Joshua:

Open Source Toolkit for Parsing-based Machine Translation

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane Schwartz, Wren Thornton, Jonathan Weese, and Omar Zaidan

Highlights

- Fully-featured decoder
- SCFG decoder in the style of Heiro Chiang (2007)
- n-gram language model integration
- Attempts to minimize external dependencies
- Implemented our own MERT and grammar extraction
- Currently only requires Giza++ and SRILM
- Written in Java
- Goals are to be scalable, easy to extend

Synchronous CFGs

Generalize context free grammars so they generate pairs of related strings

- Useful for specifying relationship between languages
- Formal definition:
- T_{s} : a set of source-language terminal symbols
- T_{t} : a set of target-language terminal symbols
- N : a shared set of nonterminal symbols
- A set of rules of the form $X \rightarrow\langle\alpha, \beta, \sim, w\rangle$
- $X \in N$
- α is a sequence source terminals and non-terminals
- β is a sequence of target terminals and non-terminals
- ~ is a one-to-one correspondence between the non-terminals
- w is a weight or probability assigned to the rule

Example SCFG

	Japanese	English
$\mathrm{S} \rightarrow$	$\mathrm{NP}(1) \mathrm{VP}(2)$	$\mathrm{NP}(1) \mathrm{VP}(2)$
$\mathrm{S} \rightarrow$	$\mathrm{S}(1) \mathrm{COMP}(2)$	$\mathrm{COMP}(2) \mathrm{S}(1)$
$\mathrm{VP} \rightarrow$	$\mathrm{NP}(1) \mathrm{V}(2)$	$\mathrm{V}(2) \mathrm{NP}(1)$
$\mathrm{NP} \rightarrow$	gakusei-ga	student
$\mathrm{NP} \rightarrow$	sensei-ga	teacher
$\mathrm{V} \rightarrow$	odotta	danced
$\mathrm{V} \rightarrow$	itta	said
$\mathrm{COMP} \rightarrow$	to	that

Heiro-style rules

Currently, only support Heiro-style rules with single non-terminal

- Not as nice as linguistically motivated rules, but useful for things like reordering

[^0]
Extracting Heiro rules

（与北韩有邦交， have diplomatic relations with North Korea）
（邦交，diplomatic relations）
（北 韩，North Korea）
$X \rightarrow$ 与 X_{1} 有 X_{2} ， have X_{2} with X_{1}

Extracting Heiro rules

澚是与北韩有帮的少国之

（与北韩有邦交，
have diplomatic relations with North Korea）
（邦交，diplomatic relations）
（北 韩，North Korea）
$X \rightarrow$ 与 X_{1} 有 X_{2} ，
have X_{2} with X_{1}

- Large number of rules
- Decreases time/space efficiency
- Spurious ambiguity
- Decreases time efficiency

- Pollutes n-best lists
- Ad hoc constraints:
- Initial phrases ≤ 10 words, rules ≤ 6 symbols
- Require an aligned terminal
- Limit to two nonterminals, nonadjacent
- Integration of an n-gram language model is difficult under SCFGs
- Using an n-gram LM generally makes translation quality much better
- We do not construct a translation in a left-to-right fashion as in phrase-based SMT

n-gram language model

n-gram language model

n-gram language model

LM state in chart parsing

- Decoding takes place via chart parsing
- Chart parsing
- Decoder maintains a chart, which contains an array of cells
- A cell maintains a list of items
- Derivations are stored in a structure called a hypergraph.
- State of an Item
- Source span
- Left hand side nonterminal symbol
- Left/right LM state

Example Derivation

Other Bells and Whistles

Beam and cube pruning Huang and Chiang (2007)

- Built in minimum error rate training och and Ney (2003)
- Modular, so easily allows optimization to objective functions other than Bleu Zaidan (2009)
- Suffix array indexing of the parallel corpus Lopez (2007)
- Allows on-the-fly look up of translation rules
- n-best extraction from hypergraphs chiang (2007)
- Equivalent LM state maintenance Liand Khudanpur (2008)
- Support for parallel decoding

Decoding Speed

Training data

- Task: Chinese to English translation
- Sub-sampled from parallel corpus containing approx 3M sentence pairs
- obtained 570k sentence pairs
- Number of translation rules: 3M
- LM data: Gigaword and English side of the parattel
- Number of n-grams in LM: 49M

38 times faster than the baseline!

- Speed and translation quality comparison:

| Decoder | Speed
 (sec/sent) | BLEU-4 | |
| :---: | :---: | :---: | :---: | :---: |
| | MT03 | MT03 | |
| Python | 26.5 | 34.4% | 32.7% |
| Java | I .2 | 34.5% | 32.9% |
| Java (parallel) | 0.7 | | |

Current directions

- Recreating Syntax-Augmented Machine Translation Zollmann and for more linguistically motivated translation rules
- Implementing Bloom Filter Language Models Talbot and Osborne (2007) to allow much larger LMs to be used with less memory
- Integrating Minimum Bayes Risk Re-ranking of n-best translations extracted from hypergraphs
- Scaling to a $1,000,000,000$ word parallel corpus Callison-Burch (2009)

Where to get the software

- Subversion repository at
- http://sourceforge.net/projects/joshua
- Quick installation instructions are in
- joshua/trunk/INSTALL.txt
- Instructions on running with sample grammar are in
- joshua/trunk/README.txt
- For support write to
= Joshua_support@googlegroups.com

Thanks!

Happy hacking!

[^0]: *Thanks to David Chiang for Hiero slides

