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Why pay the Syn - tax

Surface form n-gram models are frustrating

P(sweater|blue) = X
P(sweater|red) =?
P(sweater|checkered) =?

“Distortion” often distorts sentences

Lexical / local distortion
Models are too weak to effectively model translation
equivalence
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Typed Hierarchical Structure

Model language as a hierarchical, typed process

Prob. context free grammars rules are natural building blocks

VP → ne x1 pas, does not VBx1

Example from “What’s in a translation rule” Galley et al.
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Independence and Constraint

VP → ne x1 pas, does not VBx1

Translation of “ne ... pas” does not depend on words in VB

Only (and any) VBs can be used in this structure

Translate + Reorder
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Syn CFGs formalism

Probabilistic Synchronous Context Free Grammars

X → 〈γ, α,∼,w〉
X ∈ N is a nonterminal
γ ∈ (N ∪ TS)∗ sequences of TS , N
α ∈ (N ∪ TT )∗ sequence of TT , N
∼: {1, . . . ,#NT(γ)} → {1, . . . ,#NT(α)} is a one-to-one
nonterminal mapping
w ∈ [0,∞) is a nonnegative real-valued weight assigned to the
rule

VP → does not VBx1, ne x1 pas
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How do we translate?

Bottom up chart parsing of source

Source sequence → nonterminals and associated target
translation

Read translation from resulting parse tree
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Decoding

il ne va pas

Initial source sentence
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Decoding

VB → go

il ne va pas

VB → va, go
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Decoding

VP → does not VB
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VB → go

il ne va pas

VP → ne VBx1 pas, does
not x1
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Decoding

S → he VP
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VP → does not VB
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VB → go

il ne va pas

S → il VPx1 , he x1

Just one possible derivation!
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Categories on Demand: Decoding vs Alignment Graph

S → he VP
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VP → does not VB
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VB → go

il ne va pas

S

qqqqqqq
MMMMMMM

NP VP

sss
sss

ss

KKK
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PRN AUX RB VB

he does not

qqqqqqq
MMMMMMM go

qqqqqqq

il ne va pas
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What kind of output do you want?

If you want real trees · · ·
Multilevel rules: Tree Substitution Grammars

Non-contiguous units: Tree Insertion Grammars

Example from Chiang, Knight 2006
dat Jan Piet de kinderen zag helpen zwemmen
that John saw Peter help the children swim

If you don’t care about trees · · ·
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Flavors of Target Syntax Based MT

In the beginning there were · · ·
Target language parse trees

“Syntax-Based” : tree-driven
Galley 2004, Galley et al. 2006, Marcu et al., 2006
Doesn’t respect bilingual phrases!

Phrase pairs, target language parse trees

DOP-ish models : tree-informed
Extract rules from evidence (alignments, parse trees, phrases)
Chiang 2005, Zollmann 2006
Doesn’t respect target tree structure
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Grammar Rule Extraction

How can we learn probabilistic grammar rules?

What do we learn them from?

French: Il ne va pas
English: He does not go
Phrases (and their spans)

il, he does
ne va pas, does not go

Goal: Annotate and Compose all initial rules
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Alignment Graph

S
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Annotate and Compose

For each phrase pair, assign a syntactic category based on the
target words

If we can’t find a category...

CCG style “slash” categories
Or ’X+Y’ and ’X+Y+Z’
Collect evidence from parse tree’s base

Labels can come from anywhere!

Compose multiple phrase pairs → complex rules.
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S → he does RB + VBx1, il x1

il ne va pas

he

does

not

go

�

�i

�
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S

RB+VB

VB
VP

NP+AUX

NP
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Alignment Graph

S

qqqqqqq
MMMMMMM

NP VP

sss
sss

ss

KKK
KKK

KK

PRN AUX RB VB

he does not

qqqqqqq
MMMMMMM go

qqqqqqq

il ne va pas

INITIAL+ANNOTATED

PRN → he, il
VB → go, va
VP → does not go, ne va
pas
S → he does not go, il ne
va pas

GENERALIZE

S → he VPx1, il x1
VP → does not VBx1, ne
x1 pas
PRN+AUX → il, he does
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Sample extracted rules

S → PRNx1 ne VBx2 pas , x1 does not x2
(handles ne pas construction)

PRN+AUX → PRNx1 , x1 does
(adds an aux in English)

S → PRN + AUXx1 RB + VBx2 , x1 x2
(facilitates nonlexical phrase for PRN+AUX)

RB+VB → ne va pas , not go
(fully lexicalized construction)

S → PRN + AUXx1 ne va pas , x1 not go
(facilitates use of PRN+AUX)

RB+VB → ne VBx1 pas , not x1
(alternative ne pas construction)

S → il ne va pas , he does not go
(whole sentence translation)
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Decoding with Alternatives

il ne va pas

Initial
source
sentence
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Decoding with Alternatives

VB → {go,goes,going} |Cell | = 3

il ne va pas

VB → va,
go

VB → va,
goes

VB → va,
going
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Decoding

VP → {does not},{no} VB{go,goes,going} |Cell | = 6
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VB → {go,goes,going}

il ne va pas

P(go|does not)

