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Abstract

In the last years, statistical machine
translation has already demons-
trated its usefulness within a wide
variety of translation applications.
In particular, finite state models
are always an interesting framework
because there are well-known effi-
cient algorithms for their represen-
tation and manipulation. Never-
theless, statistical approaches have
rarely been performed taking into
account the linguistic nature of the
translation problem. This document
describes some methodological as-
pects of building category-based fi-
nite state transducers that are able
to consider a set of linguistic features
in order to produce the most linguis-
tically appropriate hypotheses.

1 Introduction

Machine Translation (MT) is a consolidated
area of research in computational linguistics
which investigates the use of computer soft-
ware to translate text or speech from one na-
tural language to another. The goal of MT
is very ambitious because it would involve a
reduction of the linguistic barriers in human
communication.

1This work was supported by the EC (FEDER)
and the Spanish projects TIN2006-15694-C02-01 and
the Consolider Ingenio 2010 CSD2007-00018

Despite their initial relative success, rule-
based systems were quickly challenged by
their rival inductive approaches, which adopt
some pattern recognition techniques to learn
the models. Statistical machine transla-
tion represents an interesting framework be-
cause the translation software is language-
independent, that is, different MT systems are
built if different parallel corpora are supplied.

Given a source sentence sJ
1

= s1 . . . sJ , the
goal of statistical machine translation is to

find a target sentence t̂
I

1 = t1 . . . tI , among all
the possible target strings tI

1
, that maximises

the posterior probability of tI
1

given sJ
1
:

t̂
I

1 = argmax
tI

1

Pr(tI
1|s

J
1 ) (1)

Since Pr(sJ
1
) is independent of tI

1
, the equa-

tion (1) can be rewritten to (2), using a joint
probability distribution that is modelled by
means of stochastic finite state transducers:

t̂
I

1 = argmax
tI

1

Pr(sJ
1 , tI

1) (2)

Despite the linguistic nature of languages
has been traditionally ignored in statistical
machine translation, there is some recent re-
lated work that tries to incorporate some lin-
guistic knowledge into a statistical framework
(Niessen, 2004; Gispert, 2006; Koehn, 2006).

The organization of this paper is as follows:
next section presents the statistical frame-
work; section 3 describes the methodologi-
cal aspects of building a category-based sys-
tem, where training and decoding steps are
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explained in depth; the experimental setup
and results are shown in section 4; finally, con-
clusions are briefly summed up at section 5.

2 Statistical framework

Machine translation can be seen as a process
of pattern recognition, where objects to be
tested are sentences from a source language.
These sentences should be coded in a process
of feature extraction in order to be classified
or described by a previously estimated model.

On the one hand, geometric feature extrac-
tion defines a real object s as a feature vector
where every observed feature is measured on s

and then annotated to the right position. On
the other hand, syntactic feature extraction
establishes a structural description of s, ac-
cording to some structure-based instructions.

Given that a text sentence s represents a
structural description, i.e. a string of symbols,
these word sequences have been traditionally
employed in the field of computational linguis-
tics as a result of a feature extraction process.

However, nobody ignores that the linguis-
tic nature of languages could be statistically
exploited in order to obtain some better mod-
els. In such a line, every word in a sentence is
expanded into a tuple of three different pieces
of information: on the one hand, the writ-
ten word itself, also known as surface form;
on the other hand, its base form, also re-
ferred in the literature as lemma; finally, a
linguistic feature vector reports information
about its lexical category together with a set
of linguistic properties, such as gender, num-
ber, etc. In this way, a traditional definition
of s = s1 . . . sJ would be replaced by an ex-
tended string s = (s1, m1, u1) . . . (sJ , mJ , uJ),
where mj stands for the lemma of word sj ,
and uj stands for its linguistic feature vector.

Given that a lemma can be seen as a lin-
guistic cluster, where words sharing the same
lemma are classified into the same cluster,
the vocabulary can be significantly reduced
by changing the words to their lemmas during
the estimation of the joint probability model.

