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Abstract 

Most words in Modern Hebrew texts are morphologically ambiguous. We describe a method for finding the correct 
morphological analysis of each word in a Modern Hebrew text. The program first uses a small tagged corpus to 
estimate the probability of each possible analysis of each word regardless of its context and chooses the most 
probable analysis. It then applies automatically learned rules to correct the analysis of each word according to its 
neighbors. Finally, it uses a simple syntactical analyzer to further correct the analysis, thus combining statistical 
methods with rule-based syntactic analysis. It is shown that this combination greatly improves the accuracy of the 
morphological analysis—achieving up to 96.2% accuracy. 

1. Introduction 
Most words in Modern Hebrew (henceforth, 
Hebrew) script are morphologically ambiguous. 
This is due to the rich morphology of the Hebrew 
language and the inadequacy of the common way 
in which Hebrew is written. Morphological disam-
biguation is a must for many applications, such as 
spellers, search engines and machine translation. 
When used as a front-end of a syntactic parser, it 
helps to reduce the number of incorrect parses 
(Sima’an, 2002). 
   Morphological analysis partitions a word token 
into morphemes and features. The morphemes 
consists of the lexical lemma, short words such as 
determiners, prepositions and conjunctions that are 
prepended to the word, suffixes for possessives and 
object clitics. The linguistic features mark part-of-
speech (POS), tense, person etc. Following Kempe, 
we partition this data to a lexical lemma and a tag. 
For example, the first analysis of the ambiguous 
word token $QMTI ) שקמתי(  is “my sycamore” 
whose lemma is $QMH and tag is [noun:definite, 
feminine:s + possessive: 1sg]. The second analysis 
of the same word token is “that I got up”; its 
lemma is QM and its tag is [connective + verb:1sg 
:past]. The morphological analysis consists of 
determining the tag and the lemma. Thus, 
determining the correct tags in context is similar to 
POS tagging in English. 

POS tagging in English has been successfully 
attacked by corpus based methods. Thus we hoped 
to adapt successful POS tagging methodologies to 

the morphological analysis of Hebrew. There are 
two basic approaches: Markov Models (Church 
1988, DeRose 1988) and acquired rule-based 
systems (Brill, 1995). Markov Model based POS 
tagging methods were not applicable, since such 
methods require large tagged corpora for training. 
Weischedel et al (1994) use a tagged corpus of 
64,000 words, which is the smallest corpus we 
found in the literature for HMM tagging, but is still 
very big. Such corpora do not yet exit for Hebrew. 
We preferred, therefore, to adapt Brill’s rule based 
method, which seems to require a smaller training 
corpus. Brill's method starts with assigning to each 
word its most probable morphological tag, and 
then applies a series of “transformation rules”. 
These rules are automatically acquired in advance 
from a modestly sized training corpus. 

In this work, we find the correct morphological 
analysis in context by combining probabilistic 
methods with syntactic analysis. The solution 
consists of three consecutive stages: 
 
(a) The word stage: In this stage we find all 
possible morphological analyses of each word in 
the analyzed text. Then we approximate, for each 
possible analysis, the probability that it is the 
correct analysis, independent of the context of the 
word. For this purpose, we use a large unanalyzed 
training corpus. After approximating the 
probabilities, we assign each word the analysis 
with the highest approximated probability (this 
stage is inspired by Levinger et al, 1995). 
 



(b) The pair stage: In this stage we use 
transformation rules, which correct the analysis of 
a word according to its immediate neighbors. The 
transformation rules are learned automatically 
from a training corpus (this stage is based on Brill, 
1995). 
 
(c) The sentence stage: In this stage we use a 
rudimentary syntactical parser to evaluate different 
alternatives for the analysis of whole sentences. 
We use dynamic programming to find the analysis 
which best matches both the syntactical 
information obtained from the syntactical analysis 
and the probabilistic information obtained from the 
previous two stages. 
 
  The data for the first two stages are acquired 
automatically, while the sentence stage uses a 
manually created parser. 