P(go|not)

· · ·
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Decoding

S → {he,it} VP{· · · } |Cell | = 12
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VP → {does not},{no} VB{go,goes,going}
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VB → {go,goes,going}

il ne va pas

Just one possible derivation (of rules)!
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Integration of N-Gram Model

Integrating N-Gram language model increases the virtual
nonterminal space

Theoretical Runtime: O
(
s3

[
|N ||TT |2(n−1)

]K
)

K : maximum number of NT pairs per rule
s : source sentence length.
N : set of non-terminals
T : set of terminals
n : order of n-gram LM

N = 38K and n = 3 + +
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Chart Structure

Each cell i , j contains · · ·
A set of target non-terminal categories Xa, Xb · · ·
Each target non-terminal contains equivalence classes · · ·

〈Xa, tleft , tright , i , j〉0
Where each pair tleft , tright is unique

Each equivalence class contains many chart items
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Formation of a Chart Item

Rule: XS → X 1
np X 2

pp X 3
vp ↔ X 1

np X 3
vp X 2

pp

Example from Zhang et al.

Terminal Productions: X 1
np X 2

pp X 3
vp

〈Xpp, [with Sharon], [with Sharon], i , j〉
〈Xpp, [in Sharon], [in Sharon], i , j〉
...
〈Xnp, [held a], [a meeting], i , j〉
〈Xnp, [held-up a], [a meeting], i , j〉

Number of chart items formed: | Xnp | × | Xpp | × | Xvp |
We need need to compute LM costs for each permutation
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Cube Pruning - Chiang, 2005

“If an item falls outside the beam, then any item generated
using a lower...” · · ·
Only generate the K-Best items of | Xnp | × | Xpp | × | Xvp |

Maintains an ordered set of equivalence classes
Better K-Best Extraction from Huang, Chiang 2005
Optimal K would be retrieved if not for the LM interaction

Pruning occurs across rules

Prune away whole equivalence classes!
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Two Pass Decoding

Two pass decoding:

Don’t increase virtual nonterminal space during 1st pass
Maintain un-explored chart item alternatives during 1st pass

New Runtime: O
(
s3|N |K

)
Search the resulting packed forest for new translations using a
left-to-right heuristic search

Venugopal, Zollmann, Vogel, NAACL 2007

Allows integration of flexible, high-order models
Limits LM calculations to successful decoding derivations
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Decoding

S → {he,it} VP{does not go} |Cell | = 12
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VP → {does not},{no} VB{go,���goes,���going}
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VB → {go,goes,going}

il ne va pas

Only propagate 1 chart item per cell

Keep the rest of them around for second stage search

Ashish Venugopal MT Marathon, 04/17/07



Why pay the Syn - tax
Learning Syntax Augmented Grammars

Decoding with Syntax Augmented Grammars
Widening the S(A)MT pipeline

Tools and Conclusion

Second Stage Search

S → {he,it} VP{does not go} |Cell | = 12
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VP → {does not},{no} VB{go,���goes,���going}
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VB → {go,goes,going}

il ne va pas

Only propagate 1 chart item per cell

Keep the rest of them around for second stage search

Results in a hypergraph of alternative sentence spaning parses
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Why Left-to-Right Heuristic Search

Left-to-right search allows integration of high-order LMs

This is better than doing N-Best extraction and then
re-scoring!

See Zollmann, Venugopal 2006 for improvements over
re-scoring.
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Left-to-Right Heuristic Search for N-Best Items

Traverse the parse forest in Griebach-Normal Form

Maintain a sentence spanning beam of trees

Xs0 → X 1
np X 2

pp X 3
vp ↔ X 1

np0 X 3
vp0 X 2

pp0

Xs0 · · · ↔ Powell X 3
vp0 X 2

pp0

Used X 1
np1 update LM P(Powell |〈s〉)

Xs0 · · · ↔ Bowell X 3
vp0 X 2

pp0

Used X 1
np2 : update LM P(Bowell |〈s〉)

...
|X 1

np| items added to the beam
Factor LM in to the real cost
Factor out the words used in the estimate
Update the LM estimate
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Measuring Impact

Two-stage search easily outperforms rescoring/naive pruning

Cube Pruning vs Two-stage search

Evaluate LM cache misses vs Model Cost
Evaluate total time vs Model Cost
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Experimental Results - Decoding

IWSLT Evaluation - BTEC travel domain corpus

120K Parallel sentences, 1.2M target words

Eval 500 sentences, average length 10.3 words

Signficance levels: approx 0.78 BLEU
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Two Pass Decoding - LM Cache Misses

IWSLT - LM Cache Misses 
Hierarchical
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SMT pipelines

SMT systems are component driven

SAMT: Alignments, Phrase Extraction, Parsing, Rule
Extraction

Each stage is considered as evidence for the next
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What does it mean to be evidence?

