARG> <PROP>

based_on<DET>the,<NUM>sgdesign d p

<SOURCE>

<ARTIFACT>
collection|series(<DET>the)?,<NUM>sgc

<HASPROP> <GENOWNER>

Funny_Day f v Villeroy_and_Boch

<CREATOR>

Figure 1: Simplified disjunctive semantic depen-

dency graph from the COMIC dialogue system, for

the eight paraphrases The design (is|’s) based on (the

Funny Day (collection|series) by Villeroy and Boch |
Villeroy and Boch’s Funny Day (collection|series)).

the agenda, and thus have an impact on realization

speed. In the two-stage mode, a packed forest of

all possible realizations is created in the first stage;

in the second stage, the packed representation is un-

packed in bottom-up fashion, with scores assigned

to the edge for each sign as it is unpacked, much

as in (Langkilde, 2000). Edges are grouped into

equivalence classes when they have the same syn-

tactic category and cover the same parts of the input

logical form. At present, pruning is only done within

equivalence classes of edges, and all lexical category

assignments are considered for each input predicate,

to ensure that pruning does not prevent a complete

realization from being found.

To realize a wide range of paraphrases, OpenCCG

implements an algorithm for efficiently generating

from disjunctive logical forms (White, 2006a). This

capability has many benefits, such as enabling the

selection of realizations according to predicted syn-

thesis quality (Nakatsu and White, 2006), and avoid-

ing repetition in the output of a dialogue system

(Foster and White, 2007). The disjunctive logical

forms describe semantic dependency graphs with al-

ternative or optional elements, as illustrated in Fig-

ure 1; see (White, 2006a) for further explanation.

To better support broad coverage surface realiza-

tion, we have enhanced OpenCCG for robustness in

several ways. The most significant extension imple-

mented so far has been a technique to improve ro-

bustness in the event that the realizer fails to find
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a complete realization, in which case fragments are

greedily assembled to cover as much of the input se-

mantics as possible. The algorithm begins with the

edge for the best partial realization, i.e. the one that

covers the most elementary predications in the in-

put logical form, with ties broken according to the

n-gram score. (Larger fragments are preferred under

the assumption that they are more likely to be gram-

matical.) Next, the chart and agenda are greedily

searched for the best edge whose semantic coverage

is disjoint from those selected so far; this process re-

peats until no further edges can be added to the set

of selected fragments. In the final step, these frag-

ments are concatenated, again in a greedy fashion,

this time according to the n-gram score of the con-

catenated edges: starting with the original best edge,

the fragment whose concatenation on the left or right

side yields the highest score is chosen as the one to

concatenate next, until all the fragments have been

concatenated into a single output.

3 Engineering a Grammar for Realization

with OpenCCG from the CCGbank

Our process for deriving a grammar suitable for

OpenCCG realization from the CCGbank proceeds

in two steps. In the first step, the derivations in the

CCGbank are revised to reflect the desired syntac-

tic derivations. Changes to the derivations are nec-

essary to reflect the lexicalized treatment of coordi-

nation and punctuation assumed by the multi-modal

version of CCG that is implemented in OpenCCG.

Further changes are necessary to support semantic

dependencies rather than surface syntactic ones; in

particular, the features and unification constraints in

the categories related to semantically empty func-

tion words such complementizers, infinitival-to, ex-

pletive subjects, and case-marking prepositions are

adjusted to reflect their purely syntactic status. This

step is implemented in a general fashion as a series

of XSLT transformations with external Java function

calls, following an initial conversion of CCGbank

files into an XML representation.

In the second step, a grammar is extracted from

the converted CCGbank and augmented with log-

ical forms. Categories and unary type changing

rules (corresponding to zero morphemes) are sorted

by frequency and extracted if they meet the speci-

fied frequency thresholds. Categories for function

words that have no semantics or introduce only se-

mantic features or relations are marked in an XSLT

transformation. A separate transformation then uses

around two dozen generalized templates to add log-

ical forms to the categories. The effect of this trans-

formation is illustrated below. Examples (1) and (2)

show how numbered semantic roles, as in PropBank

(Palmer et al., 2005), are added to the active and pas-

sive categories for a transitive verb, where *pred* is

a placeholder for the lexical predicate; examples (3)

and (4) show how more specific relations are intro-

duced in the category for determiners and the cate-

gory for the possessive ’s, respectively.