These three stages yield a morphological analysis 
which is correct for about 96% of the word tokens, 
thus approaching results reported for English 
probabilistic POS tagging. Our method uses a very 
small training corpus – only 4900 words, similar in 
size to the corpus used by Brill and much smaller 
than the million-word corpora used for HMM 
based POS tagging of English. The results show 
that combining probabilistic methods with 
syntactic information improves the accuracy of 
morphological analysis. 

In addition to solving a practical problem of 
Modern Hebrew and other scripts that lack 
vocalization (such as Arabic, Farsi), we show how 
several learning methods can be combined to solve 
a problem, which cannot be solved by any one of 
the methods alone. 

Because of space limitations, this description is 
very terse, we had no space to give algorithms and 
show in detail the statistical analyses. 

1.1. Previous Work 

Both academic and commercial systems have 
attempted to attack the problem posed by Hebrew 
morphology. The Rav Millim (Choueka, 2002) 
commercial system provided a morphological 
analyzer and disambiguator. Within a Machine 
Translation project, IBM Haifa Scientific Center 
provided a morphological analyzer (Ben-Tur et al., 
1992) that was later used in several commercial 
products. Since these sources are proprietary, we 

used Segal’s publicly available morphological 
analyzer (Segal 2001). 

Other works attempted to find the correct 
analysis in context. Choueka and Luisignan 
(Chueka and Lusingnan, 1985) proposed to consi-
der the immediate context of a word and to take 
advantage of the observation that quite often if a 
word appears more than once in the same 
document the same analysis will be the correct 
analysis throughout the document.  Orly Albeck 
(1992) attempted to mimic the way humans 
analyze texts by manually constructing rules that 
would allow finding the right analysis without 
backtracking. Levinger (1992) gathered statistics to 
find the probability of each word, and then used 
hand crafted rules to rule out ungrammatical 
analyses. Carmel and Maarek (1999) used statistics 
on tags similar to ours, to partially disambiguate 
words and then indexed the disambiguated text for 
use in a search engine. The first stage of our work, 
the word stage, was based on Levinger (1995), but 
like Carmel (1999) used the morphological tags 
independently of the lemmas. Ornan and Katz built 
a disambiguation system for Hebrew based on the 
phonemic script and handcrafted semantic clues 
(Ornan 1994).  

1.2  The basic morphological analyzer 

A basic morphological analyzer is a function that 
inputs a word token and returns the set of all its 
possible morphological analyses. The analyzer we 
used supplies all the morphological information, 
except for the object clitics. We found only two 
object clitics in a 4900 word corpus of a Hebrew 
newspaper, so we concluded that adding the object 
clitics to the analysis won't add much to its 
coverage, while substantially increasing the 
ambiguity. Other analyzers, such as Rav-Milim, 
identify the object clitic in some but not all of the 
words. 

In this work, we didn't intend to tackle the 
problem of the several standards of unvocalized 
orthography, so we used a conservative analyzer 
that identified only “full-script” unvocalized words 
(ktiv male). However, the same methods can easily 
be applied to other standards. 

2. The word stage 
We followed Levinger et al. (Levinger 1995) and 
used a variant of their algorithm, the similar words 



algorithm, to find the probability of each analysis, 
regardless of context. As in Levinger et al. the 
probability of a lemma m of a word w, was esti-
mated by looking at other words that contained m 
but differed from w in its tags. The frequency of 
the new words was found by counting their 
occurrences in an untagged corpus of 10 million 
words from the daily Hebrew press.  
  The main difference from Levinger was that to 
overcome the sparseness problem of the data, we 
followed Carmel (1992) and assumed that the oc-
currences of the tags are statistically independent 
and estimated the probability of each tag 
independently. The probability of an analysis was 
derived by multiplying the probability of the tag by 
that of the lemma. Even though the assumption is 
not always valid (Altman 2002), in most cases this 
procedure correctly ranked the analyses. 

