
A Corpus Based Morphological Analyzer for
Unvocalized Modern Hebrew

Alon Itai and Erel Segal
Department of Computer Science

Technion—Israel Institute of Technology, Haifa, Israel

Abstract

Most words in Modern Hebrew texts are morphologically ambiguous. We describe a method for finding the correct
morphological analysis of each word in a Modern Hebrew text. The program first uses a small tagged corpus to
estimate the probability of each possible analysis of each word regardless of its context and chooses the most
probable analysis. It then applies automatically learned rules to correct the analysis of each word according to its
neighbors. Finally, it uses a simple syntactical analyzer to further correct the analysis, thus combining statistical
methods with rule-based syntactic analysis. It is shown that this combination greatly improves the accuracy of the
morphological analysis—achieving up to 96.2% accuracy.

1. Introduction
Most words in Modern Hebrew (henceforth,
Hebrew) script are morphologically ambiguous.
This is due to the rich morphology of the Hebrew
language and the inadequacy of the common way
in which Hebrew is written. Morphological disam-
biguation is a must for many applications, such as
spellers, search engines and machine translation.
When used as a front-end of a syntactic parser, it
helps to reduce the number of incorrect parses
(Sima’an, 2002).
 Morphological analysis partitions a word token
into morphemes and features. The morphemes
consists of the lexical lemma, short words such as
determiners, prepositions and conjunctions that are
prepended to the word, suffixes for possessives and
object clitics. The linguistic features mark part-of-
speech (POS), tense, person etc. Following Kempe,
we partition this data to a lexical lemma and a tag.
For example, the first analysis of the ambiguous
word token $QMTI) שקמתי(is “my sycamore”
whose lemma is $QMH and tag is [noun:definite,
feminine:s + possessive: 1sg]. The second analysis
of the same word token is “that I got up”; its
lemma is QM and its tag is [connective + verb:1sg
:past]. The morphological analysis consists of
determining the tag and the lemma. Thus,
determining the correct tags in context is similar to
POS tagging in English.

POS tagging in English has been successfully
attacked by corpus based methods. Thus we hoped
to adapt successful POS tagging methodologies to

the morphological analysis of Hebrew. There are
two basic approaches: Markov Models (Church
1988, DeRose 1988) and acquired rule-based
systems (Brill, 1995). Markov Model based POS
tagging methods were not applicable, since such
methods require large tagged corpora for training.
Weischedel et al (1994) use a tagged corpus of
64,000 words, which is the smallest corpus we
found in the literature for HMM tagging, but is still
very big. Such corpora do not yet exit for Hebrew.
We preferred, therefore, to adapt Brill’s rule based
method, which seems to require a smaller training
corpus. Brill's method starts with assigning to each
word its most probable morphological tag, and
then applies a series of “transformation rules”.
These rules are automatically acquired in advance
from a modestly sized training corpus.

In this work, we find the correct morphological
analysis in context by combining probabilistic
methods with syntactic analysis. The solution
consists of three consecutive stages:

(a) The word stage: In this stage we find all
possible morphological analyses of each word in
the analyzed text. Then we approximate, for each
possible analysis, the probability that it is the
correct analysis, independent of the context of the
word. For this purpose, we use a large unanalyzed
training corpus. After approximating the
probabilities, we assign each word the analysis
with the highest approximated probability (this
stage is inspired by Levinger et al, 1995).

(b) The pair stage: In this stage we use
transformation rules, which correct the analysis of
a word according to its immediate neighbors. The
transformation rules are learned automatically
from a training corpus (this stage is based on Brill,
1995).

(c) The sentence stage: In this stage we use a
rudimentary syntactical parser to evaluate different
alternatives for the analysis of whole sentences.
We use dynamic programming to find the analysis
which best matches both the syntactical
information obtained from the syntactical analysis
and the probabilistic information obtained from the
previous two stages.

 The data for the first two stages are acquired
automatically, while the sentence stage uses a
manually created parser.

These three stages yield a morphological analysis
which is correct for about 96% of the word tokens,
thus approaching results reported for English
probabilistic POS tagging. Our method uses a very
small training corpus – only 4900 words, similar in
size to the corpus used by Brill and much smaller
than the million-word corpora used for HMM
based POS tagging of English. The results show
that combining probabilistic methods with
syntactic information improves the accuracy of
morphological analysis.