Let s = (sJ
1
, mJ

1
, uJ

1
) and t = (tI

1
, nI

1
, vI

1
) be

a source and a target sentence respectively,
equation 2 can be tackled through a categori-

sation scheme:

Pr(sJ
1 , tI

1) = Pr(mJ
1 , nI

1) · Pr(uJ
1 |m

J
1 , nI

1) ·

Pr(vI
1 |m

J
1 , nI

1, u
J
1 ) ·

Pr(sJ
1 |m

J
1 , nI

1, u
J
1 , vI

1) ·

Pr(tI
1|m

J
1 , nI

1, u
J
1 , vI

1 , s
J
1 )

which, under certain assumptions, turns to:

Pr(sJ
1 , tI

1) ≈ Pr(mJ
1 , nI

1) · Pr(uJ
1 |m

J
1 ) ·

Pr(vI
1 |n

I
1) · Pr(sJ

1 |m
J
1 , uJ

1 ) ·

Pr(tI
1|n

I
1, u

J
1 , vI

1)

Lemma-based joint probability distribu-
tions Pr(mJ

1
, nI

1
) can be modelled by stochas-

tic finite state transducers, whereas spe-
cialised stochastic dictionaries can be esti-
mated to model uncategorising lemma-to-
word transformations nI

1
→ tI

1
, according

to a given source feature vector uJ
1
, assu-

ming that Pr(tI
1
|nI

1
, uJ

1
, vI

1
) is also indepen-

dent of vI
1
. This behaviour is based on a

Spanish↔Catalan machine translation sys-
tem (González, 2006) which assumes that lin-
guistic information is transferred from input
to output, remaining unaltered in most cases.

The equation (2) will then be expressed as:

n̂I
1 = argmax

nI

1

Pr(mJ
1 , nI

1)

t̂
I

1 = argmax
tI

1

Pr(tI
1|n̂

I
1, u

J
1 ) (3)

The search must be constrained in order
to perform first a lemma transduction oper-
ation, that is, translating from source to tar-
get lemmas, then turning lemmas into words,
through their corresponding feature vectors.

Specialised stochastic dictionaries can be
estimated following the maximum likelihood
approach in order to compute Pr(tI

1
|n̂I

1
, uJ

1
).

The specialisation criteria can be seen from
two equivalent points of view: on the one
hand, a stochastic dictionary can be trained
for every different target lemma, thus every
entry informs about how a feature vector can
be translated into a target word; or, maybe
more intuitively, training a lemma-to-word
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stochastic dictionary per each feature vector.
The calculation of Pr(tI

1
|n̂I

1
, uJ

1
) is carried out

by means of the contribution of all the indi-
vidual translation probabilities, that is:

Pr(tI
1|n̂

I
1, u

J
1 ) ≈

I∏

i=1

Pr(ti|n̂i, uαi
)

Formally, an alignment function α is a map-
ping α : i → j that assigns a source position
j to a target position i, αi = j. Alignments
are used as hidden variables in statistical ma-
chine translation models such as IBM mod-
els (Brown, 1990) or hidden Markov models
(Zens, 2002). Therefore, target lemmas be-
ing generated are able to know which source
position was responsible for their occurrence.

3 Probabilistic models

A weighted finite-state automaton is a tuple
A = (Γ, Q, i, f, P ), where Γ is an alphabet of
symbols, Q is a finite set of states, functions
i : Q → R and f : Q → R give a weight to the
possibility of each state to be initial or final,
respectively, and partial function P : Q×{Γ∪
{λ}} × Q → R defines a set of transitions
between pairs of states in such a way that each
transition is labelled with a symbol from Γ or
the empty string λ, and is assigned a weight.

A weighted finite-state transducer (Mohri,
2002; Kumar, 2006) is defined similarly to a
weighted finite-state automaton, with the dif-
ference that transitions between states are la-
belled with pairs of symbols that belong to
the cartesian product of two different (input
and output) alphabets, {Σ∪{λ}}×{∆∪{λ}}.

When weights are probabilities, and un-
der certain conditions, a weighted finite-state
model can define a distribution of probabi-
lities on the free monoid. In that case it is
called a stochastic finite-state model. Then,
given some input/output strings sJ

1
and tI

1
,

a stochastic finite-state transducer is able to
associate a probability Pr(sJ

1
, tI

1
) to them.