(1) s1 :dcl\np2/np3 =⇒
s1 :dcl,x1\np2 :x2/np3 :x3 : @x1(*pred* ∧
〈ARG0〉x2 ∧ 〈ARG1〉x3)

(2) s1 :pss\np2 =⇒
s1 :pss,x1\np2 :x2 : @x1(*pred*∧〈ARG1〉x2)

(3) np1/n1 =⇒
np1 :x1/n1 :x1 : @x1(〈DET〉(d ∧ *pred*))

(4) np1/n1\np2 =⇒
np1 :x1/n1 :x1\np2 :x2 : @x1(〈GENOWN〉x2)

After logical form insertion, the extracted and

augmented grammar is loaded and used to parse the

sentences in the CCGbank according to the gold-

standard derivation. If the derivation can be success-

fully followed, the parse yields a logical form which

is saved along with the corpus sentence in order to

later test the realizer. The algorithm for constrain-

parsing the corpus sentences attempts to continue

processing if it encounters a blocked derivation due

to sentence-interal punctuation. While we are cur-

rently reanalyzing the punctuation categories along

the lines of Doran’s (1998) TAG-based analysis,

many problem cases remain due to the CCGbank’s

reliance on punctuation-specific binary rules that are

not supported in OpenCCG.

Currently, the algorithm succeeds in creating log-

ical forms for 1824, or 95.1%, of the 1917 sen-

tences in the development section (Sect. 00) of the

converted CCGbank, and 2182, or 94.3%, of the

2314 sentences in the test section (Sect. 23). Of

these, 1293, or 67.4.%, of the development logical

forms are semantic dependency graphs with a single
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root, while 1614, or 69.7%, of the test logical forms

have a single root. The remaining cases, with multi-

ple roots, are missing one or more dependencies re-

quired to form a fully connected graph. While these

missing dependencies usually reflect inadequacies in

the logical form templates, we have found several

categories that require dependencies beyond those

specified in the original CCGbank.

4 Evaluation

In this section, we report initial results on the stan-

dard development and test sections (00 and 23, resp.)

of the converted CCGbank. We report both non-

blind and blind test results, where the non-blind re-

sults use a grammar derived from the development

section, as the comparison is informative. Note that

with both sets of results, n-gram probabilities are not

estimated from the test data.

In deriving the grammar, we filtered out any lexi-

cal categories that appeared fewer than kl times, and

any unary type changing rules that appeared fewer

than kr times. These cutoff thresholds were deter-

mined using informal experiments on the develop-

ment data; for the grammar derived from the devel-

opment section, we used kl = 3 and kr = 5, while

for the grammar derived from the test sections, we

used kl = 10 and kr = 10. We also excluded

any lexical categories or unary rules that were not

matched by the semantic templates.

To handle out-of-vocabulary (OOV) words in the

test sections, we have implemented a basic approach

to lexical smoothing, as follows. For each OOV

noun, proper name, number or adjective, we added

the word to the lexicon with all categories for their

respective parts of speech that occurred at least 50

times in the training sections. For each OOV verb,

we added it to the lexicon with the 5 most frequent

categories for all verbs; likewise, we added each

OOV adverb with the 3 most frequent categories for

all adverbs.

We ran the realizer in its best-first anytime search

mode, with an overall time limit of 15 seconds and

an n-best pruning value (i.e., beam width) of 5.

When a realization that completely covered the in-

put semantics could not be found within the time

limit, the largest compatible fragments were greed-

ily assembled as described in Section 2, so that some

output was produced for 100% of the inputs.

4.1 Scoring Methods

To score partial and complete realizations, we ex-

perimented with a variety of factored trigram mod-

els over words, part-of-speech tags and supertags.

As a baseline, we used a null scorer, which assigns

a score of zero to all realizations. With this scorer,

an arbitrary choice is made among complete realiza-

tions; with fragments, the largest compatible frag-

ments are concatenated in an arbitrary order.