In addition to solving a practical problem of
Modern Hebrew and other scripts that lack
vocalization (such as Arabic, Farsi), we show how
several learning methods can be combined to solve
a problem, which cannot be solved by any one of
the methods alone.

Because of space limitations, this description is
very terse, we had no space to give algorithms and
show in detail the statistical analyses.

1.1. Previous Work

Both academic and commercial systems have
attempted to attack the problem posed by Hebrew
morphology. The Rav Millim (Choueka, 2002)
commercial system provided a morphological
analyzer and disambiguator. Within a Machine
Translation project, IBM Haifa Scientific Center
provided a morphological analyzer (Ben-Tur et al.,
1992) that was later used in several commercial
products. Since these sources are proprietary, we

used Segal’s publicly available morphological
analyzer (Segal 2001).

Other works attempted to find the correct
analysis in context. Choueka and Luisignan
(Chueka and Lusingnan, 1985) proposed to consi-
der the immediate context of a word and to take
advantage of the observation that quite often if a
word appears more than once in the same
document the same analysis will be the correct
analysis throughout the document. Orly Albeck
(1992) attempted to mimic the way humans
analyze texts by manually constructing rules that
would allow finding the right analysis without
backtracking. Levinger (1992) gathered statistics to
find the probability of each word, and then used
hand crafted rules to rule out ungrammatical
analyses. Carmel and Maarek (1999) used statistics
on tags similar to ours, to partially disambiguate
words and then indexed the disambiguated text for
use in a search engine. The first stage of our work,
the word stage, was based on Levinger (1995), but
like Carmel (1999) used the morphological tags
independently of the lemmas. Ornan and Katz built
a disambiguation system for Hebrew based on the
phonemic script and handcrafted semantic clues
(Ornan 1994).

1.2 The basic morphological analyzer

A basic morphological analyzer is a function that
inputs a word token and returns the set of all its
possible morphological analyses. The analyzer we
used supplies all the morphological information,
except for the object clitics. We found only two
object clitics in a 4900 word corpus of a Hebrew
newspaper, so we concluded that adding the object
clitics to the analysis won't add much to its
coverage, while substantially increasing the
ambiguity. Other analyzers, such as Rav-Milim,
identify the object clitic in some but not all of the
words.

In this work, we didn't intend to tackle the
problem of the several standards of unvocalized
orthography, so we used a conservative analyzer
that identified only “full-script” unvocalized words
(ktiv male). However, the same methods can easily
be applied to other standards.

2. The word stage
We followed Levinger et al. (Levinger 1995) and
used a variant of their algorithm, the similar words

algorithm, to find the probability of each analysis,
regardless of context. As in Levinger et al. the
probability of a lemma m of a word w, was esti-
mated by looking at other words that contained m
but differed from w in its tags. The frequency of
the new words was found by counting their
occurrences in an untagged corpus of 10 million
words from the daily Hebrew press.
 The main difference from Levinger was that to
overcome the sparseness problem of the data, we
followed Carmel (1992) and assumed that the oc-
currences of the tags are statistically independent
and estimated the probability of each tag
independently. The probability of an analysis was
derived by multiplying the probability of the tag by
that of the lemma. Even though the assumption is
not always valid (Altman 2002), in most cases this
procedure correctly ranked the analyses.

3. The pair stage
3.1 Using transformation rules to improve
 the analysis

The concept of rules was introduced by Brill
(1995), who first used acquired transformation
rules to build a rule-based POS tagger. He argued
that transformation rules have several advantages
over other context-dependent POS tagging
methods (such as Markov models):
(a) The transformation-rule method keeps only the
most relevant data. This both saves a lot of mem-
ory space and enables the development of more
efficient learning algorithms.
(b) Transformation rules can be acquired using a
relatively small training corpus.

We too use transformation rules, but in contrast
to Brill, our transformation rules do not automati-
cally change the analyses of the matching words.
In order to use the probabilistic information gath-
ered in the word stage, we assign each possible
analysis of each word a morphological score. The
score of each analysis is initialized to the probabil-
ity as determined at the word stage. The
transformation rules modify the scores of the
analyses. The modified scores can be used to select
a single analysis for each word (that with the high-
est score), or used as an input to a higher level
analyzer (such as the syntactic analyzer to be de-
scribed below).

