and Data Selection in Large SMT Systems

Smoothing

H. Schwenk

Introduction

Task

Architectur Overview

Data selection LM TM

 CSLM

Architecture Results

Conclusions

Smoothing and Data Selection in Large SMT Systems

Holger Schwenk

LIUM, University of Le Mans, France

Holger.Schwenk@lium.univ-lemans.fr

May 14, 2008

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Plan

- Introduction and motivation
- NIST task
- Baseline architecture
- Data selection/emphasizing
 - language modeling
 - translation models
- Smoothing techniques
 - language modeling
- Perspectives

Introduction

Systems H. Schwenk

Smoothing and Data Selection

in Large

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Statistical Machine Translation

- All knowledge is automatically extracted from representative data:
 - bitexts: existing human supplied translations (100k-200M)
 - monolingual data: used for the LM, usually journals or WEB data (10M–10G)
- Estimate probability distributions from this data:
 - phrase table with various scores
 - *n*-gram language model

Introduction

Systems H. Schwenk

Smoothing and Data Selection

in Large

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Probability estimation

- Relative frequency
 - high variance, low bias
 - overestimation of rare events
 - no generalization to unseen events
- Some kind of smoothing is needed
 - common practice in language modeling
 - but not (yet) frequently used for the translation model
 - some work has shown possible improvements for instance [Foster el al, EMNLP'06]

Introduction

Data selection/emphasizing

- Data often comes from a large variety of sources
 - in- versus out-of-domain
 - old versus recent sources
 - high quality human versus approximate translations
 ...
- Large variations in size
- It seems suboptimal to mix all these data sources and to use them uniformly
- \Rightarrow How to weight the data sources in function of their relevance to the task ?

and Data Selection in Large SMT

Smoothing

Systems H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Task Description

NIST Open MT evaluation

Smoothing and Data Selection

in Large SMT Systems

H. Schwenk

Task

LM TM

Architecture Results

- yearly evaluations performed by NIST since 2001
- focus on translation from Mandarin and Arabic to English
- large amounts of training data available:
 - 175M words of bitexts and 3.5G of newspaper texts
 - $\rightarrow~$ considerable computational resources are needed
 - approaches that achieved improvements on smaller task may not help anymore or be to expensive to apply
- carefully selected test data with four high quality human translations
- \Rightarrow NIST evaluations have played a key role to advance the field by providing a common test bed and infrastructure to compare the most promising approaches

Data

Bitexts

- Various small corpora (9.1M words)
- Development data from previous evaluations (2M words)
- ISI automatically aligned data (35M words)
- UN corpus (130M words)
- \Rightarrow phrase-table with 228M entries (6.2G gzipped)

Monolingual data

- English part of bitexts (175M words)
- Gigaword corpus of newspaper texts (3.2G words)
- Parts of Google n-grams (139M out of 1T n-grams)
- \Rightarrow 4-gram back-off LM with 264M 4-grams, file size of 5.5GB

Systems H. Schwenk

Smoothing and Data Selection

in Large

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

System Architecture

Design decisions of the system

- Pure statistical system without usage of linguistic knowledge (yet)
- Validate system architecture and algorithms that did work well on small (IWSLT) and medium sized tasks (Europarl)
- Build a state-of-the-art system based on open-source
- Single system without system combination
- Careful use of available data
 - do we need quality or quantity ?
 - reasonably compact representation of the data

Smoothing and Data Selection in Large

SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

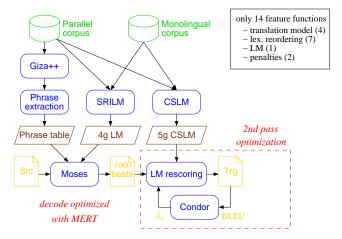
Data selection LM TM

CSLM

Architecture Results

Conclusions

System Architecture Overview



in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection

LM TM

CSLM

Architecture Results

Conclusions

Data Selection in the LM $% \mathcal{M}$

Data selection

- Merge all data and build one LM
 - \rightarrow important but small data is outvoted by large corpora
- LM combination:
 - select common word list
 - train individual LM on each subcorpus
 - linear combination:

$$P_{LM}(w_3|w_1w_2) = \sum_i \lambda_i P_{LM_i}(w_3|w_1w_2)$$

• log-linear: each LM is a feature function among others

$$P = \sum_{j} \log P_{j} + \underbrace{\sum_{i} \lambda_{i} \log P_{LM_{i}}(w_{3}|w_{1}w_{2})}_{P_{LM}}$$

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection

LM TM

CSLM

Architecture Results

Conclusions

Data Selection in the LM

Theoretical comparison

	linear	log-linear	
probabilities:	added	multiplied	
criterion:	perplexity	BLEU	
optimisation:	EM	numerical	
# of models:	can be merged	as much	
	into one	as submodels	

in Large SMT Systems

H. Schwenk

Introduction

Task

Architectur Overview

Data selection

LM TM

CSLM

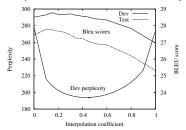
Architecture Results

Conclusions

Data Selection in the LM

Experimental comparison

• Combining europarl and news-commentary LMs:



- Experimental comparison is not always clear
- Linear combination is usually as good and much easier to realize

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection

LM TM

CSLM

Architecture Results

Conclusions

Data Selection in the LM

Example: NIST task

- bitexts: 175M
 - Gale translations (1.1M words)
 - development data from previous years (0.9M words)
 - various news wire data (8.1M words)
 - automatically extracted parallel texts from ISI (35M words)
 - UN data (130M words)
- Gigaword newspaper corpus: 3.4G
 - divided into 7 subsets to keep estimation tractable
- Google *n*-grams: 1T
 - selected subset of 139M 4-grams
- \Rightarrow total of 12 submodels

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection

LM TM

CSLM

Architecture Results

Conclusions

Data Selection in the LM $% \mathcal{M}$

Result summary

	train	LM	Px dev06		
corpus	#words	size	all	Nwire	WEB
bitexts pooled	175M	666 M	189.3	145.7	351.3
idem w/o UN	45M	278M	183.0	140.2	343.7
bitexts ipol	175M	309 M	161.7	131.0	266.2
+ GigaWord	3.4G	3.7G	128.1	104.7	206.5
+ Google	(1T)	5.5G	114.5	99.0	161.7

- Pooled LM is better without the UN data !
- It's very important to consider the heterogeneous data in the bitexts, in particular for the WEB part
- Google n-grams achieve decrease of 11%, mainly on WEB

in Large SMT Systems

H. Schwenk

Introduction

Task

Architectur Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Data Selection in the TM

How to account for the heterogeneous data ?

- multiple phrase tables
- linear interpolation of seperately trained phrase tables
- some kind of discriminative training

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Data Selection in the $\mathsf{T}\mathsf{M}$

Multiple phrase tables

- build a phrase table per source and provide multiple tables to Moses
- log-linear combination
- MERT training should weight correctly the different models
- but each table provides 5 scores
 - $\rightarrow\,$ high dimensional optimisation problem (even worse when we also consider lexical reordering)
 - Unrealistic for more than three models
- alignments risk to be suboptimal for small corpora
- contradictory experimental results

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Data Selection in the TM

Linear interpolation of seperately trained phrase tables

- motivated by the procedure used for LMs
- how to judge the quality of a phrase-table without runing a full system (something equivalent to perplexity) ?
- how to estimate the coefficients ?
- merging into one phrase table is not obvious
- alignments risk to be suboptimal for small corpora

 \Rightarrow often only one phrase table is estimated on the pooled data

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Data Selection in the TM

ISI automatically extracted parallel data

- found pseudo parallel data in the English and Arabic Gigaword corpus
- algorithm [Munteanu & Marcu, CL 2005]:
 - consider time window, word dictionnary, IBM1 alignements, max entropy classifier, ...
- 1.1M sentences were extracted (35M words)
- confidence scores are provided

Smoothing and Data Selection in Large SMT

Systems H. Schwenk

Introduction

Task

Architectur Overview

Data selection LM TM

CSLM

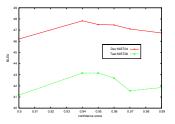
Architecture Results

Conclusions

Data Selection in the $\mathsf{T}\mathsf{M}$

How to best use the ISI automatically aligned bitexts ?

- Keep only sentences with a confidence score superior to a threshold
- Initial experiments with Gale manual translations only:



 \Rightarrow Gain of 2 points BLEU when not all ISI data is used

in Large SMT Systems

H. Schwenk

Introduction

Task

Architectur Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Data Selection in the $\mathsf{T}\mathsf{M}$

Result summary (LM trained on all bitexts + Gigaword)

Bitext	#words	Dev06
Gale+nw	9M	43.02
Gale+nw+ISI	35M	45.09
Gale+nw+ISI+dev	36M	45.38
Gale+nw+ISI+dev+un	165 M	45.98

- Filtered ISI automatic texts are pretty useful
- Adding old Dev data gives 0.3 improvement
- ightarrow Pretty good result with core bitexts of 36M words only
 - Only +0.6 BLEU with 129M words of UN data
- → High quality in-domain data seems to be more important than large amounts of general data

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Theoretical drawbacks of back-off LM:

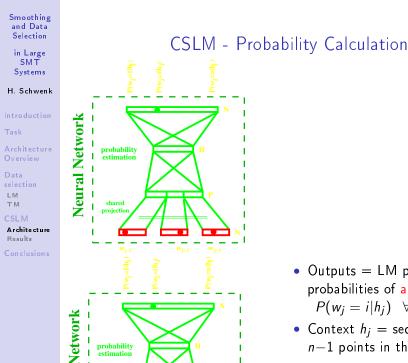
• Words are represented in a high-dimensional discrete space