3. The pair stage 
3.1  Using transformation rules to improve  
  the analysis 

The concept of rules was introduced by Brill 
(1995), who first used acquired transformation 
rules to build a rule-based POS tagger. He argued 
that transformation rules have several advantages 
over other context-dependent POS tagging 
methods (such as Markov models): 
(a) The transformation-rule method keeps only the 
most relevant data. This both saves a lot of mem-
ory space and enables the development of more 
efficient learning algorithms. 
(b) Transformation rules can be acquired using a 
relatively small training corpus. 

We too use transformation rules, but in contrast 
to Brill, our transformation rules do not automati-
cally change the analyses of the matching words. 
In order to use the probabilistic information gath-
ered in the word stage, we assign each possible 
analysis of each word a morphological score. The 
score of each analysis is initialized to the probabil-
ity as determined at the word stage. The 
transformation rules modify the scores of the 
analyses. The modified scores can be used to select 
a single analysis for each word (that with the high-
est score), or used as an input to a higher level 
analyzer (such as the syntactic analyzer to be de-
scribed below). 

A transformation rule operates on a pair of adja-
cent words. The general syntax of a transformation 
rule is: 

 
pattern1  pattern2  [agreement]                         
              newpattern1(+inc1)  newpattern2(+inc2) 
      [agreement]    
Both the left-hand side and a right-hand side of a 
rule contain two analysis patterns and an optional 
agreement pattern. An analysis-pattern is any 
pattern that matches the tag of a single word. An 
agreement pattern is a pattern that indicates how 
two adjacent tags agree, for example "agreeing-by-
gender", "agreeing-by-gender-and-number", etc. 

A rule comes into effect only for pairs of 
adjacent tags, where the first tag matches 
"pattern1", the second tag matches "pattern2", and 
the two tags agree according to "agreement". 

Here is an example of a transformation rule:  
 
proper-name noun      proper-name(+0)   verb  
                                       (+0.5)  agreeing-in-gender 

 
Its meaning is as follows: Let w1, w2 be two 

adjacent words 
 

 If  the POS of the current tag of w1 is a proper-
noun and the POS of the current tag of w2 is a 
noun   

  and w2 has an analysis as a verb that    
                   matches w1 by gender and number,   
  then add 0.5 to the morphological score of  
              w2 as a verb, and  normalize the scores . 
 

Consider the combination “YWSP &DR” (יוסף 
 :The word “&DR” has two possible analyses .(עדר
one as a masculine noun (= herd) and the other as a 
verb (masculine past-tense 3sg; = hoed). Suppose 
our analyzer found, in the word stage, that the most 
probable analysis of the word “YWSP” is a 
masculine proper name (=Joseph), and the most 
probable analysis of the word “&DR” is a noun (= 
herd). The current analysis of this combination is 
“Joseph herd”, which is most unlikely. However, 
this combination of analyses matches the first part 
of the transformation rule: the current analysis of 
w1 is a proper noun and the current analysis of w2 
is a noun. Moreover, w2 has an analysis that 
matches the second part of the rule: a verb that 
matches w1 by gender. Therefore, the rule will add 
0.5 to the morphological score of the other analysis 



of w2. If the difference between the scores of the 
two analyses was less than 0.5 – the highest-scored 
analysis of w2 will now be the verb, so that the 
analysis of the entire combination will be “Joseph 
hoed”. Had the difference between the scores been 
greater than 0.5 – the analysis would not have 
changed. 
  Rules can also depend on the lemma of the words, 
eg.: 
  Rules follow the following template  
T1 T2  T3 T4 agreement-pattern inc 
Where Ti may be either a POS or a specific word, 
the agreement pattern is any combination of 
agreements of Hebrew (gender, number, definite-
ness). The increment inc is a positive of negative 
number, that is added to the morphological score. 
For example, 
'HWA' noun      'HWA'(+0)   verb    agreeing-in- 
                             person-gender-and-number(+0.5) 

3.2. Acquiring the transformation rules 

Transformation rules are acquired automatically 
using an analyzed training corpus. The learning 
algorithm uses the following input: 
 
(a)  For each word in the training corpus: the set of 
its analyses, and the morphological score of each  
analysis. 
 
