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Canada
www.linguatechnologies.com

Abstract

We present a study we conducted to build a
repository storing associations between simple
dependency treelets in a source language and
their corresponding phrases in a target lan-
guage. To assess the impact of this resource
in EBMT, we used the repository to compute
coverage statistics on a test bitext and on a n-
best list of translation candidates produced by
a standard phrase-based decoder.

1 Introduction

Phrase-based machine translation is nowadays a
popular paradigm. It has the advantage of nat-
urally capturing local reordering and is shown
to outperform word-based machine translation
(Koehn et al., 2003). The underlying unit (a
pair of phrases), however, does not handle well
languages with very different word orders and
fails to generalise well upon the training corpus.

Several alternatives have been proposed to
tackle some of these weaknesses. Matusov et
al. (2005) propose to reorder the source text in
order to mimic the target word order, and then
let a phrase-based model do what it is good at.
Hildebrand et al. (2005) show that it is possi-
ble to adapt the transfer table of a phrase-based
model to the specificity of the text being trans-
lated. Simard et al. (2005) detail an approach
where the standard phrases are extended to ac-
count for “gaps” either on the target or source
side. They show that this representation has
the potential to better generalise the training
corpus and to nicely handle differences such as
negations in French and English that are poorly
handled by standard phrase-based models.

In this work, we consider a new kind of unit:
a Tree-Phrase (TP), a combination of a treelet
(TL) and a elastic phrase (EP), the tokens of
which may be in non-contiguous positions. Sev-
eral authors have used treelets as a prime unit to
do translation (Gildea, 2003; Ding and Palmer,
2004; Quirk et al., 2005), but mostly with the

idea of projecting a source treelet into its target
counterpart.

In this study, we do not address the issue of
projecting a treelet into a target one, but take
the bet that collecting (without structure) the
target words associated with the words encoded
in the nodes of a treelet will suffice to handle
translation. This set of target words is what we
call an elastic phrase (EP). An elastic phrase is
not only possibly a non-contiguous sequence of
words, but also has the characteristic of having
“gaps” of arbitrary size, which is not the case for
the phrases considered by Simard et al. (2005).

The objective of this study is to show whether
a memory populated with TPs can be of help
in a translation task. We are in the early stages
of this study and, at this time, do not have
a full-fledged decoder using these units. For
this reason, in this pilot study, we resorted first
to compute coverage statistics of a Tree-Phrase
memory on a test bitext and then made post-
processing experiments on a n-best list pro-
duced by a classic phrase-based decoder. Ar-
guably, if we can show (1) that our Tree-Phrases
can cover much of the material to be translated
as well as a reference translation, and (2) that
these coverage statistics can be correlated with
indicators of translation quality, then a mem-
ory populated with these units may have some
interesting potential.

In order to answer these questions, we con-
ducted the following experiment on the French-
English Canadian Hansards. We first parsed
the French material with a dependency parser
called Syntex (Bourigault and Fabre, 2000)
which will be briefly presented in Section 2.
We collected from this parsed material a set
of depth-one treelets that we associated with
their target EPs, using a word alignment we
computed offline. The main characteristics of
this memory are reported in Section 3. Then,
we computed several coverage statistics of this
memory on a test bitext, employing different
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pattern-matching methods. This is reported in
Section 4. Finally, we use these coverage statis-
tics in a translation context in Section 5.

2 Syntex

Syntex (Bourigault and Fabre, 2000) is a ro-
bust and efficient syntactic parser allowing the
identification of syntactic dependency relations
between words, as well as the extraction of nom-
inal, adjectival and verbal phrases from a cor-
pus. Syntex further builds a directed acyclic
graph from these phrases, linked to each other
by head or expansion relations. Two versions of
this software have been created: one for English
and one for French.

Syntex takes as input a text processed by
TreeTagger1, a part-of-speech tagger devel-
oped at the University of Stuttgart. Some pre-
and post-processing of the results from Tree-
Tagger are made, and through a pipeline of
modules of syntactic relation recognition, Syn-
tex outputs a number of dependency relations
for each sentence.