3.1 Inference of stochastic

transducers

The GIATI paradigm (Casacuberta, 2005)
has been revealed as an interesting approach

to infer stochastic finite-state transducers
through the modelling of languages. Rather
than learning translations, GIATI first con-
verts every pair of parallel sentences from the
training corpus into only one string to, after
all is done, infer a language model from.

More concretely, given a parallel corpus
consisting of a finite sample C of string pairs:
first, each training pair (x̄, ȳ) ∈ Σ⋆ × ∆⋆ is
transformed into a string z̄ ∈ Γ⋆ from an ex-
tended alphabet, yielding a string corpus S;
then, a stochastic finite-state automaton A
is inferred from S; finally, transition labels
in A are turned back into pairs of strings of
source/target symbols in Σ⋆ × ∆⋆, thus con-
verting the automaton A into a transducer T .

The first transformation is modelled by
some labelling function L : Σ⋆ × ∆⋆ → Γ⋆,
whereas the last transformation is defined by
an inverse labelling function Λ(·), such that
Λ(L(C)) = C. Building a corpus of extended
symbols from the original bilingual corpus al-
lows for the use of many useful algorithms for
learning stochastic finite-state automata (or
equivalent models) that have been proposed
in the literature about grammatical inference.

Every extended symbol from Γ has to con-
dense somehow the meaningful relationship
that exists between the words in the input and
output sentences. Discovering these relations
is a problem that has been throughly stu-
died in statistical machine translation and has
well-established techniques for dealing with
it. The concept of statistical alignment for-
malises this problem. Whether this function
is constrained to a one-to-one, a one-to-many
or a many-to-many correspondence depends
on the particular assumptions that we make.
Constraining the alignment function simpli-
fies the learning procedure but reduces the
expressiveness of the model. The available al-
gorithms try to find a trade-off between com-
plexity and expressiveness.

One-to-one and one-to-many alignment
functions would enable models to adopt the
categorisation scheme presented here because
they allow for alignments where one target po-
sition is aligned to only one source position.

One-to-one models do not seem a very ap-
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propriate approach provided that they would
require that source-target aligned sentences
had exactly the same number of words. Nev-
ertheless, one-to-many alignment models are
a current reference in machine translation re-
search community by means of their well-
known IBM models (Brown, 1990).

A smoothed n-gram model may be inferred
from the string corpus previously generated.
Such a model can be expressed in terms of
a weighted finite-state automaton. Since
every transition consumes only one symbol,
and given that all those extended symbols
are composed of exactly one source element,
the inverse labelling function can be straight-
forwardly applied. This way, transition labels
are turned back into pairs of source and target
items, thus becoming a stochastic transducer.

3.1.1 Alignment models

The conversion of every pair of parallel se-
quences into an extended symbols string fol-
lows this algorithm: for each target item from
left to right, merge it with its correspon-
ding source element iff the alignment does
not cross over any other alignment, in which
case it is delayed and attached to the last im-
plied source item. Spurious source and tar-
get elements are placed at their right position,
given that a monotonous order is always de-
manded. This procedure ensures that every
extended symbol is composed of one and only
one source symbol, optionally followed by an
arbitrary number of target symbols. For a
more detailed description about the labelling
function, see (Casacuberta, 2005).

The implementation of the categorisation
scheme will require increasing the information
to be included in every compound symbol.
More concretely, all the target lemmas being
produced by the model need to report which
relative source position they are coming from.

Figure 1 displays the two situations which
the labelling function may be involved with.

Whereas the first example (namely, the re-
lation ni → mj) is undoubtedly easy to solve,
the second one implies a little more of work.
One-to-one relationships clearly establish that
ni is aligned to the current source symbol be-

...

...mjmj mj′

nini
ni′

Figure 1: Two types of alignments

ing analysed mj . This is denoted as a relative
movement of 0, as it can be seen in figure 2.

Q Q’

mj

ni − 0

Figure 2: One-to-one compound symbols

On the other hand, crossing alignments
would imply delaying the output of {ni . . .}
until mj′ is being parsed, then producing the
full target segment ni . . . ni′ . Therefore, every
lemma being generated may not be aligned
with its corresponding input symbol as before,
but with some previously parsed one instead.

