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To better account for the novel way in which the input stream and the linguistic 
knowledge store (dictionary, rules and tables) interact in the Logos Model, in what 
follows we describe the Logos Model in terms of a biological neural net or bionet.  
The Model is felt to have interesting parallels with certain features of brain reticula 
(Scott,1990). Though clearly superficial, the correspondences are nevertheless felt to 
be significant in several key respects. Readers will judge for themselves the aptness 
of the connection.  In any event, this biological metaphor has proven to be an 
effective way to describe how the Model’s memory (stored knowledge base) interacts 
with input signals (text).  As you will see, it does so in ways that may be said to mimic 
associative memory assumptions about brain function. 
 
No claim whatsoever is being made here that the Logos Model has anything in 
common with artificial neural nets (ANN’s).  It clearly does not.  The reasons are 
straightforward:  

 The Logos Model is symbolic in nature. ANN’s generally entail purely 
quantitative, linear algebraic functions (ignoring for the moment some 
experimental hybrid exceptions).  

 
 The Logos Model employs long-term memory units (rules) that have fixed, 

specified significance, reflecting what in neurobiology is called the “single 
neuron doctrine” (Barlow,1972). ANN’s, by contrast, hold that meaning is 
represented by spreading activation over an entire network (“distributed 
representation”) which means that individual cells have no fixed significance 
(Hinton, McClelland and Rumelhart, 1986).  In ANN’s, units are reusable like 
the receptors of a charged couple device in a digital camera’s sensor.  

 
 The Logos Model does not “learn” by means of back-propagation or any other 

means of unsupervised training.  All training is supervised and adjustments to 
rule weights (e.g., to strengthen or weaken certain rules, as in Res modules) 
are effected manually. 

 
The Model does share some broad features common to neural nets in general, 
ANN’s or otherwise.  These include:  

 Constraint satisfaction.  Processing may be viewed as a form of constraint 
satisfaction on individual units (rules).  In the Logos Model, constraints are 
“strong” as opposed to “weak,” i.e., represent a binary yes/no condition 
(unlike Boltzmann or Hopfield (1984) paradigms). 

 
 Emergent properties.  The parse of a given sentence emerges in 

unpredictable ways from the interactive processes of the net. 
 

 Competitive processing.  Units (rules) compete with each other in interpreting 
input data.  The resulting parse can be construed as the set of computed 
winners.  This competition is not network-wide, however, as in ANN’s, but 
only among the small cluster of rules made active by any given input signal. 

 
 Self-ordering.  Units are self-ordering, self-applying objects (i.e., there are no 

meta-rules or master algorithms that apply rules to the input stream).  
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Furthermore, units define their own order and position within a layer. (Units 
however are not “self-organizing” in the sense of true Kohonen learning 
(Kohonen, 1982).  No claim is being made that the Logos Model is an 
adaptive, learning system.  It would be nice but it’s not so.) 

 
 Robustness.  Processing extends to ambiguous, incomplete, ungrammatical, 

and unknown language strings.   
 

 Graceful degradation.  The incapacitation or loss of processing units (rules) 
will lead to degraded output but never to system failure. 

 
1.0   BIOLOGICAL NEURAL NETS 
The Logos Model was not designed with neural net technology in mind, in any of its 
varieties—indeed such thinking did not exist as a recognized NLP option in the 
1970’s.  Nevertheless, the Logos Model has since been found to have arguable 
parallels to several properties of actual cortical circuits, seen from a purely 
computational perspective (Scott, 1990). The basis for this claim is as follows:  

 Analogous to the cerebral cortex, the Logos Model consists of a very large 
number (thousands) of simple, neuron-like cells (rules) the individual function 
of which is extremely limited in scope, but which in conjunction with other 
cells contributes to large, complex effects  

 
 Processing is accomplished by the reaction and interaction of tiny processing 

units (rules) across a sequence of layers, or laminae, as certain of these units 
are perturbed by input to the net and by unit interconnectivity. Rule interaction 
is effected entirely on the basis of memory associations (associative 
memory), not by supervening meta-logic or meta-rules of any kind. 
 

 Ramón Y Cajal’s classical view of cortical lamination (Crick and Asanuma, 
1986) envisions six layers.  The Logos Model serendipitously has six so-
called “hidden” layers, with roughly the same proportional density of unit or 
rule distribution over the layers (See Fig. 1).   

 
 Cortical circuits employ both vertical (inter-laminal) and lateral (intra-laminal) 

connections (Shepherd, 1994). So too the Logos Model.  And like cortical 
circuits, the Model employs fan-in, fan-out, and recurrent circuitry. (See Fig 4. 
in:  B. Scott, Logos System—Principles and Motivations.) 