Currently, the main relation types identified
by this tool are subject, direct object, prepo-
sitional complement, adjectival modifier, and
subordination. Each dependency relation iden-
tifies two words: one that acts as a gover-
nor, and another one that is its dependent.
Each recognition module is “handcrafted” by
linguists using the Perl language, and relies on
grammatical knowledge and many heuristics to
scan a sentence from a candidate governor to
find its dependent (or vice-versa), using infor-
mation from the previous modules.

For example, given the French source sen-
tence “on a demandé des crédits fédéraux” (re-
quest for federal funding), Syntex outputs sev-
eral dependency links that we can represent by
the structure in Figure 1, where a root node
contains the word governing the words of all
its child nodes, which are called its dependents.
The syntactic dependency relation is presented
to the right of the dependent word. Note, how-
ever, that we do not consider this information in
this work. In this study, Syntex was also used
to segment sentences into individual tokens, as
can be seen in the example in Figure 1.

An example of the output of Syntex for
the English counterpart of our running exam-
ple (“request for federal funding”) is shown in
Figure 2.

1http://www.ims.uni-stuttgart.de/projekte/
corplex/.

a demandé
XXXXX

�����
on - SUBJ crédits - OBJ

PPPP
����

des - DET fédéraux - ADJ

Figure 1: Parse of the sentence “on a demandé
des crédits fédéraux” (request for federal fund-
ing). Note that the 2 words “a” and “demandé”
(literally “have” and “asked”) from the original
sentence have been merged together by Syn-
tex to form a single token. These tokens are
the ones we use in this study.

src Request for federal funding
Syntex noun?s|request|Request|1|0|prep;2

prep|for|for|2|prep;1|nounprep;4
adj|federal|federal|3|adj;4|0

noun?s|funding|funding|4|nounprep;2|adj;3

Figure 2: An example of output from Syntex.
Each line corresponds to a single Syntex token.
Some tags have been translated in English to
facilitate reading.

3 The Memory

We parsed with Syntex the source (French)
part of our training bitext, that is, about 1.7
million sentences. From this material, we ex-
tracted all dependency subtrees of depth 1 from
the complete dependency trees found by Syn-
tex. For instance, the two treelets in Figure 3
will be collected out of the parse tree in Fig-
ure 1.

Prior to that, the full training corpus was
aligned at the word level by the method de-
scribed in (Simard and Langlais, 2003) which re-
cursively splits in two parts both the source and
target sentences and allows either a left-to-right
alignment (the first part of the source sentence
is aligned to the first part of the target sentence,
the second parts are aligned together), or an in-
verted one (the first source part is aligned to
the second target one and vice-versa). The best
split found at each step is kept and we further
split the two parts until we cannot split any-
more (that is, when there is at most one token
in one side). The computation of the quality
of a split is done using a linear combination of
two word models (one for each direction) that
have been trained on the same training mate-
rial. We used an IBM model 2 (Brown et al.,
1993) for that purpose, whose parameters were
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trained with the Giza package (Och and Ney,
2000).

An illustration of the output of this alignment
procedure is provided for the running example
in Figure 3. Once both the word alignment and
the treelets are computed, populating the mem-
ory with tree-phrases is just a matter of collect-
ing them, and keeping their count over the total
training corpus. The format we use to represent
the treelets (see Figure 3) is similar to the one
proposed in (Quirk et al., 2005): the left and
right dependents of a given governor word are
listed in order in two separate lists along with
their respective offset (the governor/root token
always has the offset 0). An elastic phrase is
simply the list of tokens aligned to the words of
the corresponding treelet as well as the respec-
tive offsets at which they were found in the tar-
get sentence, relative to the first token position.
Note that TLs as well as the EPs might not be
contiguous as is for instance the case with the
first pair of structures listed in Figure 3.

alignment: a demandé ≡ request for, fédéraux
≡ federal, crédits ≡ funding

treelets:

a demandé
Z

Z
�

�
on crédits

crédits
b

b
"

"
des fédéraux

tree-phrases:
TL? {{on@-1} a_demandé {crédits@2}}
EP? |request@0||for@1||funding@3|

TL {{des@-1} crédits {fédéraux@1}}
EP |federal@0||funding@1|

Figure 3: The Tree-Phrases collected out of the
Syntex parse for the sentence pair of Figure 1.
Non-contiguous structures are marked by a star.