As a consequence, target lemmas are anno-
tated together with their relative distance to
the source lemma which they were aligned to.
Spurious elements do not need such annota-
tion because of their own spontaneous gene-
ration, which is independent of any particular
source item. In figure 1, ni is aligned to the
current source element mj′ , thus indicated as
a 0 relative movement. However, the emission
of ni′ will be delayed, then moving it further
away from its aligned input item mj . This re-
lative distance is then annotated next to the
output symbol ni′ as a reminder to allow for a
posterior backtracking performance. The re-
sult of such a labelling algorithm can be seen
over the final transducer, as figure 3 shows.

Q’Q Q’’

mj

λλ . . .

. . .

. . . mj′

ni − 0

ni′ − (j′ − j)

Figure 3: One-to-many compound symbols
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Note that the relative distance for ni′ is
computed as the subtraction of the input po-
sition aligned to, j, from the current one, j′.

3.2 The search problem

Word-to-word translation as in equation (2),
or lemma-to-lemma translation as in the first
equation of (3), are expressions of the MT
problem in terms of a finite state model that
is able to compute a joint probability. Given
that only the input sentence is known, the
model has to be parsed, taking into account
all the outputs that are compatible with the
input. The best target hypothesis would be
that one which corresponds to a path through
the transduction model that, with the high-
est probability, accepts the input sequence as
part of the input language of the transducer.

Although the navigation through the model
is constrained by the input sequence, the
search space can be extremely large. As a con-
sequence, only those partial hypotheses with
the highest scores are being considered as pos-
sible candidates to become the solution. This
search process is very efficiently carried out
by the well known Viterbi algorithm.

3.3 Stochastic dictionaries

A weighted dictionary is a table (a, b, W (a, b))
containing a set of translation pairs together
with a numerical indicator for their reliability.

If W (a, b) = Pr(a|b) and ∀y
∑

x

Pr(x|y) = 1,

then it can be called a stochastic dictionary.

Once a lemmatised source sentence has
been analysed by the transduction model,
output is expressed as a sequence of tar-
get lemmas. They can be turned into their
corresponding surface forms by means of
specialised stochastic dictionaries that take
into account the linguistic information of the
source elements which they are attached to.

Following the maximum likelihood ap-
proach, a stochastic dictionary can be esti-
mated by counting the absolute frequencies
of the observed events, properly normalised:

Pr(ti|ni) =
F (ti, ni)∑

x

F (x, ni)

These dictionaries can be learnt by means
of two different estimation methods: one con-
siders only a monolingual target corpus, thus
learning conversions through their own tar-
get linguistic information; and another one
that takes into account the statistical align-
ments over a bilingual corpus in order to
train lemma-word transformations according
to their corresponding source feature vectors.
In this case, the alignments that are needed
for learning the stochastic lemma-based trans-
ducers are also adequate for the extraction of
the lemma-to-word relative frequencies. An
outline of this method is depicted in figure 4.

words

lemmas

lemmas

vectors

words

TARGET

SOURCE

s1 s2 s3 s4

m1 m2 m3 m4

u1 u2 u3 u4

n1 n2 n3 n4 n5

t1 t2 t3 t4 t5

Figure 4: Using the source vectors for a bilin-
gual estimation of lemma-to-word dictionaries

3.4 On-the-fly integrated architecture

The equations in (3) represent the search
strategy in order to translate a test sentence
from a source language to a target language.
According to these equations, translation is
carried out in two separate steps: first, source
lemmas are transformed into target lemmas
through a finite state approach, then lemmas
are turned into words by means of specialised,
linguistic-based stochastic dictionaries.

However, this two step procedure can be
integrated into only one process, thus merging
the lemma-word conversions into the parsing
algorithm of the lemmatised input sentences.
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Let j be a current analysis position of the
input sequence mJ

1
, and let ni be a target

lemma being produced during the parsing of
mj . Given that a lemma-word translation
probability Pr(ti|ni) has been assumed to also
(and only) depend on the source feature vec-
tor uαi

which ni has been aligned to, and
since αi is always guaranteed to be a position
0 ≤ αi ≤ j that has already been analysed,
then Pr(ti|ni, uαi

) can be applied in order to
turn a target lemma ni into a target word ti.