The language models were created using the

SRILM toolkit (Stolcke, 2002) on the standard train-

ing sections (2–21) of the CCGbank, with sentence-

initial words (other than proper names) uncapital-

ized. While these models are considerably smaller

than the ones used in (Langkilde-Geary, 2002; Vell-

dal and Oepen, 2005), the training data does have

the advantage of being in the same domain and

genre. For the word-based models, perplexity mea-

sures were much lower for trigram models than bi-

gram models, but 4-gram models showed no im-

provement. In the end, we experimented with two

word-based models, a trigram model using Good-

Turing smoothing (SRILM’s default method), and

one using interpolated Kneser-Ney smoothing. Both

models used the default frequency cutoffs.

In addition to the usual word-based trigram mod-

els, we also created trigram models over part-

of-speech tags and supertags (using Kneser-Ney

smoothing). In the latter model, the probability of

the current word’s supertag (category label) is con-

ditioned on the previous two part-of-speech tags, in-

spired by work on CCG supertagging (Clark and

Curran, 2004; Curran et al., 2006). This is illus-

trated in (1)-(2). Equation (1) shows how the chain

rule and the Markov assumption is used to approxi-

mate the probability of a sentence or phrase consist-

ing of a sequence of factor vectors ~Fi, for words 1
to n. In (2), pW (~Fi | ~F i−1

i−2
), pP (~Fi | ~F i−1

i−2
) and

pS(~Fi | ~F i−1

i−2
) are defined to be approximations of

the conditional probability p(~Fi | ~F i−1

i−2
) that pay

attention only to the word (W ), part-of-speech (P )

and supertag (S) factors of ~F , as indicated.

p(~Fn
1 ) ≈

n∏

i=1

p(~Fi | ~Fi−2, ~Fi−1) (1)
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scoring model exact BLEU

word 3g + pos 3g * stag 3g 14.8% 0.6615

word 3g + pos 3g 13.7% 0.6407

word 3g, interp. Kneser-Ney 12.2% 0.6247

word 3g, Good-Turing 11.7% 0.6219

pos 3g * supertag 3g 10.6% 0.6042

supertag 3g 10.0% 0.5886

pos 3g 8.0% 0.5413

null 5.1% 0.5251

Table 1: Non-blind results on development data

(CCGbank Section 00), using a grammar extracted

from the same section. Factored trigram models

over words, part-of-speech (pos) tags and supertags

improve BLEU scores and exact matches, with the

interpolated supertag model showing a substantial

increase over word-only trigram models.

pW (~Fi | ~F i−1

i−2
) = p(Wi | Wi−2,Wi−1)

pP (~Fi | ~F i−1

i−2
) = p(Pi | Pi−2, Pi−1)

pS(~Fi | ~F i−1

i−2
) = p(Si | Pi−2, Pi−1)

(2)

Additionally, we created a model that chains the

part-of-speech trigram model with a supertag model

that uses the current part-of-speech tag as an addi-

tional parent upon which to condition the probability

of the supertag (S), as shown in (3).

pPS(~Fi | ~F i−1

i−2
) = p(Pi | P i−1

i−2
)p(Si | P i

i−2) (3)

Finally, we built two additional models which lin-

early interpolate the interpolated Kneser-Ney word

model with the part-of-speech model and the com-

bined part-of-speech and supertag model, as shown

in (4). Assuming that the word model was the more

informative one, we set the interpolation weights us-

ing the rank order centroid formula, which in this

case yields 0.75 for λ1 and 0.25 for λ2.

pW+P (~Fi | ~F i−1

i−2
) = λ1p

W (~Fi | ~F i−1

i−2
) +

λ2p
P (~Fi | ~F i−1

i−2
)

pW+PS(~Fi | ~F i−1

i−2
) = λ1p

W (~Fi | ~F i−1

i−2
) +

λ2p
PS(~Fi | ~F i−1

i−2
)

(4)

test set scoring model exact BLEU

dev w3g + pos3g * stag3g 8.1% 0.5578

word 3g + pos 3g 7.1% 0.5210

word 3g, Kneser-Ney 6.5% 0.4872

null 2.2% 0.3697

test w3g + pos3g * stag3g 9.8% 0.5768

word 3g, Kneser-Ney 6.9% 0.5178

Table 2: Initial results on development (Section 00)

and test (Section 23) data, using a grammar ex-

tracted from the training sections (Sections 02-21)

and a smoothed lexicon (see text). Results show the

same pattern as in Table 1.