The tree-phrases (TPs) are stored in a
database, whose main characteristics are re-
ported in Table 1. Out of 1.7 million pairs of
sentences, we collected more than 3 million dif-
ferent kinds of TLs from which we projected
6.5 million different kinds of EPs. Slightly less
than half of the treelets are contiguous ones
(that is involving a sequence of adjacent words);
40% of the EPs are contiguous. When the re-
spective frequency of each TL or EP is factored
in, we have roughly 11 million TLs and 10 mil-
lion EPs.

We also observe that, as the treelet and the

s |treelet| %-c |EP | %-c
2 639 922 56.8 1 993 896 46.0
3 1 534 468 42.2 3 140 364 38.5
4 737 637 50.5 1 278 254 34.6
5 127 410 53.1 166 465 30.4
6 9 396 36.2 10 108 22.1
7 394 25.9 403 15.4
8 13 0.00 13 7.7
all 3 049 240 47.7 6 589 503 39.8

Table 1: Main statistics measured on the mem-
ory as a function of the structure size s. %-c
stands for the percentage of structures (TL or
EP) that are contiguous. The size of a struc-
ture corresponds to the number of tokens it con-
tains. The figures presented here correspond to
the number of the different kinds of structures
populating the memory and does not account
for their respective frequency.

phrase sizes increase, the number of those that
are contiguous drops, something that is to be
expected.

The 5 most frequent tree-phrases as well as
examples of very large ones are reported in Ta-
ble 2. We note that the most frequent tree-
phrases are contiguous ones that would have
been captured as well by a “standard” phrase-
based model.

4 Coverage Analysis

Rationale One way to get an idea of the ex-
haustiveness of the memory is to compute cov-
erage statistics on a parallel test corpus disjoint
from the training one. This will at least give us
an idea of how many translation units a hypo-
thetical TP-based decoder would be able to find
for a sentence to be translated. A weak source
coverage would be disappointing in our case.
Moreover, by computing the coverage of the tar-
get (reference) sentence with the target material
associated with the source treelets found in the
previous step, we get a sense of how meaningful
the associations stored in the memory are.

We can also evaluate the respective contribu-
tions of contiguous and non-contiguous units to
that coverage. To do so, we randomly selected
1 000 pairs of parallel sentences from a subset
of the Canadian Hansards not included in our
training corpus and tried to match them against
the units in our database using various match-
ing methods.
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Frequent Tree-phrases

freq treelet corresponding EP
75 051 {{{monsieur@-2} {Le@-1} président}} |Mr@0| |.@1| |Speaker@2|
32 601 {{{Le@-1} gouvernement}} |the@0| |Government@1|
26 347 {{{de@-2} {les@-1} voix}} |Some@0| |Honourable@1||Members@2|
14 515 {{{Le@-1} ministre}} |the@0| |Minister@1|
13 043 {{{Madame@-2}{la@-1}Présidente}} |Madam@0| |Speaker@1|

Long Tree-phrases

|TL| treelet corresponding EP
8 {{par@-3} {un@-2} {excellent@-1}

Chili {con@1} {carne@2} {servi@3}
{Léger@6}}

|culmination@0| |a@2| |Chili@3|
|con@4| |carne@5| |feast@6|
|provided@7| |Leger@11|

8 {{sur@-2} {la@-1} question
{fondamentale@1} {de@2} {à@8}
{nationale@14} {de@15}}

|and@0| |on@2| |fundamental@4|
|point@5| |to@11| |national @ 15|

Table 2: The 5 most frequent tree-phrases acquired and 2 examples of especially long ones.