A transformation rule operates on a pair of adja-
cent words. The general syntax of a transformation
rule is:

pattern1 pattern2 [agreement]
 newpattern1(+inc1) newpattern2(+inc2)
 [agreement]
Both the left-hand side and a right-hand side of a
rule contain two analysis patterns and an optional
agreement pattern. An analysis-pattern is any
pattern that matches the tag of a single word. An
agreement pattern is a pattern that indicates how
two adjacent tags agree, for example "agreeing-by-
gender", "agreeing-by-gender-and-number", etc.

A rule comes into effect only for pairs of
adjacent tags, where the first tag matches
"pattern1", the second tag matches "pattern2", and
the two tags agree according to "agreement".

Here is an example of a transformation rule:

proper-name noun proper-name(+0) verb
 (+0.5) agreeing-in-gender

Its meaning is as follows: Let w1, w2 be two

adjacent words

 If the POS of the current tag of w1 is a proper-
noun and the POS of the current tag of w2 is a
noun

 and w2 has an analysis as a verb that
 matches w1 by gender and number,
 then add 0.5 to the morphological score of
 w2 as a verb, and normalize the scores .

Consider the combination “YWSP &DR” (יוסף
 :The word “&DR” has two possible analyses .(עדר
one as a masculine noun (= herd) and the other as a
verb (masculine past-tense 3sg; = hoed). Suppose
our analyzer found, in the word stage, that the most
probable analysis of the word “YWSP” is a
masculine proper name (=Joseph), and the most
probable analysis of the word “&DR” is a noun (=
herd). The current analysis of this combination is
“Joseph herd”, which is most unlikely. However,
this combination of analyses matches the first part
of the transformation rule: the current analysis of
w1 is a proper noun and the current analysis of w2
is a noun. Moreover, w2 has an analysis that
matches the second part of the rule: a verb that
matches w1 by gender. Therefore, the rule will add
0.5 to the morphological score of the other analysis

of w2. If the difference between the scores of the
two analyses was less than 0.5 – the highest-scored
analysis of w2 will now be the verb, so that the
analysis of the entire combination will be “Joseph
hoed”. Had the difference between the scores been
greater than 0.5 – the analysis would not have
changed.
 Rules can also depend on the lemma of the words,
eg.:
 Rules follow the following template
T1 T2 T3 T4 agreement-pattern inc
Where Ti may be either a POS or a specific word,
the agreement pattern is any combination of
agreements of Hebrew (gender, number, definite-
ness). The increment inc is a positive of negative
number, that is added to the morphological score.
For example,
'HWA' noun 'HWA'(+0) verb agreeing-in-
 person-gender-and-number(+0.5)

3.2. Acquiring the transformation rules

Transformation rules are acquired automatically
using an analyzed training corpus. The learning
algorithm uses the following input:

(a) For each word in the training corpus: the set of
its analyses, and the morphological score of each
analysis.

(b) The correct analysis of each word in the
training corpus.

 The output of the algorithm is an ordered list of
transformation rules.

 The learning algorithm proceeds as follows:

 a. (Initialization): Assign to each word its most
 probable analysis.
 b. (Transformation rule generation): loop over
 all incorrectly tagged words in the corpus.
 Generate all transformation rules that correct the
 error (inc is yet undermined).
 c. (Determining inc) For each correction, create a
 rule whose increments is the minimum required
 to perform the correction.
 d. (Transformation rule evaluation): loop over
 the candidate transformation rules and retain
 the rule that corrects the maximum number of
 errors, while causing the least damage.
 e. Repeat the entire process until the net gain of all
 rules is negative.

 The process terminates, since in each iteration the
number of errors in the training corpus decreases.
The worst-case complexity of the algorithm is
()3NO , where N is the size of the training corpus.

4. The sentence stage
The aim of this stage is to improve the accuracy of
the analysis using syntactic information. A correct
analysis must correspond to a syntactically correct
sentence. We therefore try to syntactically parse
the sentence (actually the tags of the sentence). If
the parse fails, we would like to conclude that the
proposed analysis is incorrect and try another
morphological analysis. However, since no
syntactic parser is perfect, we do not reject
sentences that failed to parse. We use the syntactic
grammaticality, estimated by the syntactic parser,
as one of two measures for the correctness of the
analysis, and combine this with the score that
results from the pair phase.