4.2 Results

Tables 1 and 2 show initial results for the different

scoring methods, using grammars extracted from the

development section (non-blind) and training sec-

tions (blind), respectively. Results are given in terms

of percentage of exact matches and BLEU (Papineni

et al., 2001) n-gram precision scores using the cor-

pus sentence as a reference. While realizations that

exactly match the corpus sentence can be presumed

to be of high quality, this metric is overly harsh in

that it does not recognize acceptable variants. BLEU

scores have been shown to correlate with human

judgments of adequacy and fluency, but must be in-

terpreted with caution, as discussed below.

As the tables indicate, the best performing mod-

els interpolate the word-level trigram model with the

chained part-of-speech and supertag trigram model.

In Table 1, this model scores nearly four BLEU

points1 better than the word-level trigram model (us-

ing interpolated Kneser-Ney smoothing) by itself,

and two points better than the word-level model

interpolated with just the part-of-speech trigram

model. By comparison, the impact of using in-

terpolated Kneser-Ney smoothing instead of Good-

Turing smoothing is small, less than one third of a

BLEU point. As the next line shows, the word-level

trigram models both perform better than the chained

part-of-speech and supertag trigram model by itself;

this model in turn performs better than the plain su-

pertag trigram model, and considerably better than

the plain part-of-speech trigram model, whose per-

formance is not that much better than the null scorer

11 BLEU point = 0.01 change in BLEU score.
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ref.1 Pierre Vinken , 61 years old , will join the board as a
nonexecutive director Nov. 29 .

ref.2 Mr. Vinken is chairman of Elsevier N.V. , the Dutch pub-
lishing group .

top.1 61 years old Pierre Vinken will join the board as a nonex-
ecutive director Nov. 29 .

top.2 Mr. Vinken is chairman of Elsevier N.V. , the publishing
Dutch group .

word.1 61 years old will join the board as a nonexecutive di-
rector Nov. 29 . Pierre Vinken

word.2 Mr. Vinken is in chairman of N.V. Elsevier , the Dutch
publishing group .

null.1 will join Nov. 29 the board as a nonexecutive director
61 years old Pierre Vinken .

null.2 Mr. Vinken is chairman of Elsevier N.V. , the publishing
Dutch group .

Table 3: Sample outputs from the first two sentences

in the Penn Treebank, for the top scoring model, the

best word-only n-gram model, and the null scoring

(arbitrary choice) model from Table 1. The first sen-

tence requires joining fragments.

baseline. Sample outputs using the non-blind gram-

mar appear in Table 3; these sentences illustrate how

the top-scoring model often yields decent (but cer-

tainly not perfect) realizations that are generally bet-

ter than ones produced with the baseline models.

Table 2 shows the same pattern as Table 1, with

an even greater boost provided by the top scor-

ing model over the word-level model, though with

considerably lower scores overall. To investigate

the reasons for the drop-off, we compared the per-

centage of complete realizations (versus fragmen-

tary ones), as well as the percentage of test items

for which realization finished within the time limit.

With the grammar derived from the development

section, the realizer was able to find complete real-

izations for 55% of the development sentences with

logical forms (with the remaining 45% realized as

concatenated fragments), and with the search ex-

ceeding the time limit in less than 1% of the cases.

In contrast, with the grammar derived from the train-

ing sections, complete realizations were found for

only 22% of these development sentences, with the

search exceeding the time limit 68% of the time.

These differences suggested that the drop-off in

scores was caused not only by sparse data and an

overly simple lexical smoothing strategy, but also

by search errors arising with the larger grammar de-

rived from the training sections.

To confirm that search errors had become a sig-

nificant issue, we compared the percentage of com-

plete realizations with the top scoring model against

an oracle model that uses a simplified BLEU score

based on the target string, which we have found

useful for regression testing in previous work. We

made the comparison on the first normal-sized file

in the development section (wsj 0003), using both

the grammar extracted from the training sections

and a grammar extracted just from this file, with

no frequency cutoffs. Using the latter, file-specific

grammar, both the oracle and top scoring models

found complete realizations for 73% of the test sen-

tences. (With a perfect grammar extraction process,

we would expect 100% complete realizations.) By

contrast, with the grammar derived from the train-

ing sections, the percentage of complete realizations

using the oracle model dropped to 50%, while the

percentage using the top model fell to 13%, indicat-

ing that search errors occurred frequently.