Notation We describe here the notation we
will use for the coverage analysis. Let S
be a source (French) sentence, with n tokens
s1 . . . sn. Let E be a target (English) sentence,
with m tokens e1 . . . em.

We also define t1 . . . tk to be the tokens of the
treelet T . o1, . . . , ok are their associated offsets
(recall that the root of the treelet has an offset
of 0). We call r the token index in S at which
T is rooted. It follows that sr = root token of
T .

4.1 Match Policies

We experimented with various matching meth-
ods between treelets and source sentences and
between elastic phrases and target sentences.
All of these methods share a criterion: to have a
match, the words in the treelet or elastic phrase
must be in the same order as those found in the
source/target sentence. No token reordering is
allowed.

Source match policies (s-match) For
source treelets, we devised an exact (E) and
a relaxed (R) match policy. We say that the
treelet T exactly matches S if:

∀i ∈ [1, k], ei ≡ sr+oi

For the relaxed policy, all the tokens of T
must be found in S, but the offsets constraint
is relaxed. That is, to match a treelet T to a
sentence S, we must find a strictly monotonous
function f : [1, k] −→ [1, n], such that:

h→ r where oh ≡ r
∀i ∈ [1, k], ei ≡ sf(i)

Target match policies (t-match) When a
treelet matches, its corresponding phrases are
retrieved from the memory and matched against
the target sentence E. We experimented with
three different match policies for phrases. For
all these match methods, the search starts at
the beginning of E, i.e. at e1.

With the exact (E) match method, we con-
sider that we have a match when we find the
phrase verbatim in the target sentence, with the
same gaps between each token.

With the relaxed (R) method, we have a
match if the tokens of the phrase are encoun-
tered in the same order in the target sentence,
regardless of their offsets. This latter method
allows the tokens of a phrase that are only
separated by, say, 2 tokens to match a sen-
tence where they become separated by 18 to-
kens. This goes against our intuition that the
word gaps in non-contiguous phrases must not
be stretched beyond a certain limit.

We therefore added a third method relaxed
with stretch limit (R+S), similar to the second
one, where we limit the “elasticity” of those
gaps to a maximum of 3 times their original
size.

4.2 Upper-Bound Coverage
We used the algorithm shown in Figure 4 to
compute various source and target coverage fig-
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ures. The idea is simple. We proceed in two
steps. First, we find the set tl of all treelets
s-matching the source sentence S. Then, for
each treelet T in tl, we find all correspond-
ing elastic phrases which t-match the tar-
get sentence E. The positions in S and E
at which these pairs of corresponding treelet-
phrases match are finally marked as “covered”
by the algorithm. Any position si or ej may
therefore be covered by many units. This is why
this algorithm gives us an upper-bound cover-
age. We will refine the idea of coverage in Sub-
section 4.3.

for all source tokens si of the sentence S do
let tl be the set of TLs with root token si

for all T ∈ tl do
if T s-matches S then

let ep be the set of EPs associated with
T in the repository
for all p ∈ ep do

if p t-matches the target sentence
E then

mark the match positions of T
and p in S and E as covered

Figure 4: Algorithm to compute the source and
target coverage. The two matching functions
s-match and t-match are discussed in the text.

Results Table 3 shows the results we gath-
ered using the six possible combinations of
these policies on 1 000 parallel pairs of sen-
tences, corresponding to 17 798 source tokens
and 16 219 target tokens. Expectedly, bet-
ter coverage statistics are achieved when us-
ing less constraining methods. We also present
there another figure of interest we gathered: the
respective contribution of non-contiguous and
contiguous units to this coverage. As can be
seen, contiguous units account for most of the
coverage, which means that a standard phrase-
based model would probably have captured the
same information. The extra coverage brought
by non-contiguous units varies between roughly
10% and 20% (absolute), although it is difficult
at this stage to assess how this could have trans-
lated into a better MT system.

In all cases, the coverage is very good, with,
on average, roughly 75% coverage, both for the
source and the target sentences.

