Handling Overlapping Parallel Corpora

Mark Fishel, Heiki-Jaan Kaalep

University of Tartu, Estonia

Overview

- Overlapping parallel corpora?
- Handling them?
- Implementation
- Experiments
- Corpora analysis
- MT

Overlapping Parallel Corpora?

Corpus A		Corpus B	
		English	Estonian
English	Estonian	oses are red	roosid on punased
roses are red,	roosid on punased,	is line got lost	kannikesed on sinised
violets are blue,	kannikesed on sinised ;	pause >	< paus >
corpora are great,	korpused on toredad -	orpora are	korpused on
and so are you!	nagu sinagi !	great !	toredad -
		nd so are you!	nagu sinagi!

Figure 2.1: An example of overlapping parallel corpora with the correspondence of the two corpora shown. Second sentence pair of corpus B is an erroneous alignment.

Source

- Same source documents, corpora created independently
- Same corpus aligned independently

Problems

- Minor text differences
- Typos corrected/added
- Special symbols handled differently
- Different sentence alignment depths
- Added/omitted sentence pairs

Benefits

- Increase segmentation depth
- Find potential sentence alignment error spots
- Combine corpora
- Check/improve one corpus by comparison to the other

Some examples from real life

- JRC-Acquis corpus
- Aligned with Vanilla and HunAlign alternatives
- Hunglish and JRC-Acquis
- CzEng and JRC-Acquis
- SUBTITLES
- CzEng, Hunglish, OPUS
- Kind of a special case

Method of processing

Method of processing

- Align language-parts independently
- N -to-M edit distance sentence matching
- Adding/omitting weight=1
- Replacement weight = sentence pair distance

- Sentence distance = approximate matching with general edit distance
- Weight("," -> ".") = small
- Weight("D" -> "d") = small
- Weight("3"->"6") = really big

Optimization

- Head \& tail
- Anchor-points
- Trimming the corners
- Traverse with a "front", quit if threshold exceeded

Method of processing

- Align the alignments
- Simple Levenstein distance

Implementation: CorporAl

- Aligns parallel corpora to each other
- Having an alignment
- Outputs it or
- Uses it to generate a combined corpus

Combining corpora

- Requires exact behavior specified
- Include snt. pairs from just one corpus?
- Include snt. pairs that match?
- 3 sentences matched 2 - include what?
- Include snt. pairs that did not match and how?
- mismatch consists of 3 vs 2 sentences - include what?

Combining corpora

- Requires exact behavior specified
- Include snt. pairs from just one corpus?
- Include snt. pairs that match?
- 3 sentences matched 2 - include what?
- Include snt. pairs that did not match and how?
- mismatch consists of 3 vs 2 sentences - include what?
- Max-size vs Max-accuracy

Corpora analysis

- UT vs JRC corpus (Est-Eng)

UT+JRC2, et-en	\#docs	\#snt pairs	\#en words	\#et words
Just UT	2048	134684	$3.12 \cdot 10^{6}$	$2.17 \cdot 10^{6}$
Just JRC2	5807	205025	$4.86 \cdot 10^{6}$	$3.25 \cdot 10^{6}$
Common UT	2009	93152	$1.88 \cdot 10^{6}$	$1.27 \cdot 10^{6}$
Common JRC2	2009	68165	$1.67 \cdot 10^{6}$	$1.09 \cdot 10^{6}$
Max-size	2009	98946	$2.03 \cdot 10^{6}$	$1.36 \cdot 10^{6}$
Max-acc	2009	56234	$1.35 \cdot 10^{6}$	$0.88 \cdot 10^{6}$

	UT	JRC2
\emptyset	7.12%	9.89%
$0-1$	0.00%	8.25%
$1-0$	32.57%	0.00%
$1-1$	59.30%	81.04%
$1-2$	0.06%	0.17%
$2-1$	0.91%	0.62%
$2-2$	0.00%	0.00%
$3-1$	0.01%	0.00%

Corpora analysis

- JRC HunAline vs Vanilla (Est-Eng-Lat, Ger-Eng)

JRC3, de-en	\#docs	\#snt pairs	\#de words	\#en words
Just Hun	4	66148	$0.84 \cdot 10^{6}$	$0.80 \cdot 10^{6}$
Just Van	83	3716	$0.11 \cdot 10^{6}$	$0.08 \cdot 10^{6}$
Identical	14733	614199	$13.79 \cdot 10^{6}$	$15.03 \cdot 10^{6}$
Common Hun	8598	658532	$15.75 \cdot 10^{6}$	$16.97 \cdot 10^{6}$
Common Van	8598	621816	$15.65 \cdot 10^{6}$	$16.94 \cdot 10^{6}$
Max-size	8598	658583	$15.75 \cdot 10^{6}$	$16.97 \cdot 10^{6}$
Max-acc	8072	575749	$14.19 \cdot 10^{6}$	$15.67 \cdot 10^{6}$

	JRC3 de-en	
	Hun	Van
\emptyset	11.9%	7.8%
$0-1$	0.0%	0.0%
$1-0$	0.6%	0.0%
$1-1$	86.7%	91.8%
$1-2$	0.0%	0.0%
$2-1$	0.8%	0.4%
$2-2$	0.0%	0.0%

Influence on MT

- Overlapping corpora cannot be concatenated
- data distribution gets skewed
- freq. of the samples present in both parts increased relative to everyone else
- Baseline
- snt. pairs from just corpus A +
snt. pairs from just corpus B +
snt. pairs from the overlapping part of
either corpus B or corpus A

Experiment setup

- Baseline-1 and baseline-2 (from both corpora)
- vs max-accuracy and max-size
- Moses and Joshua default
- MERT
- GIZA++ default
- SRI LM 5-gram Kneser-Ney discounting
- 2500 snt. pairs in dev and test sets

Influence on MT

Joshua

Influence on MT

Moses

Joshua

Influence on MT

Influence on MT

Moses

Joshua

Influence on MT

Joshua

Implementation

- PERL script
- corporal.sf.net

Future work

- Currently matches both language parts and looks for matches/mismatches
- Could be used to generate a Greek-German Europarl
- Extend to non-parallel corpora
- treat text as language-1 and markup as language-2
- combine OR
- generate e.g. corpus, annotated morphologically AND syntactically

Thank you!

