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Tree-Based Models

e Phrase Based M'T models operate on sequences of words

e Many translation problems can be best explained by conditioning on syntax

— reordering, e.g., verb movement in German—English translation
— long distance agreement (e.g., subject-verb) in output

= Translation models based on tree representations of language

— a dominant theme of recent research
— state-of-the art for some language pairs
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Phrase Structure Grammar

e Phrase structure

— noun phrases: the big man, a house, ...

— prepositional phrases: at 5 o’clock, in Edinburgh, ...
— verb phrases: going out of business, eat chicken, ...
— adjective phrases, ...

e Context-free Grammars (CFG)

— non-terminal symbols: phrase structure labels, part-of-speech tags
— terminal symbols: words
— production rules: NT — [NT,T|4

example: NP — DET NN
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Phrase Structure Grammar

/) T

PRP RP TO PRP DT NS
I shall be passmg on to you some comments

Phrase structure grammar tree for an English sentence
(as produced by Collins’ parser)
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Synchronous Phrase Structure Grammar

e English rule

NP — DET JJ NN
e French rule

NP — DET NN JJ
e Synchronous rule (indices indicate alignment):

NP — DET; NNg JJ3 | DETy JJ3 NNo
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Synchronous Grammar Rules

e Nonterminal rules

NP — DET; NNo JJ3 | DET1 JJ3 NNo

e [erminal rules

N — maison | house

NP — la maison bleue | the blue house

e Mixed rules

NP — la maison JJ; | the JJ; house
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Tree-Based Translation Model

e Translation by parsing

— synchronous grammar has to parse the entire input sentence
— output tree is generated at the same time
— process is broken up into a number of rule applications

e Translation probability
p(TREE,E,F) = H p(RULE;)

e Many ways to assign probabilities to rules
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Aligned Tree Pair
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Ich werde lhnen die entsprechenden Anmerkungen aushandigen

PPER VAFIN PPER ART ADJ NN VVFIN
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Phrase structure grammar trees with word alignment
(German—English sentence pair.)
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Reordering Rule

e Subtree alignment

VP < VP
/N VBG RP PP NP
PPER NP VVFIN | |
= - . | : passing on
aushandigen

e Synchronous grammar rule
VP — PPERj NPy aushdndigen | passing on PPy NPs

e Note:

— one word aushandigen mapped to two words passing on ok
— but: fully non-terminal rule not possible
(one-to-one mapping constraint for nonterminals)
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Another Rule

e Subtree alignment

PRO <> PP
| T
Ihnen TO PRP
| |
to  you

e Synchronous grammar rule (stripping out English internal structure)

PRO/PP — lhnen | to you

e Rule with internal structure

TO PRP
PRO/PP — IThnen | |

to you
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Another Rule

e Translation of German werde to English shall be

VP < VP
/\ /\
VAFIN VP MD VP
| — | T
werde shall VB VP
‘ —
be

e Translation rule needs to include mapping of vP

= Complex rule

VAFIN VP; MD VP
VP — | | PN
werde shall VB VP,
|
be
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Internal Structure

e Stripping out internal structure

vP — werde VP | shall be vp,

=> synchronous context free grammar

e Maintaining internal structure

VAFIN VP; MD

VP — ‘
werde shall

= synchronous tree substitution grammar

VP
VB VP4

be
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Learning Synchronous Grammars

e Extracting rules from a word-aligned parallel corpus

e First: Hierarchical phrase-based model

— only one non-terminal symbol X
— no linguistic syntax, just a formally syntactic model

e Then: Synchronous phrase structure model

— non-terminals for words and phrases: NP, VP, PP, ADJ, ...
— corpus must also be parsed with syntactic parser

Tree-Based Models
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Extracting Phrase Translation Rules
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Extracting Phrase Translation Rules
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some comments =

—| ~ die entsprechenden Anmerkungen
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Extracting Phrase Translation Rules
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Extracting Hierarchical Phrase Translation Rules
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Formal Definition

e Recall: consistent phrase pairs

(e, f) consistent with A <
Ve,ce: (e, fi)eEA—fief
ANDVf; € f:(eifj) EA— e €E
AND Je; €€, f; € f: (e, f5) € A

o Let P be the set of all extracted phrase pairs (e, f)
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Formal Definition

e Extend recursively:

if (¢, f) € P AND (Esup, fsun) € P
AND € = €ppg 1 €sup T €post
AND [ = fors + fsus + frosr
AND € # ésus AND [ # feun

add (epRE + X + €posr, fPRE + X + fPOST) to P

(nOte: any of eppp, €posrs frre, OF frosr May be emptY)

e Set of hierarchical phrase pairs is the closure under this extension mechanism

Tree-Based Models
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Comments

e Removal of multiple sub-phrases leads to rules with multiple non-terminals,
such as:

Y — X1 X9 | X of X4

e Typical restrictions to limit complexity [Chiang, 2005]

— at most 2 nonterminal symbols
— at least 1 but at most 5 words per language
— span at most 15 words (counting gaps)
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Learning Syntactic Translation Rules
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Constraints on Syntactic Rules

e Same word alignment constraints as hierarchical models

e Hierarchical: rule can cover any span
& syntactic rules must cover constituents in the tree

e Hierarchical: gaps may cover any span
& gaps must cover constituents in the tree

e Many less rules are extracted (all things being equal)