Thanks to including the alignment informa-
tion in between the output symbols, it is pos-
sible to know for each lemma being generated
which input position it has been connected to.

As a result, every target lemma being pro-
duced as part of a partial output hypothesis
may be converted and stored as a target word,
without the need for waiting for the best out-
put hypothesis n̂I

1
to be completely generated.

Once the input sequence mJ
1

has been fully
parsed through the finite state model, a final

surface form t̂
I

1 has been produced on the fly.

4 Experiments

A set of preliminary experiments were carried
out in order to test the viability of our inte-
grated category-based translation approach.

Two tasks of very different difficulty degrees
were employed for the design of the experi-
mental setup. The EuTrans task is defined
on the restricted domain of sentences that a
tourist traveller would say at a hotel’s desk. It
is artificially generated from a set of schemas
of sentences. The characteristics of the Eu-
Trans corpus can be seen in table 1. Span-
ish to English translation was carried out over
this low-perplexity task.

On the other hand, this approach has been
also applied to a Portuguese–Spanish section
of the EuroParl corpus. The EuroParl corpus
is built on the proceedings of the European
Parliament, which are published on its web
and are freely available. Because of its nature,
this corpus has a large variability and com-
plexity, since the translations into the differ-
ent official languages are performed by groups
of human translators. The fact that not all
translators agree in their translating criteria

Table 1: EuTrans corpus characteristics

EuTrans Spanish English

Training Sentences 10.000
Run. words 97.1K 99.3K
Vocabulary 686 513

Closed test Sentences 2.996
Perplexity 4.9 3.6

Open test Sentences 3.000
Perplexity 4.9 3.6

implies that a given source sentence can be
translated in various different ways through-
out the corpus. Since the proceedings are not
available in every language as a whole, a dif-
ferent subset of the corpus is extracted for eve-
ry different language pair, thus evolving into
somewhat different corpora for each pair. The
corpus characteristics can be seen in table 2.

Table 2: Characteristics of pt–es EuroParl

EuroParl Portuguese Spanish

Training Sentences 915.570
Run. words 23.76M 23.95M
Vocabulary 141.6K 140.4K

Sub-train Sentences 50.000
Run. words 1.3M 1.3M
Vocabulary 37.3K 37.6K

Test Sentences 1.000
Train pp. 71.9 66.2

Sub-train pp. 121.3 103.5

EuTrans lemmatisation and linguistic la-
belling were carried out through the FreeL-
ing toolkit (Carreras, 2004), whereas SisHiTra
(González, 2006) was employed to analyse the
Spanish sentences from EuroParl. Portuguese
lemmas and feature vectors were provided
by the Spoken Language Systems Laboratory
from the Instituto de Engenharia de Sistemas
e Computadores I+D in Lisbon. Both Eu-
Trans and EuroParl corpora were aligned at
word level by means of the toolkit GIZA++.

Several tokenisation options were tested to
establish a starting point where the categori-
sation scheme proposed here could be applied.
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4.1 Evaluation metrics

The results were obtained by using the fol-
lowing evaluation measures:

BLEU (Bilingual Evaluation Understudy) score:
This indicator computes the precision of
unigrams, bigrams, trigrams, and tetra-
grams with respect to a set of reference
translations, with a penalty for too short
sentences. BLEU measures accuracy, not
error rate.

WER (Word Error Rate): The WER criterion
calculates the minimum number of edi-
tions (substitutions, insertions or dele-
tions) needed to convert the system hy-
pothesis into the sentence considered
ground truth. Because of its nature, this
measure is a pessimistic one.

4.2 Translation results

EuTrans is a very artificial translation task
which is frequently used for debugging pur-
poses. New approaches to statistical machine
translation are first tested on such a toy task
in order to establish some behaviour criteria.
The EuTrans results are reported in table 3.