4.3 Comparison to Previous Work

It is perhaps not surprising that interpolating the

chained part-of-speech and supertag trigram model

with the word-level model boosts performance,

given that n-grams of supertags are not unlike the

n-grams of lexical types used as features in Velldal

& Oepen’s (2005) maximum entropy model. What

is remarkable though is that the increase in BLEU

points is comparable to the improvement over an n-

gram model achieved by Velldal & Oepen’s com-

plete model, which additionally contains features

based on the syntactic derivation trees. Since Velldal

& Oepen do not report scores for a model using just

word-level n-grams and supertag-like n-grams, one

cannot tell whether and to what extent the deriva-

tional features provide complementary information.

Of course, additional factors complicate the compar-

ison, in particular that Velldal & Oepen use a much

smaller corpus of 864 sentence and logical form

pairs with a much larger language model trained

on the BNC, which however differs in domain and

genre from their corpus. It is also worth keeping in
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mind that Nakanishi et al.’s (2005) log-linear syn-

tactic model outperformed an n-gram model on the

Penn Treebank, and showed no improvement (in

fact, worsened) when the n-gram score was added as

a feature. Again, however, their n-gram model was

based on the BNC, rather than an in-domain and in-

genre corpus.

Looking beyond realization ranking, Birch et

al. (2007) have recently shown that n-gram models

over CCG supertags can be combined with word-

level language models to yield improved word order-

ings in phrase-based statistical machine translation.

They also show that CCG sequence models work

better than part-of-speech sequence models, but do

not investigate chaining a part-of-speech model with

a supertag model. Note that in their factored, phrase-

based statistical MT approach, the CCG supertags

do not actually play a role in syntactic derivations.

Given that in our approach, the CCG categories must

actually combine into a derivation (except where

fragments are employed), it is interesting to observe

that the supertag models still provide a considerable

boost in determining preferred word orders.

Stepping back from the effect of factored lan-

guage models, we observe that it is not necessarily

very meaningful to compare overall results on re-

alization ranking with the Penn Treebank, since as

Langkilde-Geary (2002) has shown, results can vary

widely depending on how specific the inputs to real-

ization are. Moreover, Callison Burch et al. (2006)

have shown that with machine translation outputs

(which are generally much worse than realizer out-

puts), improved BLEU scores are neither neces-

sary nor sufficient to achieve better human evalua-

tion scores, and thus they caution against relying on

BLEU scores when comparing systems that employ

substantially different methods. Stent et al. (2005)

also point out that BLEU and other automatic met-

rics do not take discourse context into account, and

suggest that these metrics are poor judges of flu-

ency with generators that aim to produce desirable

variation. Finally, as Callaway (2003) points out, it

is unclear how to compare systems whose coverage

varies considerably.

With these caveats in mind, we may observe

that our non-blind results of 0.6615 BLEU score at

94.5% coverage (including failures in logical form

creation) are not too far off those of (Cahill and van

Genabith, 2006), who report BLEU scores of 0.6651

on all inputs in PTB Section 23 at 98.5% coverage,

and 0.6979 at 89.5% coverage. Meanwhile, we note

that their LFG f-structure inputs contain somewhat

more precise specifications than our logical forms,

including surface syntactic roles, features for certain

function words, and marking fronted constituents as

topics. Of course, our BLEU score of 0.5768 at

94.3% coverage on Section 23, using the standard

dev/train/test splits, is considerably worse, though

still in the respectable range.

Compared to (Nakanishi et al., 2005), our num-

bers appear considerably lower than their BLEU

score of 0.7733 at 90.8% coverage, however their

results only include sentences up to length 20. In

(Langkilde-Geary, 2002), a BLEU score of 0.514

is reported for minimally specified inputs, while

a score of 0.757 is reported for the ‘Permute, no

dir’ case (which perhaps most closely resembles

our inputs), and a score of 0.924 is reported for

the most fully specified inputs. However, cover-

age is less than 83%, and a generation-only (i.e.,

non-reversible) set of rewrite rules are used in the

symbolic half of her system. Finally, in (Call-

away, 2003), string accuracy results comparable to

those of (Langkilde-Geary, 2002) are reported at

98.7% coverage, using the older FUF/SURGE sym-

bolic realizer; again, however, this approach uses a

generation-only grammar, cannot vary its output ac-

cording to different statistical scoring methods, and

is not designed to produce n-best outputs.