4.3 Corrected Coverage
Raw coverage figures as we computed them only
give a rough idea of the potential of TPs. The

method source target
src tgt %-cov %-c %-cov %-c
E E 68.70 62.55 71.90 68.63
E R 69.58 63.21 75.31 70.33
E R+S 69.10 62.76 73.80 67.66
R E 79.29 72.35 77.86 74.78
R R 80.39 73.23 80.85 76.36
R R+S 79.80 72.72 79.57 73.69

Table 3: Source and target coverage statistics.
%-cov stands the percentage of tokens that are
covered, and %-c indicates the percentage of to-
kens covered by contiguous units.

main drawback of our methodology is that many
different overlapping units (TLs or EPs) are al-
lowed to cover a given source or target sentence
token, which might not reflect their true use-
fulness in a translation task, where, typically, a
single translation unit is chosen to help in the
translation of a given source token or groups of
source tokens.

Source coverage In order to better estimate
the situation, we computed a corrected coverage
by applying the algorithm in Figure 5.

The idea behind this algorithm is to select
the minimum number of TLs covering as much
as possible of the source sentence. All 6 combi-
nations of our match policies have been tried for
this experiment. We implemented a search al-
gorithm in a way similar to the one embedded in
a translation decoder, the main difference being
that we do not build a translation, but just find
the decomposition of the source sentence into
TLs. Therefore the score we optimise is based
on the source material only.

Conceptually, the algorithm builds the set of
all the valid hypotheses that match the source
sentence S. A valid hypothesis is a set of treelets
that (at least) partially covers S and satisfies
a certain number of properties, the main one
being that none of the dependencies captured
in the set of TLs is allowed to cross another
one. Once all such hypotheses are built, the
algorithm picks the one with the best score. In
our case it is the one which covers S the most
with the minimum number of treelets.

In practice, because of the combinatorial na-
ture of the algorithm, these hypotheses are
maintained into priority queues Stack(i) that
sometimes have to be pruned to achieve an ac-
ceptable computation time. The ith stack con-
tains, at most, the b best ranked valid hypothe-
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// init
for all i ∈ [1, n] do

Stack(i)← φ
let tl[i]← {T ∈M∧s-match(T, si) = true}

// the search
for all i ∈ [1, n] do

for all T ∈ tl[i] do
add(ε, T, 1)
for all j ∈ [1, n] do

for all h ∈ Stack(j) do
if s-extend(T, h) then
add(h, T, j + 1)

// the best hypothesis
let best← the first hypothesis
for all i ∈ [1, n] do

for all h ∈ Stack(i) do
if score(h) > score(best) then

let best← h

Figure 5: Algorithm to compute the corrected
source coverage. M is the set of all treelets
matching the source sentence S. add(h,T,n) is
a function which adds in Stack(n) the hypothe-
sis h extended by the treelet T . s-extend(T,h)
is a predicate which is true if the treelet T can
extend the hypothesis h, and score(h) returns
the score of a hypothesis h. Please read the text
for more details.

ses built of i TLs. We used b = 500 for our
experiments. The first stack (the one with only
one TL per hypothesis) is seeded with all the dif-
ferent treelets s-matching the source sentence,
with one treelet per hypothesis. The algorithm
then goes along the source positions and sys-
tematically tries to extend previously built hy-
potheses with all of the treelets rooted at this
very source position. A treelet may extend a
hypothesis only if it does not introduce depen-
dencies that cross other ones, and if at least one
dependency is added to the hypothesis.

An example of the output of this algo-
rithm is given in Figure 6. Notice that, in
this example, there were 8 candidate treelets
found by s-matching, but only 4 were se-
lected by the algorithm. Out of the 15
tokens, 8 tokens are covered (53%). Fur-
thermore, we observe that 2 tokens are cov-
ered by the non-contiguous treelet {{cette@-2}
législature}, which “conveniently” skips the
token 33e (thirty-third in English). In this ex-
ample, it also happens that “droit à la pro-

priété” (property rights) is captured here by
2 TLs, whereas it would have been captured as
a single parameter in a standard phrase-based
model.