(b) The correct analysis of each word in the 
training corpus. 
 
 The output of the algorithm is an ordered list of 
transformation rules. 
 
 The learning algorithm proceeds as follows: 
  
 a. (Initialization): Assign to each word its most  
  probable  analysis. 
 b. (Transformation rule generation): loop over 
  all  incorrectly tagged words in the corpus.   
  Generate all transformation rules that correct the 
  error (inc is yet undermined). 
      c. (Determining inc) For each correction, create a          
           rule whose increments is the minimum required  
           to perform the correction.  
 d. (Transformation rule evaluation): loop over 
  the candidate transformation rules and retain    
  the rule that corrects the maximum number of  
  errors, while causing the least damage.   
 e. Repeat the entire process until the net gain of all 
  rules is negative. 

  The process terminates, since in each iteration the 
number of errors in the training corpus decreases. 
The worst-case complexity of the algorithm is 
( )3NO , where N is the size of the training corpus. 

4. The sentence stage  
The aim of this stage is to improve the accuracy of 
the analysis using syntactic information. A correct 
analysis must correspond to a syntactically correct 
sentence. We therefore try to syntactically parse 
the sentence (actually the tags of the sentence). If 
the parse fails, we would like to conclude that the 
proposed analysis is incorrect and try another 
morphological analysis. However, since no 
syntactic parser is perfect, we do not reject 
sentences that failed to parse. We use the syntactic 
grammaticality, estimated by the syntactic parser, 
as one of two measures for the correctness of the 
analysis, and combine this with the score that 
results from the pair phase. 
 
4.1 The grammar 
 
Our syntactic parser uses a handcrafted grammar 
of about 150 rules. The rules attempt to simplify 
the sentence, for example, the rule 

noun  noun adjective  
                  [agree in number and gender], 

reduces two tokens into one.  Additional rules 
account for entire sentences, such as  

sentence  noun-phrase verb-phrase  
and recursive structures, such as  

 noun  noun  connective sentence . 
 
   For an input sentence w1,…,wn, let Ti ={ti1,…,tik} 
be the set of tags of wi, and sim be the score of tim as 
determined by the previous stages. If we assume 
that the scores are probabilities and that the 
probability of choosing tags for words are 
statistically independent; i.e.,  

1 21 1 2 2( ( )  and ( )m mP tag w t tag w t= = L and   
    ( ) )

nn nmtag w t=  

( ) ( )
( )

1 2

1 2

1 1 2 2

1 2

( )  ( )

( )

,
n

n

m m

n nm

m m nm

P tag w t P tag w t

P tag w t

s s s

= = =

=

=

L

L

 

maximizing the product is equivalent to finding the 
most probable tag sequence. Thus we wish to 



maximize the product under the constraint that the 
sequence is a syntactically correct sentence (or at 
least nearly correct). 
 
4.2 The algorithm. 
 
4.2.1 Dynamic Programming 

 
Our algorithm uses dynamic programming to 
determine the score of partial parses. For a 
nonterminal A, let  a Table[i,j,A] be the maximum 
score of all parses *

i jA w w→ L . (If i jw wL  
cannot be derived from A, then Table[i,j,A] = 0.) If 
we consider the scores as probabilities then 
Table[i,j,A] is the probability of the best parse that 
derives i jw wL  from A. 
Table is computed by increasing value of j i= −l :  

0 :=l

[ ] { }, , max :  and im im im iTable i i A s A t G t T= → ∈ ∈ . 
To compute [ , , ]Table i i A  we check for all rules 
A t→ if it T∈ . The time is linear in Ag , the number 
of grammar rules whose left hand side is A. Thus, 
computing [ , , ]Table i i ⋅ is linear in g, the size of the 
grammar G. Hence, computing the first row 
requires ( )O ng  time. 