4.4 Discussion

As we refine our corpus-based grammar engineering

process, extending coverage and producing fewer

fragmentary outputs, we expect realization quality

to improve. Additionally, we have begun to investi-

gate using a realization analogue of CCG supertag-

ging, where lexical categories are predicted based

on the context of predicates in the input seman-

tic dependency graph, in a fashion reminiscent of

the LTAG tree models of (Bangalore and Rambow,

2000). We anticipate that a supertagger for realiza-

tion will more accurately handle unseen words, and

reduce search errors by focusing the search space on

the most likely lexical categories.

Once we reach the point where realizations are

generally satisfactory, we suspect that BLEU scores
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ref.1 four of the five surviving workers have asbestos-related
diseases , including three with recently diagnosed cancer .

0.52 four of the surviving five workers have asbestos-related
diseases including three with recently diagnosed cancer .

ref.2 although preliminary findings were reported more than a
year ago , the latest results appear in today ’s New Eng-
land Journal of Medicine , a forum likely to bring new
attention to the problem .

0.65 likely to bring new attention to the problem , today’s New
England Journal of Medicine in a forum the latest results
appear in although preliminary findings were reported
more than a year ago .

Table 4: Example outputs from PTB file wsj 0003

for the top scoring model in Table 2, where the sim-

plified BLEU scores do not mirror relative quality.

may no longer be useful in measuring progress,

given the concerns raised by (Callison-Burch et al.,

2006) and (Stent et al., 2005) discussed earlier, and

especially our goal of producing desirable variation.

As such, we expect that targeted human evaluations

will become essential. In support of this view, we

note that it is easy to find pairs of sentences whose

n-gram precision scores are both fairly high where

the difference in their scores does not mirror rela-

tive quality. For example, Table 4 shows two sen-

tences from PTB file wsj 0003, along with the re-

alizations generated using our top scoring model and

the grammar derived from the training sections. The

scores listed are calculated using a simplified BLEU

metric where 1- to 4-gram precision scores are com-

bined via rank order centroid weights, instead of the

geometric mean, to make the metric suitable for sin-

gle sentences. With the first sentence, the realizer

output is quite good, if slightly less fluent than the

original. With the second sentence, despite its con-

siderably higher score, the realizer output is difficult

(if not impossible) to interpret.

5 Summary and Future Work

In this paper, we have described our approach to de-

veloping the first broad coverage English surface re-

alizer for CCG, using a grammar derived from the

CCGbank together with a robustness-enhanced ver-

sion of the OpenCCG realizer. We have also pro-

vided initial automatic evaluation results, where we

obtained BLEU scores that are roughly compara-

ble to those reported with other formalisms when

using a (non-blind) grammar derived from the de-

velopment section, and scores in the respectable

range using the standard dev/train/test splits. In

our evaluation, we have shown that factored lan-

guage models that interpolate word-level n-grams

with n-grams over part-of-speech tags and supertags

can provide similar absolute performance improve-

ments over word-level n-grams as have been ob-

served with log-linear models using parsing-inspired

features. We also found that better lexical smooth-

ing and more focused search using a subset of initial

lexical category assignments are necessary for fur-

ther progress.

We are currently working on incorporating a more

refined analysis of punctuation into our grammar

conversion process, and intend to report on the re-

sulting improvements in performance at the work-

shop. We are also investigating language models us-

ing the 5-gram counts that Google has made avail-

able,2 generated from 1 trillion tokens of text from

web pages. The SRILM toolkit now has count-based

language models that can read this data, but they re-

quire inordinate amounts of RAM. We have experi-

mented with filtering the data using the vocabulary

from the CCGbank, which appears promising.

In future work, we intend to refine our corpus-

based grammar engineering process by stemming

open class words to serve as semantic predicates,

introducing features for tense and number, imple-

menting subject-verb agreement, and enhancing the

treatment of semantic roles by integrating PropBank

roles more directly. We also intend to develop a su-

pertagger for generation to improve lexical smooth-

ing and speed up processing, investigate the impact

of features used in log-linear parsing models on re-

alization quality in combination with rich language

models and supertag models, and perform targeted

human evaluations of sentences in context to better

judge resulting improvements.
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