This illustrates two strengths of the TP ap-
proach, at least regarding the source material
and the treelets. First, a completely unknown
token (33e) can be skipped by a treelet, while
the tokens of the latter are still available to pro-
duce a translation for the surrounding known
tokens. Second, a source token can be captured
by many treelets, suggesting a way to combine
them into a more elaborate tree during the de-
coding phase, possibly with more meaningful re-
sults.

Source sentence
Au cours de cette 33e législature nous
avons examiné le droit à la propriété à
trois égards
Treelets in corrected coverage
{{à@-2} {la@-1} propriété}
{{à@-1} trois}
{{cette@-2} législature}
{droit {propriété@3}}

Figure 6: Illustration of the corrected source
coverage computed by the algorithm in Fig-
ure 5. Words merged together with an under-
score form a Syntex token.

Target coverage Once a corrected source
coverage is computed, we apply another algo-
rithm to select among all the EPs that are asso-
ciated with the TLs selected, the ones that max-
imally cover the target sentence T , once again,
with the minimum number of phrases. This al-
gorithm is presented in Figure 7.

The candidate EPs are those associated with
the TLs obtained from the corrected source
coverage computation, although the algorithm
would work equally well with the treelets of the
raw source coverage, albeit more slowly. These
candidate EPs must also t-match the target
sentence. The criteria used to find the score
of a coverage hypothesis are, in order of impor-
tance, the target coverage (maximisation) and
the number of covering EPs (minimisation). No
target token ei is allowed to be covered by more
than one EP (no overlapping EPs). However,
we did allow EPs to cover the target tokens con-
tained in the “gaps” left by another EP. For
example, given the target sentence the white
rabbit, if an EP covers the words the and
rabbit, then we allow another EP to cover the
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word white contained in the gap, if there is such
an EP, naturally.

One additional constraint that this algorithm
enforces is that no two EPs in the corrected tar-
get coverage can share the same source treelet
in M, the set of treelets matching the source
sentence.

Again, to avoid a combinatorial explosion of
hypotheses (stored in HypoSet in Figure 7),
we only kept the best 10 000 hypotheses at all
times.

// init
HypoSet← 0-coverage hypothesis

// the search
for all T ∈M do

AddSet← φ
let ep be the set of EPs associated with T
which t-match E
for all p ∈ ep do

for all h ∈ HypoSet do
if t-extend(p, h) then
add(p, h,AddSet)

HypoSet← HypoSet ∪AddSet

// the best hypothesis
find in HypoSet the hypothesis h for which
score(h) is the highest and return it.

Figure 7: Algorithm to compute the cor-
rected target coverage. M is the set of
all treelets matching the source sentence S.
t-extend(p,h) is a predicate which is true if
the elastic phrase p can extend the hypothesis
h, add(p,h,set) adds to set the hypothesis
h extended with p, and score(h) returns the
score of a hypothesis h. Please read the text for
more details.

We complete the example introduced in Fig-
ure 6 with the corresponding target coverage,
presented in Figure 8. Out of the 11 target
tokens, 5 are covered by 3 EPs, a 45% cover-
age. An interesting match has occurred: while
the EP |property@0||rights@5| was acquired
with a gap of 5 between the words property and
rights, a match was possible with contiguous
target words.

The corrected coverage figures are presented
in Table 4. Without surprise, these figures are
inferior to those reported in section 4.2, al-
though the target coverage is the one which
suffers the most from this optimisation. This
may be due to the fact that the source coverage

Target sentence
This thirty-third Parliament is dealing
with property rights on three different
fronts
Elastic phrases in corrected coverage
|this@0||Parliament@1|
|property@0||rights@5|
|three@0|

Figure 8: Illustration of the corrected target
coverage. Words merged together with an un-
derscore form a Syntex token.

optimisation does not take into account the re-
strictions in the number of candidate EPs that
it will eventually impose on the target cover-
age optimisation. Indeed, when we reach the
target coverage optimisation, our options have
been limited by the previous step.