Table 3: EuTrans results

Vocab. Pp. Metrics
EuTrans In Out In Out WER BLEU

Baseline 686 513 4.9 3.6 8.3 88.0
Tokenisation 624 513 5.2 3.6 8.1 88.0
Categorisation 476 503 4.6 3.6 11.8 82.0

Monolingual 22.0 64.3
Bilingual 13.1 78.9

As it can be seen, our linguistic categori-
sation approach is not worth the trouble for
EuTrans. Tokenisation techniques do per-
form a slight improvement on word error rate,
but lemmatisation make results get worse.
Whereas the results from “Categorisation”
lines represent a comparison with a prede-
fined lemmatised reference, thus evaluating
somehow the effect of the lemma transduc-
tion model, “Monolingual” and “Bilingual”
lines refer to the overall process of transla-
tion, according to the way specialised stochas-
tic lemma-to-word dictionaries were learnt.

Therefore, the “Categorisation” error rates
are always a lower limit of the overall system.
It can also be appreciated that there is a sig-
nificative difference between using a monolin-
gual or a bilingual lemma-to-word approach.

On the other hand, EuroParl is a more com-
plex task which is reflected through its vo-
cabulary and perplexity figures (see table 2).
Due to technical issues, experiments were car-
ried out by using only a subset of the trai-
ning corpus, which is composed of 50.000 sen-
tences. Lemmatisation can reduce vocabula-
ries about 50%, thus causing perplexities to
significatively fall as well, as table 4 shows.

Table 4: EuroParl vocabulary and perplexity

Vocab. Pp.
EuroParl In Out In Out

Baseline 37.3K 37.6K 121.3 103.5
Tokenisation 37.3K 37.5K 121.3 120.9
Categorisation 18.3K 19.3K 91.1 91.1

The EuroParl results are reported in table 5.

Table 5: EuroParl results

Metrics Model size
EuroParl WER BLEU States Arcs

Baseline 67.8 19.8 205K 1.06M
Tokenisation 65.7 20.0 200K 1.04M
Categorisation 61.3 23.0 166K 925K

Monolingual 81.0 3.0 38K
Bilingual 63.2 21.4 94K

In this case, using morphologically anno-
tated corpora helps to the translation process.
As well as tokenisation, categorisation also al-
lows for a better modelling of transference re-
lations between source and target languages.
The sizes of the models are also significatively
reduced, which means not only a memory sa-
ving, but also accelerating the decoding time.

Globally, if a bilingual approach is followed
to estimate the lemma-word dictionaries, thus
using the source linguistic feature vectors to
specialise them, then the methodology pre-
sented here outperforms the baseline system.

Again, monolingual estimation of dictionar-
ies does not perform well and table 6 can show
the reasons for such a so different behaviour.
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Table 6: Analysis of lemma-word conversions.
An impact is defined as a successful search
over the lemma-word dictionaries. If the
search fails, then lemmas are left unchanged.

Training EuTrans EuroParl

Spurious 3.6% 8.1%
Monolingual Impacts 11.3% 0%

Fails 85.1% 91.9%
Bilingual Impacts 93.1% 88.5%

Fails 3.3% 3.4%

From table 6, it seems quite clear why
monolingual training is doing worse. Impacts
and fails are oppositely distributed with res-
pect to the ones from a bilingual training.
Whereas a bilingual training reflects an ap-
proximate 90% of impacts, a monolingual
training associates this percentage to fails. If
most lemmas remain unchangeable, then the
evaluation results from tables 3 and 5 can be
explained, since the lemma-based hypotheses
are being compared to word-based references.

Massive fails for a monolingual training are
caused by a mismatch between source and
target feature vectors. This could be per-
fectly understood on the EuroParl task, as
two language-dependent linguistic tools were
employed for labelling. However, the FreeLing
toolkit was used on EuTrans task for both
languages, thus resulting quite disappointing
that labels are not consistent inter languages.

5 Conclusions

This paper has presented a category-based
approach to statistical machine translation,
which is based on linguistic information. An
integrated architecture, combining finite state
transducers and stochastic dictionaries has
been proposed. Some preliminary results are
rather limited but also encouraging enough.
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