Tree-Based Models
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Impossible Rules
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Too Many Rules Extractable

e Huge number of rules can be extracted
(every alignable node may or may not be part of a rule — exponential number of rules)

e Need to limit which rules to extract

e Option 1: similar restriction as for hierarchical model

(maximum span size, maximum number of terminals and non-terminals, etc.)

e Option 2: only extract minimal rules (" GHKM" rules)

Tree-Based Models
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Minimal Rules

S
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%p p
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I shall be passing on to you some comments

L4
L d

Ich werde Thnen die entsprechenden Anmerkungen aushdndigen

Extract: set of smallest rules required to explain the sentence pair
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Lexical Rule
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Ich werde Thnen die entsprechenden Anmerkungen aushdndigen

Extracted rule: PRP — Ich | I
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Lexical Rule
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Ich werde (hnen die entsprechenden Anmerkungen aushdndigen

Extracted rule: PRP — Thnen | you
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Lexical Rule
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Ich werde (Ihnen (die entsprechenden Anmerkungen aushdndigen

Extracted rule: DT — die | some
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Lexical Rule

S
VP
VP
VP
%P NP
e s
PRP  MD VB  VBG RP TO [ PRP\ [ DT NNS

I | I | I I I I \
| shall be passing on to jyou some comments

® e
- S
o
L4

Ich werde (Thnen (die entsprechenden = Anmerkungen aushidndigen

Extracted rule: NNS — Anmerkungen | comments
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Insertion Rule
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Ich werde (Ihnen (die entsprechenden = Anmerkungen aushdndigen

Extracted rule: PP — X | to PRP
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Non-Lexical Rule
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Extracted rule: NP — X; Xo | DT NNSs
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Lexical Rule with Syntactic Context

S

m—

N
PRP MD VB DT NNS
| | | | \
[ shall be ) r to | you 'some comments

Extracted rule: VP — X; X5 aushéndigen | passing on PP; NPj
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Lexical Rule with Syntactic Context
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Extracted rule: vP — werde X | shall be VP (ignoring internal structure)
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Non-Lexical Rule
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Extracted rule: s — X; X5 | PRP; VPs
DONE — note: one rule per alignable constituent
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Unaligned Source Words
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Attach to neighboring words or higher nodes — additional rules
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Too Few Phrasal Rules?

e Lexical rules will be 1-to-1 mappings (unless word alignment requires otherwise)
e But: phrasal rules very beneficial in phrase-based models

e Solutions

— combine rules that contain a maximum number of symbols
(as in hierarchical models, recall: " Option 1")

— compose minimal rules to cover a maximum number of non-leaf nodes
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Composed Rules

e Current rules X1 X9 = NP
/\
DT1 NNSq
die = DT entsprechenden Anmerkungen = NNS
some comments

e Composed rule
die entsprechenden Anmerkungen = NP

T

DT NNS

some comments

(1 non-leaf node: NP)

Tree-Based Models
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e Minimal rule:

3 non-leaf nodes:

VP, PP, NP

e Composed rule:

3 non-leaf nodes:

VP, PP and NP

Composed Rules

X1 X9 aushandigen = VP

K

PRP PRP PP, NP5

passing  on

Ihnen X; aushandigen = VP
PRP PRP PP NP1
passing on TO PRP
| |
to  you
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Relaxing Tree Constraints

e Impossible rule
X = MD VB

werde shall be
e Create new non-terminal label: MD+VB

= New rule

X = MD-+VB
A
werde MD VB
shall be
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Zollmann—Venugopal Relaxation

e |f span consists of two constituents , join them: X+Y
e |f span conststs of three constituents, join them: X+Y+7Z

e |f span covers constituents with the same parent x and include

— every but the first child v, label as X\Y
— every but the last child v, label as X/v

e For all other cases, label as FAIL

= More rules can be extracted, but number of non-terminals blows up

Tree-Based Models

40



Special Problem: Flat Structures

e Flat structures severely limit rule extraction

NP
DT NNP NNP NNP NNP
the Israeli Prime  Minister Sharon

e Can only extract rules for individual words or entire phrase

Tree-Based Models

41



Relaxation by Tree Binarization

NP
DT NP
‘ /\
the ~
NNP NP
‘ /\
Israeli ~
NNP NP
. /\
Prime NNP NNP

Minister Sharon

More rules can be extracted

Left-binarization or right-binarization?
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Scoring Translation Rules

e Extract all rules from corpus

e Score based on counts

— joint rule probability: p(LHS, RHS ¢, RHS,)

— conditional rule probability: p(RHS ¢, RHS.|LHS)

— direct translation probability: p(RHS.|RHS ¢, LHS)

— noisy channel translation probability: p(RHS ¢|RHS,, LHS)
— lexical translation probability: [ [, cp.s, P(€i|RHSf, a)

Tree-Based Models
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Summary

e Synchronous Grammars provide a natural analysis for many translation
phenomena, but come at the cost of added complexity and restrictions.

e Syntactic information can be used to improve translation, but noisy parse trees
and alignments can hurt translation performance.
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