Nonetheless, it is apparent from these results
that non-contiguous units can contribute signif-
icantly to source and target coverage statistics.

method source target
src tgt %-cov %-c %-cov %-c
E E 59.74 53.20 56.72 45.86
E R 58.15 51.54 57.55 38.66
E R+S 58.55 51.99 57.14 37.88
R E 65.34 48.70 56.56 47.60
R R 61.21 44.44 56.41 39.35
R R+S 62.67 45.95 56.43 38.63

Table 4: Source and target corrected coverage
statistics. %-cov stands for the percentage of to-
kens that are covered, and %-c indicates the per-
centage of tokens covered by contiguous units.

5 Towards EBMT

Without writing a specific decoder, it is diffi-
cult to determine whether TPs can be of help in
MT. The RALI, the research group in applied
computational linguistics at the Université de
Montréal, is currently developing a decoder that
will, hopefully, be able to handle tree-phrases.
However, we could not wait for the final imple-
mentation of this decoder to measure the po-
tential of tree-phrases in a translation context.

We therefore used pharaoh2, a beam search
decoder for phrase-based statistical machine
translation models developed by (Koehn, 2004).
However, since we do not have access to the code
of this program, we cannot modify it to favour

2www.isi.edu/licensed-sw/pharaoh/
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the treelets or phrases contained in our collec-
tion, or to propose and implement a new decod-
ing strategy addressing our specific needs. We
therefore resorted to a post-processing experi-
ment, using a n-best list produced by pharaoh.

5.1 Experimental Set-Up

Using once again the training and test corpora
described in Section 4, we had pharaoh produce
a translation for the same 1000 randomly se-
lected source sentences, as well as a n-best list
of roughly 1000 different best candidates per
translated sentence. We will call each source
sentence Si (i = 1 . . . 1000), its corresponding
reference sentence Ri and its candidates Ci[j]
(j > 0). The first candidate for a sentence Si

is Ci[1] and is the best one, the candidate even-
tually output by pharaoh as the translation of
Si.

For each of these candidates, we calculated
their word error rate (wer) when compared
to their respective reference translation. For
each set of candidates translated from the same
source sentence Si, we called oracle (Oi) the
candidate with the lowest wer. When multiple
candidates had the same wer, we randomly se-
lected one among the candidates tied for lowest
wer.

We then proceeded to compute a variety of
coverage-related features for each candidate,
like we did in the previous section. We did the
same for the reference target sentence Ri and
for the oracle Oi. To do so, we used the exact
(E) matching policies both for the source and
target sentences.

Our goal was to discover, if possible, a cov-
erage feature f for which, on average, f(Ri) >
f(Ci[1]) or f(Oi) > f(Ci[1]). This would mean
that our tree-phrase approach could lend itself
to a translation task. Indeed, if such a feature
f exists, then it means that our memory bet-
ter “recognizes”, on average, Ri or Oi, than the
best candidates Ci[1], and the two former have
the lowest word error rates: Ri has a wer of
0 by definition, and Oi is the candidate with
the smallest wer. It could then be argued that
our system is more likely to produce translation
with lower wer’s than a typical system.

Admittedly, this is a unorthodox way of as-
sessing the usefulness of TPs in machine trans-
lation, but this is a pilot study and the resources
at hand are still limited.

We computed the features in Table 5 for all
the candidates and the reference. We attempted

as well to integrate entropy-related features, but
did not observe any interesting results. The re-
sults are presented in the following section.

f1 src cov. (%)
f2 trg cov. (%)
f3 src cov. w/ contiguous TLs (%)
f4 trg cov. w/ contiguous EPs (%)

Table 5: Various features computed for each
candidate and reference in the n-best list for
1000 translations produced by pharaoh.