Each rule is associated with a feature vector

Translation = Parsing ' Finding best derivation of rules

p(D) =
pLM(tgt(D))λLM×

Q
r∈D

Q
i φi (r)

λi

Z(λ)

λ learned during MER - not during grammar induction

φ contains MLE and binary/count style features

Target word count, IsSyntacticRule, IsBalanced rule etc.
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What MLE style features do we use?

p̂(r | lhs(X )) : Probability of a rule given its l.h.s category

p̂(r | src(r)) : Probability of a rule given its source side

p̂(r | tgt(r)) : Probability of a rule given its target side

p̂(ul(src(r)), ul(tgt(r))| ul(src(r)) : Probability of the
unlabeled source and target side of the rule given its unlabeled
source side.

p̂(ul(src(r)), ul(tgt(r))| ul(src(r))) : Probability of the
unlabeled source and target side of the rule given its unlabeled
target side.

Where do the counts come from ?
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Softening our notion of evidence

Extracting a phrase doesn’t mean its correct!

Extracting a rule with such a such a phrase is not correct
either?

What about syntactic categories?

Parse “errors” assign incorrect labels?
And propagate to incorrect rule arguments!

We want a distribution over phrase composition,labeling
decisions
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Reflections on N-Best Lists and Parses

A phrase from “buggy” alignments is buggy

A phrase labeled from a “buggy” parse is buggy

First best parses often contain errors

Errors are usually the source of variance in n-best lists
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Posterior models for MLE feature estimation

N-Best alignments a1, ..., aN

GIZA assigned probs p(a1 | e, f ), ..., p(aN | e, f ) renormalized
to p̂(ai )

Same for parses p̂(πj)

cnt(r) =∑N
i=1

∑N′

j=1 p̂(ai ) · p̂(πj) ·


1 if r can be extracted from

e, f , ai , πj

0 otherwise

Now use cnt(r) in MLE estimates

Exploit packed structural properties to correctly, efficiently
calculate cnt(r)
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Experimental Results

IWSLT Evaluation - BTEC travel domain corpus

GIZA trained to Model 4, Charniak parser 1000 best list

Initial phrases based on Koehn 2003

So far, only varied N for alignments vs parses separately
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Experimental Results - Lexicon from 1st best, Model 4

N,N ′ #Rules #NTs Dev Test Time

1, 1 300K 1771 23.7 19.8 1145
1, 1 311K 1781 23.7 21.2 1,369

1..5, 1 490K 1894 24.3 21.0 2086
1..10, 1 582K 1947 24.3 20.1 2563
1..25, 1 747K 2026 24.4 20.1 3840
1..50, 1 911K 2072 24.8 21.1 5132
1..10, 1 1m 2212 26.0 22.2 13,406

1, 1..5 616K 2393 23.9 20.0 4291
1, 1..10 850K 2633 24.0 20.1 7237
1, 1..10 652K 2407 25.9 X 13,396

Table: Grammar statistics and translation quality (IBM-BLEU) on
development and test set and when integrating N-best alignments an
N ′-best parses. Decoding time in seconds is on all 500 sentences.
Experiments with model 4 in redAshish Venugopal MT Marathon, 04/17/07
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Some interesting rules

Rules that weren’t found in the 1-best list
IWSLT has non-punctuated source, punctuated targets

Figure: Top rules extracted by our method, but not the baseline.
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System Output
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System track record

Beating or matching phrase based baselines

Small and medium data tasks

Chinese-English IWSLT

(French/Spanish)-English Europarl

Chinese-English NIST
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IWSLT Chinese English

Rules Dev IBM-BLEU Test IBM-BLEU

X grammar 21.25 18.08
Pharaoh 22.0 19.3
SAMT 23.50 20.04

Table: Comparison of translation-models system using “SmartCase”,
evaluated on the official case and punctuation sensitive IBM-BLEU metric
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Spanish-English

2000 sentences Test 06 Spanish English Europarl

PhraseBased: 31.76

SyntaxAugmented: 32.15

Minimal impact of Re-ordering for Spanish

Development data (tuned)
Window 1: 31.98
Window 2: 32.24
Window 3: 32.30
Window 4: 32.26
Syntax: 32.48
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Chinese-English NIST

Chinese-English NIST Evaluation - 1 day worth of training
time - 3-gram LM on target side of data

Case Sensitive Offical NISTBLEU

No. Rules applicable to Dev and Test.
X: Style of Chiang 2005
Penn: Retains only those that are constituents
CCG+: Assigns categories to almost all lexical phrases

Grammar NTs Rules Time Dev (MT03) Test (MT05)

X 2 197K 1.9h 23.5 X
Penn 73 191K 0.3h 22.8 21.1
CCG+ 38,861 795K 0.9h 28.7 26.2
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Open Source Tools

All tools available at www.cs.cmu.edu/z̃ollmann/samt/

extractrules.pl - identify Syn CFG rules

fiilterrules.pl - score and prune rules

FastTranslateChart - Chart parser decoder, N-best lists, MER

MER - standalone MER toolkit
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