4.1 The grammar

Our syntactic parser uses a handcrafted grammar
of about 150 rules. The rules attempt to simplify
the sentence, for example, the rule

noun noun adjective
 [agree in number and gender],

reduces two tokens into one. Additional rules
account for entire sentences, such as

sentence noun-phrase verb-phrase
and recursive structures, such as

 noun noun connective sentence .

 For an input sentence w1,…,wn, let Ti ={ti1,…,tik}
be the set of tags of wi, and sim be the score of tim as
determined by the previous stages. If we assume
that the scores are probabilities and that the
probability of choosing tags for words are
statistically independent; i.e.,

1 21 1 2 2(() and ()m mP tag w t tag w t= = L and
 ())

nn nmtag w t=

() ()
()

1 2

1 2

1 1 2 2

1 2

() ()

()

,
n

n

m m

n nm

m m nm

P tag w t P tag w t

P tag w t

s s s

= = =

=

=

L

L

maximizing the product is equivalent to finding the
most probable tag sequence. Thus we wish to

maximize the product under the constraint that the
sequence is a syntactically correct sentence (or at
least nearly correct).

4.2 The algorithm.

4.2.1 Dynamic Programming

Our algorithm uses dynamic programming to
determine the score of partial parses. For a
nonterminal A, let a Table[i,j,A] be the maximum
score of all parses *

i jA w w→ L . (If i jw wL
cannot be derived from A, then Table[i,j,A] = 0.) If
we consider the scores as probabilities then
Table[i,j,A] is the probability of the best parse that
derives i jw wL from A.
Table is computed by increasing value of j i= −l :

0 :=l

[] { }, , max : and im im im iTable i i A s A t G t T= → ∈ ∈ .
To compute [, ,]Table i i A we check for all rules
A t→ if it T∈ . The time is linear in Ag , the number
of grammar rules whose left hand side is A. Thus,
computing [, ,]Table i i ⋅ is linear in g, the size of the
grammar G. Hence, computing the first row
requires ()O ng time.

0 :>l
{ }[, ,] max [, ,] [1, ,]

A BC G
i k j

Table i j A Table i k B Table k j C
→ ∈
≤ <

= × +

The time to find the maximum is ()1 Aj i g− + .
Thus, computing [], ,Table i j ⋅ for all i,j, j i− = l

requires time ()() ()2O n g O n g− =l l , and for all

1 n≤ ≤l the time is ()3O n g .

4.2.2 Parsing the sentence

Ideally, the score should be [1, ,]T n S . However, no
parser is perfect and our rudimentary parser is no
exception. Since a properly analyzed sentence
should consist of simple sentences connected by
connectives, we try to cover the sentence with a
minimum number of components. In other words,
we look for r and 1 2 rk k k< < <L such that

()

1 1 1 2 2[1, ,] [1, ,]
[1, ,]r r

Table k A Table k k A
Table k n A f r

+ + +

+ + −

K

is maximum. The function f is monotonically
increasing, reflecting the cost of having r
components. The rationale is that we should get a
bonus for choosing the best tags and pay a fine for
failing to parse.
 The function f should have been determined by
Machine learning techniques, but we assumed that
()f r rα= . Under this assumption, finding the

“best parse” is equivalent to finding a shortest path
in a directed graph from 1 to n in a graph whose
vertex set is { }1, ,nK and (),d i j =

[]{ }max , ,A Table i j Aα − . If all the distances are
nonnegative, we can apply Dijsktra’s algorithm
whose complexity is ()3O n .

4.2.3 Time complexity

The complexity of the entire algorithm is
dominated by the dynamic programming step
which requires ()3O n g time.

5. Evaluation
To test the algorithm we used an analyzed corpus
of 5361 word tokens, which contained 16 articles
of various subjects from a Hebrew daily
newspaper. 468 word tokens were used for testing
and the rest for training. The results are
summarized in Table 1.

Error (%) Sentence Stage Pair Stage Word Stage
36.0 No No No
14.0 No No Yes
21.0 No Yes No
7.0 No Yes Yes
20.0 Yes No No
5.3 Yes No Yes
14.0 Yes Yes No
3.8 Yes Yes Yes

Table 1: The percentage of error when using each
method separately and in combination with other
methods.