5.2 Results and Discussion
Table 6 presents the averages and standard
deviations for the values of the different fea-
tures introduced in Table 5, computed for the
1000 translations and their corresponding can-
didates. The “random” column is the aver-
age/standard deviation for each feature com-
puted on a set composed of a randomly selected
candidate for each Si. It acts as a control group,
making sure the differences we observe between
the sets ref, best and oracle are not purely for-
tuitous.

feature stat ref best oracle rnd
src cov avg. 67.1 68.1 70.1 67.7

stdev. 20.9 20.9 19.9 21.5
trg cov avg. 70.6 71.6 75.4 70.4

stdev. 22.0 22.1 20.4 22.2
src cov c avg 61.0 62.4 63.7 61.8

stdev. 21.8 21.7 21.3 22.3
trg cov c avg. 67.9 69.4 73.4 68.4

stdev. 22.0 22.1 20.5 22.2

Table 6: Averages and standard deviations for
the values of features computed on a n-best list
for 1000 translations produced by pharaoh. src
cov is the source coverage, src cov c is the source
coverage from contiguous units. ref is the refer-
ence Ri for each Si, best is the first candidate
Ci[1], oracle is Oi, the candidate with the lowest
wer, and rnd (random) is the set composed of
a randomly selected candidate for each Si. All
values are expressed in percentage.

No set among ref, best, oracle clearly stands
out, on average, for any of the features we chose.
Nonetheless, the oracle set, the one composed
of the candidates Oi with the lowest wer’s, sys-
tematically exhibits the highest scores for each
feature. For the target coverage, a difference of
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3.9% (absolute) is observed between the oracle
and the next best contender.

This assessment strategy is farfetched, we are
the first to admit it, but it may argue in favour
of the treelet/elastic phrase approach at this
early stage of research. If, indeed, f(Oi) >
f(Ci[1]) like the figures in Table 6 seem to sug-
gest, then our memory could have—at least—
the potential to generate translations with lower
wer’s than a classic phrase-based one, a promis-
ing perspective.

6 Discussion

We presented a pilot study aimed at appreciat-
ing the potential of Tree-Phrases as a base unit
for example-based machine translation. Since
we are in the early stages of this study and do
not yet benefit from a decoder adapted to these
units, we resorted to indirect measures of the
potential of a repository populated with TPs.

Coverage statistics clearly show that, whether
we allow restrictive match policies or more re-
laxed ones, our treelets and their corresponding
elastic phrases cover most of the source and tar-
get material. We observe a slight coverage loss
when we apply more rigorous match policies,
but that was expected. This generally bodes
well for a translation system based on TPs. We
can at least rest assured that a given source sen-
tence for which we need a translation will be rec-
ognized by the repository. Moreover, since the
target coverage of the associated target sentence
(reference) is also good, there is a distinct pos-
sibility that our system could generate a trans-
lation in many ways similar to the reference.

Coverage examples have also highlighted one
of the most interesting features of treelets and
elastic phrases: their capacity to conveniently
skip unknown tokens in a given sequence of
words in order to recognize the surrounding
tokens. This is of major interest, since un-
known or rare tokens usually confuse a standard
phrase-based decoder, which does not benefit
from the freedom of elastic gaps.

Our post-processing experiments using a n-
best list generated by pharaoh, a phrase-based
decoder, to attempt to highlight the interest
of Tree-Phrases in the context of a translation
met a limited success. Our somewhat uncon-
ventional approach suggests nonetheless that a
TP repository could possibly generate transla-
tions with lower word error rates (compared to
the reference) than those generated by a more
traditional approach.

All this evidence leads us to believe that a
TP-based MT system could be a viable alterna-
tive to a standard phrase-based one, that such
a new repository might better generalise upon
a training corpus.

Naturally, this is a preliminary study, and the
metrics and features computed here as well as
the conclusions drawn from them need to be
validated in a more conventional approach, one
that would benefit from a decoder capable of
handling treelets and elastic phrases. We would
then be able to directly measure the contribu-
tions of such translation units to a MT system.
More efforts could also be invested in consider-
ing other translation unit pairs, namely elastic
phrase-elastic phrase, or treelet-treelet.
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