 
 Input vector/hidden layer interactions are highly specific, like synapses in 

cortical circuits (Anderson and Mozer,1989) (and unlike ANN’s) (See Fig. 7).  
 

 The role of amino-acid chains (neurotransmitters) in the recording and 
transmission of information in the cortex (synapse) is loosely mimicked by 
SAL chains in the Logos Model (See Fig. 7).   

 
 Classical neuroanatomy has traditionally held that individual cells in long-term 

memory tend to be permanent, non-reusable records of information 
(Sherrington, 1941), spoken of nowadays as “local representation” (Hinton, 
McClelland, and Rumelhart, 1986).  Local representation also characterizes 
the cell-equivalent rules of the Logos Model.  (In neuroscience, such cells are 
said to have been “grandmothered” for their informational content, a term 
derived from experiments where a single simian brain cell was found to fire 
upon the appearance of the monkey’s maternal grandmother.) This “single 
cell doctrine” is giving way in recent years to a more “clustered-cell” or “semi-
local” explanation of cognitive function (Thorpe, 1995), and in that regard 
differs from the purely local representation of the Logos Model. 
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 Other points of similarity between the Model and neuroanatomy are 

discussed in Section 3.3 and are summarized in Fig. 4. 
 
1.1  LOGOS MODEL NEURAL NET:  OVERVIEW (FIG. 1) 
The pipeline nature of the Logos Model is shown architecturally in Fig. 1 as a 
cascaded neural net comprising a sequence of six hidden layers interleaved with I/O 
vectors. The output of one layer constitutes input to the next.  In Fig. 1, ambiguity is 
expressed by unit shading in V1-V7, which gradually lightens; complexity is simplified 
as the number of units in these vectors gradually reduces to S.    

V2 V3 V4 V5 V6 V7

R1 R2 P1 P2 P3 P4

S

V1

 
Fig. 1  Logos Model as a Biological Neural Net (Bionet).  The Logos 
Model pipeline is seen here as a cascaded, six-stage neural net.  V1-V7 
are input/output vectors comprising SAL objects that represent the 
elements of an input sentence. Each cell in the input vector represents 
a SAL element.  Collectively these vectors constitute a progressive, 
bottom-up parse tree, ending in S.  Shaded rectangles (R1, R2, P1-P4) 
are hidden layers. Cells in these layers represent pattern-based rules 
(tiny processing units).  A layer may contain anywhere from two to four 
or five thousand such cells (rules).  Each cell is specialized for a unique 
semantico-syntactic SAL pattern at levels of semantico-syntactic 
abstraction that tend to increase with each successive layer. See Fig.2 
for other circuit types in the Logos Model not illustrated in Fig. 1. 
 

 
 
SAL elements in vectors V1-V7 can be thought of as temporary, short-term memory 
(STM). Units with their SAL patterns in the hidden layers may be seen as permanent, 
long-term memory (LTM).  Units in the input vectors do not interconnect with all 
hidden layer units, indicating unit interconnectivity is specialized.  Not evident here is 
lateral connectivity within a hidden layer (See Fig. 2).  Also not evident is the 
presence of recurrent circuitry (See Fig. 4).  Recurrent circuitry allows rule actions to 
feed back to the other rules in the same layer, inhibiting or increasing their potential 
to fire. Units in the hidden layers can also feed back to the input vector and modify 
SAL assignments or other properties of the input stream.  

 
1.1.1 Graphic Illustration of the Logos Model as a Bionet  (Figs. 3-9) 
The set of figures (Figs. 3-9) in the following pages graphically illustrates the input 
stream/rule base interaction of the Logos Model as analysis proceeds down the 
pipeline, using the neural net metaphor. 
 
For illustration purposes, we processed the following complex, 57-word English 
Example Sentence through the present Logos System, portraying the analysis in 
successive stages via the metaphor of a six-layered neural net (See Figs. 3-9).  The 
sentence was taken from a text typical of those being processed through the Logos 
E-F system (on Wang VS) by a customer (Office of the Secretary of State in Canada) 
in the late 80’s, and is felt to be representative of the system’s parsing capabilities, 
both then and now. 
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EXAMPLE SENTENCE 
Let me also note that because of the relatively close movement of the 
Canadian dollar with the U.S. dollar, our currency has declined along with the 
U.S. dollar against these other currencies this past year, removing much of the 
exchange rate distortion that was hampering the ability of Canadian firms to 
compete with producers overseas. 