Continuous Space LM

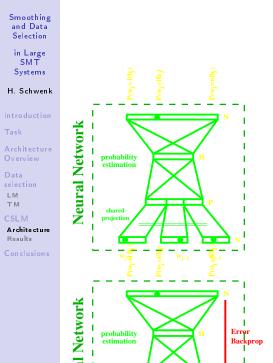
- Probability distributions are not smooth functions
- Any change of the word indices can result in an arbitrary change of LM probability
- \Rightarrow True generalization is difficult to obtain

Main idea [Bengio, NIPS'01]:

- Project word indices onto a continuous space and use a probability estimator operating on this space
- Probability functions are smooth functions and better generalization can be expected



- Outputs = LM posterior probabilities of all words: $P(w_i = i | h_i) \quad \forall i \in [1, N]$
- Context h_i = sequence of n-1 points in this space



CSLM - Training

• Backprop training, cross-entropy error

$$E = \sum_{i=1}^{N} d_i \log p_i$$

+ weight decay

- \Rightarrow NN minimizes perplexity on training data
- continuous word codes are also learned (random initialization)

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Continuous Space LM

Some details (Computer Speech and Language, pp 492–518, 2007)

- Projection and estimation is done with a multi-layer neural network
- Still an *n*-gram approach
- But LM probability for any *n*-gram can be calculated without backing off
- Usually trained on the same data than the back-off LM using a resampling algorithm
- Efficient implementation is very important
- Used in second pass as an additional feature function
- Quite succesful in several tasks and languages

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

CSLM - Training

Training Procedure

- Same training data than back-off LM (bibtexts + Giga)
- Resample algorithm (HLT/EMNLP'05 paper)
- Shortlist of length 8k
- Trained several networks with different context sizes
- Interpolated with 4-gram back-off LM

Incorporation into MT System

- *n*-best list rescoring
- Feature function coefficients are again optimized

CSLM

Selection in Large SMT Systems

Smoothing and Data

Result summary - perplexities

H. Schwenk

Introduction	
Task	corpus
Architecture	bitexts pooled
Overview	idem w/o UN
Data selection	bitexts ipol
LM	Circl

тM

Architecture Results

	train	LM	Px dev06		
corpus	#words	size	all	Nwire	WEB
bitexts pooled	175M	666 M	189.3	145.7	351.3
idem w/o UN	45M	278M	183.0	140.2	343.7
bitexts ipol	175M	309 M	161.7	131.0	266.2
+ GigaWord	3.4G	3.7G	128.1	104.7	206.5
+ Google	(1T)	5.5G	114.5	99.0	161.7
+ CSLM	3.4G	+1G	98.3	85.3	137.4

- It seems to be very important to consider the heterogeneous data in the bitexts, in particular for the WEB part
- Google n-grams achieve decrease of 11%, mainly on WEB
- CSLM gives 14% improvement on top of this large LM

CSLM

Systems H. Schwenk

Smoothing and Data Selection

in Large

Introduction

Task

Architectur Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Result summary - BLEU scores

		Eval08		
System	All	NW	Web	All
Baseline	43.99	46.84	34.51	41.69
beam tuning	44.40	47.27	34.90	42.13
+ Google LM	44.70	47.22	36.11	41.90
+ CSLM	45.96	48.56	36.69	42.98

• Tuning of beam affects both subsets

- Filtered Google LM mainly improves BLEU on WEB data
- CSLM gives overall improvement of 1.1 BLEU on test data on top of the completely tuned system

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

 ${\sf Conclusions}$

Conclusion and Perspectives

Conclusion

- Data selection/emphasizing is very important
- There is a common practice for LM:
 - train individual models,
 - optimize perplexity with EM procedure
 - linear interpolation + merge into one model
 - $\rightarrow\,$ apply this procedure consequently
- but there is no satistfactory straight-forward procedure for the translation model
- \Rightarrow Research in this direction is needed

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

Conclusions

Conclusion and Perspectives

Conclusion

- Automatically aligned data can be very helpful
- But it must be carefully selected
- Using too much can actually hurt
- \Rightarrow Continue to explore the usage of "found bitext"
- Nice result with CSLM: careful smoothing and good generalisation is important even with large amounts of training data
- \Rightarrow Can we do something similar with the translation model ?

in Large SMT Systems

H. Schwenk

Introduction

Task

Architecture Overview

Data selection LM TM

CSLM

Architecture Results

 ${\sf Conclusions}$

Conclusion and Perspectives

Perspectives

- Phrase-based translation models are still too simple:
 - data emphasizing is difficult
 - no smoothing
 - bad generalization to unseen phrases (singular \rightarrow plural)
- Possible research directions
 - factored representations of translation and language model
 - continuous space translation model
 - discriminative approaches