0 :>l   
{ }[ , , ] max [ , , ] [ 1, , ]

A BC G
i k j

Table i j A Table i k B Table k j C
→ ∈
≤ <

= × +

The time to find the maximum is ( )1 Aj i g− + .  
Thus, computing [ ], ,Table i j ⋅  for all i,j, j i− = l  

requires time ( )( ) ( )2O n g O n g− =l l , and for all 

1 n≤ ≤l  the time is ( )3O n g . 

 
4.2.2 Parsing the sentence 
 
Ideally, the score should be [1, , ]T n S . However, no 
parser is perfect and our rudimentary parser is no 
exception. Since a properly analyzed sentence 
should consist of simple sentences connected by 
connectives, we try to cover the sentence with a 
minimum number of components. In other words, 
we look for r and 1 2 rk k k< < <L such that 

 
( )

1 1 1 2 2[1, , ] [ 1, , ]
[ 1, , ]r r

Table k A Table k k A
Table k n A f r

+ + +

+ + −

K
  

is maximum. The function f is monotonically 
increasing, reflecting the cost of having r 
components. The rationale is that we should get a 
bonus for choosing the best tags and pay a fine for 
failing to parse.  
   The function f should have been determined by 
Machine learning techniques, but we assumed that 
( )f r rα= . Under this assumption, finding the 

“best parse” is equivalent to finding a shortest path 
in a directed graph from 1 to n in a graph whose 
vertex set is { }1, ,nK  and ( ),d i j =  

[ ]{ }max , ,A Table i j Aα − . If all the distances are 
nonnegative, we can apply Dijsktra’s algorithm 
whose complexity is ( )3O n . 

 
4.2.3 Time complexity 
 
The complexity of the entire algorithm is 
dominated by the dynamic programming step 
which requires ( )3O n g  time.  

5. Evaluation  
To test the algorithm we used an analyzed corpus 
of 5361 word tokens, which contained 16 articles 
of various subjects from a Hebrew daily 
newspaper. 468 word tokens were used for testing 
and the rest for training. The results are 
summarized in Table 1. 
 

Error (%) Sentence Stage Pair Stage Word Stage 
36.0 No No No  
14.0 No No Yes 
21.0 No Yes No 
7.0 No Yes Yes 
20.0 Yes No No 
5.3 Yes No Yes 
14.0 Yes Yes No 
3.8 Yes Yes Yes 

 

Table 1: The percentage of error when using each 
method separately and in combination with other 
methods. 
 
 
 
 
 
 
 

 
Figure 1: A graphical representation of Table 1 
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The first line (No, No, No) assumed that all 
analyses are equiprobable. The error percent, 36% , 
reflects the expected number of analyses of a word 
in the test data (1/0.36  2.8). The second line 
(Yes, No, No) considers only the word stage, and it 
is equivalent to Levinger (1995). Subsequent lines 
show using different combinations of stages. The 
word stage seems most essential – leaving it out 
most degrades the performance. The pair stage and 
the sentence stage both use syntactic structure. The 
pair stage improved the scores of the tags of words 
based on their neighbors, while the sentence stage 
utilized a broader scope. It seems that using both 
yielded the best results; however, we were not able 
to show the statistical significance of this 
improvement. (We tested the significance of the 
difference of proportions. For this pair the 
confidence level was 86%.) All other pairs of 
results showed statistical significance with 
confidence level above 95%.  

To test the effect of the corpus size on the pair 
stage, we performed two experiments, each with a 
different test article: 
• Article A with 469 word tokens (which leaves 
 4892 word tokens in the training corpus), 
• Article B with 764 word tokens  (which leaves 
 4597 word tokens in the training corpus), 

In order to examine how the size of the training 
corpus affects the number of transformation rules 
learned and the final accuracy, we conducted k-
way cross and took the average. The results are 
shown in Appendix B. A statistical analysis 
revealed that with 95% confidence the error rate at 
most 8%. 