Figure 1: A graphical representation of Table 1

Word
Phase

Pair Phase

Sentence
Phase

5.3

147

3.8

3621

2014

The first line (No, No, No) assumed that all
analyses are equiprobable. The error percent, 36% ,
reflects the expected number of analyses of a word
in the test data (1/0.36 2.8). The second line
(Yes, No, No) considers only the word stage, and it
is equivalent to Levinger (1995). Subsequent lines
show using different combinations of stages. The
word stage seems most essential – leaving it out
most degrades the performance. The pair stage and
the sentence stage both use syntactic structure. The
pair stage improved the scores of the tags of words
based on their neighbors, while the sentence stage
utilized a broader scope. It seems that using both
yielded the best results; however, we were not able
to show the statistical significance of this
improvement. (We tested the significance of the
difference of proportions. For this pair the
confidence level was 86%.) All other pairs of
results showed statistical significance with
confidence level above 95%.

To test the effect of the corpus size on the pair
stage, we performed two experiments, each with a
different test article:
• Article A with 469 word tokens (which leaves
 4892 word tokens in the training corpus),
• Article B with 764 word tokens (which leaves
 4597 word tokens in the training corpus),

In order to examine how the size of the training
corpus affects the number of transformation rules
learned and the final accuracy, we conducted k-
way cross and took the average. The results are
shown in Appendix B. A statistical analysis
revealed that with 95% confidence the error rate at
most 8%.

The error-rate graphs are quite flat even for this
small training corpus. Perhaps it is possible to
conclude that using a larger training corpus won't
make the results much better. Right now, however,
we cannot verify this conclusion because we don't
have a much larger tagged corpus. Such a corpus is
in the process of being prepared (Sima’am 2001).

7. Conclusions and further research
The research shows that corpus based methods are
effective for choosing the correct morphological
analysis in context. However, there is still a
considerable gap between our system and human
readers. From the error analysis, we see that our
system treats all unknown words as proper nouns,
and does not recognize idioms. At least two more

“expert systems” need be incorporated: (a) a
recognizer for proper nouns, and (b) a recognizer
of idioms.

Furthermore, the sentence stage is not automatic,
and is not sufficiently robust. We plan on attacking
this problem in several ways. Currently, Sima’an et
al (2001) is creating a tree-bank that will enable to
automatically learn a grammar for Hebrew.
However, even when complete, parsing will be
slow. Another vein of research is to follow Abney
(1996) and construct a finite state cascade parser.
Even though such parsers do not provide full
coverage, they are very fast and may be sufficient
for the purpose of morphological disambiguation.

Bibliography

Steven Abney. 1996. Partial Parsing via Finite-
State Cascades. In J. of Natural Language
Engineering, 2(4), pp. 337-344.

Orly Albeck. 1992. Formal analysis by a restriction
grammar on one of the stages of Modern
Hebrew. Computerized analysis of Hebrew
words. In Israel Ministry of Science and
Technology Symposium. (In Hebrew.)

Alon Altman. 2002. Private communication.
Esther Ben-Tur, Aviela Angel, Danit Ben-Ari, and

Alon Lavie. 1992. Computerized analysis of
Hebrew words. In Israel Ministry of Science
and Technology Symposium. (In Hebrew.)

Eric Brill. 1995. Transformation-based error-
driven learning and natural language
processing: a case study in part-of-speech
tagging. In Computational Linguistics, 21, pp.
543-565.

David Carmel and Yoëlle Maarek. 1999.
Morphological disambiguation for Hebrew
search systems. In Next Generation Information
Technologies and Systems, NGITS ’99, Springer
LNCS 1649, pp. 312-325.

Yaacov Choueka and S. Lusignan. 1985.
Disambiguation by short context. In Computers
and the Humanities, 19(3).

Yaacov Choueka. 2002. Rav Millim. Technical
report, The Center for Educational Technology
in Israel.

 (http://www.cet.ac.il/rav-milim/)
Kenneth W. Church. 1988. A stochastic parts

program and noun phrase parser for unrestricted
text. In ANLP, 2, pp. 136-143.

Steven J. DeRose. 1988. Grammatical category
disambiguation by statistical optimization, In
Computational Linguistics, 14, pp. 31-39.

ISO. 1999. “Information and documentation –
Conversion of Hebrew characters into Latin
characters – Part 3: Phonemic Conversion,
ISO/FDIS 259-3: (E).

André Kempe Probabilistic parsing with feature
structures.