The error-rate graphs are quite flat even for this 
small training corpus. Perhaps it is possible to 
conclude that using a larger training corpus won't 
make the results much better. Right now, however, 
we cannot verify this conclusion because we don't 
have a much larger tagged corpus. Such a corpus is 
in the process of being prepared (Sima’am 2001). 

7. Conclusions and further research 
The research shows that corpus based methods are 
effective for choosing the correct morphological 
analysis in context. However, there is still a 
considerable gap between our system and human 
readers. From the error analysis, we see that our 
system treats all unknown words as proper nouns, 
and does not recognize idioms. At least two more 

“expert systems” need be incorporated: (a) a 
recognizer for proper nouns, and (b) a recognizer 
of idioms.  

Furthermore, the sentence stage is not automatic, 
and is not sufficiently robust. We plan on attacking 
this problem in several ways. Currently, Sima’an et 
al (2001) is creating a tree-bank that will enable to 
automatically learn a grammar for Hebrew. 
However, even when complete, parsing will be 
slow. Another vein of research is to follow Abney 
(1996) and construct a finite state cascade parser. 
Even though such parsers do not provide full 
coverage, they are very fast and may be sufficient 
for the purpose of morphological disambiguation.  
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Appendix  A: The Hebrew-Latin 
transliteration 

The choice of letters follows the ISO standard of 
phonemic script (ISO 1999). Note that this is not a 
phonetic transcription. The vowels ‘a’ and ‘e’, 
which are usually not represented in the Hebrew 
unvocalized script, are also not represented in our 
Latin transliteration. For example, the word: גלש  
which is pronounced “sheleg”, is transliterated: 
$LG. 
 
 

Appendix B: The results of the pair-stage 
experiment 

The first graph shows how the number of rules 
grows with the size of the corpus. If we had a 
larger corpus then we would have need to trim the 
less effective rules to avoid overfitting. 
 The second graph shows how the error rate 
decreases with the size of the training corpus. 
  
 
 
 
 
 
 

 
 
 

 
 

 
The third graph shows a better picture by 

neutralizing the errors detected at the word stage, 
i.e. it shows the percent of errors after the word 
phase minus the percent of errors after the pair 
stage. 
 

Heb. 
letter 

Heb. 
name Latin Heb. 

letter 
Heb. 
name Latin 

 Lamed L ל Alef A א
ם,מ Bet B ב  Mem M 

Gimm ג
el G ן,נ  Nun N 

 Samek S ס Dalet D ד
 & Ayn ע Hei H ה
ף,פ Waw W ו  Pei P 
ץ,צ Zayn Z ז  Tsadiq C 
 Quf Q ק Xet X ח
 Reish R ר @ Tet ט
שׂ,ש Yud I י  Shin $ 
ך,כ  Kaf K ת Taw T 



 

 
 

article A : # words for # learned initial # initial % final # final % effect of
469 training [a] rules [a] errors [a] errors [a] errors [a] errors [a] rules [a]

words 0 0 80 17.1% 80 17.1% 0.0%
701 22 79 16.8% 51 10.9% 6.0%

1073 30 77 16.4% 42 9.0% 7.5%
2105 48 81 17.3% 42 9.0% 8.3%
2929 63 79 16.8% 39 8.3% 8.5%
3851 78 70 14.9% 39 8.3% 6.6%
4892 93 68 14.5% 29 6.2% 8.3%

article B : # words for # learned initial # initial % final # final % effect of
764 training [b] rules [b] errors [b] errors [b] errors [b] errors [b] rules [b]

words 0 0 140 18.3% 140 18.3% 0.0%
468 14 129 16.9% 90 11.8% 5.1%
695 18 129 16.9% 86 11.3% 5.6%

1713 45 130 17.0% 73 9.6% 7.5%
2640 53 128 16.8% 71 9.3% 7.5%
3562 76 131 17.1% 64 8.4% 8.8%
4597 90 126 16.5% 53 6.9% 9.6%
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