Moshe Levinger, Uzzi Ornan and Alon Itai. 1995.
Morphological disambiguation in Hebrew using
a priori probabilities, Computational Linguistics
21, pp. 383-404.

Uzzi Ornan and Michael Katz. 1994. A new
program for Hebrew index based on the
phonemic script, Technical Report #LCL 94-7,

Laboratory for Computational Linguistics, CS
Dept., Technion, Haifa, Israel.

Erel Segal. 2001. A Hebrew morphological
analyzer (includes free source code)
http://come.to/balshanut or
http://www.cs.technion.ac.il/~erelsgl/bxi/hmntx
/teud.html

Khalil Sima'an, Alon Itai, Yoad Winter, Alon
Altman and Noa Nativ. 2001. Building a Tree-
Bank of Modern Hebrew Text. In Traitment
Automatique des Langues, 42, pp. 347-380.

Ralph M. Weischedel, Marie Meteer, Richard L.

Schwartz, Lance Ramshaw and Jeff Palmucci.
1994. Coping with Ambiguity and Unknown
Words through Probabilistic Models. In
Computational Linguistics. 19(2), pp. 359-382.

Appendix A: The Hebrew-Latin
transliteration

The choice of letters follows the ISO standard of
phonemic script (ISO 1999). Note that this is not a
phonetic transcription. The vowels ‘a’ and ‘e’,
which are usually not represented in the Hebrew
unvocalized script, are also not represented in our
Latin transliteration. For example, the word: גלש
which is pronounced “sheleg”, is transliterated:
$LG.

Appendix B: The results of the pair-stage
experiment

The first graph shows how the number of rules
grows with the size of the corpus. If we had a
larger corpus then we would have need to trim the
less effective rules to avoid overfitting.
 The second graph shows how the error rate
decreases with the size of the training corpus.

The third graph shows a better picture by

neutralizing the errors detected at the word stage,
i.e. it shows the percent of errors after the word
phase minus the percent of errors after the pair
stage.

Heb.
letter

Heb.
name Latin Heb.

letter
Heb.
name Latin

 Lamed L ל Alef A א
ם,מ Bet B ב Mem M

Gimm ג
el G ן,נ Nun N

 Samek S ס Dalet D ד
 & Ayn ע Hei H ה
ף,פ Waw W ו Pei P
ץ,צ Zayn Z ז Tsadiq C
 Quf Q ק Xet X ח
 Reish R ר @ Tet ט
שׂ,ש Yud I י Shin $
ך,כ Kaf K ת Taw T

article A : # words for # learned initial # initial % final # final % effect of
469 training [a] rules [a] errors [a] errors [a] errors [a] errors [a] rules [a]

words 0 0 80 17.1% 80 17.1% 0.0%
701 22 79 16.8% 51 10.9% 6.0%

1073 30 77 16.4% 42 9.0% 7.5%
2105 48 81 17.3% 42 9.0% 8.3%
2929 63 79 16.8% 39 8.3% 8.5%
3851 78 70 14.9% 39 8.3% 6.6%
4892 93 68 14.5% 29 6.2% 8.3%

article B : # words for # learned initial # initial % final # final % effect of
764 training [b] rules [b] errors [b] errors [b] errors [b] errors [b] rules [b]

words 0 0 140 18.3% 140 18.3% 0.0%
468 14 129 16.9% 90 11.8% 5.1%
695 18 129 16.9% 86 11.3% 5.6%

1713 45 130 17.0% 73 9.6% 7.5%
2640 53 128 16.8% 71 9.3% 7.5%
3562 76 131 17.1% 64 8.4% 8.8%
4597 90 126 16.5% 53 6.9% 9.6%

0
20
40
60
80

100

0 1000 2000 3000 4000 5000 6000

number of words used for training

nu
m

be
r o

f l
ea

rn
ed

ru

le
s

learned rules [a]

learned rules [b]

0.0%
5.0%

10.0%
15.0%

20.0%

0 1000 2000 3000 4000 5000 6000

number of words used for training

er
ro

r r
at

e

initial % errors [a]

final % errors [a]

initial % errors [b]

final % errors [b]

0.0%

5.0%

10.0%

15.0%

0 1000 2000 3000 4000 5000 6000

number of words used for training

er
ro

r r
at

e
de

cr
ea

se

effect of rules [b]

effect of rules [a]