 
 

input 
vector

P2j

V4i
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(1)
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          (1) and/or (2)   
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          with feedback and (1)       
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STM output 
vector
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Fig. 2.  Rule Base/Input Stream Interactions per the Bionet Metaphor. 
Graphic illustrates five basic circuits (interaction classes) between the 
knowledge base and the input stream.  In (1), a rule fires when its SAL 
specification (pattern) best-matches the active segment of the input vector, 
and all rule constraints are satisfied. The effect of the firing typically is to re-
write the pattern and output it to the output vector, which then serves as input 
to the next hidden layer. This represents classic forward-projecting synapse.  
In (2), the effect of the firing is back upon the input vector, typically causing 
some input code to be altered and the input segment to be resubmitted.  In 
(3), both these effects are accomplished.  In (4), the firing rule passes the 
input pattern which it matched to a local circuit (a nested block of rules) which 
takes over and effects actions as per (1), (2) or (3).  In effect, P2j  functions as 
a filter to rule P2jm, which performs nested, finer-detailed matching. In (5) the 
same idea applies except that the nested block of rules, assuming one of 
them fires, returns control to P2j. (This is the interaction that takes place 
between a mainline rule and the Semantic Table.)  An important feature of the 
Model’s circuitry, too complex to show in this graphic, is recurrent circuitry 
whereby the firing of a cell effects an internal change to the current state of 
the entire hidden layer, increasing or inhibiting the subsequent potential for 
other rules to fire. (For an image of recurrent circuitry, see Fig. 4).  
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7.2.1 Bionet:  Res1 and Res2 (Fig. 3) 
The two Res (resolution) hidden layers, R1 and R2, working successively, together 
effect a macro-parse of the Example Sentence.  (In Fig. 3 we have conflated the two 
modules for purposes of this illustration.)   Note, in Fig. 3, that input vector V1  
(comprising SAL objects that represent the NL string, following that string’s lookup in 
the lexicon) is actually a two dimensional array, allowing for no more than three 
parts-of-speech for each NL word of the input sentence.  This is an arbitrary limit 
imposed by complexity considerations, implications of which are discussed below.  
 
Homograph Resolution.  A key work of the Res modules is homograph resolution. 
This is accomplished by the resolving of a single path through the unresolved V1 
construction (out of a possible 2,239,488 paths in this particular sentence), such that 
each SAL element will have only one part-of-speech assignment in output vector V3. 
 
Note that the word close in the Example Sentence (close is highlighted and 
underlined in Fig. 3) has three parts of speech, shown in Fig.3 in abbreviated form:  
(i) intransitive verb, (ii) transitive verb, (iii) adjective/noun. The action of Res on this 
particular word enables the path to AJ/N and inhibits the paths to close as VI or VT. 
The remaining adjective/noun ambiguity will be resolved by rules in a subsequent 
module (Parse1).  This arrangement illustrates the incremental nature of analysis in a 
model of this type; ambiguity is removed as if by peeling the layers of an onion, one 
by one.  Nevertheless, as stated, the chief reason for this limitation to three-parts-of-
speech had to do with computational trade-offs.  
 
To achieve a resolved path through the V1 structure, the Res1 and Res2 software 
modules feed segments of V1 and V2 (as search arguments) to the Res1 and Res2 
hidden layers.  Segments are up to ten SAL elements in length, of each of the 
possible paths, starting at the top of the structure (beginning of sentence).  Within the 
hidden layer, rules become active (i) that have a SAL pattern corresponding to the 
input segment and (ii) whose constraint conditions are satisfied. Active rules then 
compete for the right to fire, based on their dynamically computed relative weight.  
Weights are automatically generated from (i) rule length, (ii) semantic specificity, (iii) 
priority class, and (iv) a manually adjustable learning factor. 
   
Clausal Segmentation.  Another important work of the Res modules is clausal 
segmentation of the sentence, as depicted in Fig. 3.  Every clause transition is 
identified and labeled, including parentheticals, relative clauses and other 
embeddings.  It is obvious that homograph resolution and the detection of clausal 
transitions are mutually dependent and therefore problematic issues--one cannot be 
resolved with any degree of success without the other.    
 
The Res2 module is unique in having a limited look-ahead capability, provided in 
order to detect and avoid garden-path situations. Look-ahead is carried out by a 
common set of local rules, invoked by standard rules, an interaction depicted as Type 
(5) circuitry in Fig. 2.  We illustrate this in (1), below:   
       (1) The emphasis put on the question was wrong.  (Cp. John put on his hat.) 
 
There is a Res2 rule that handles the morphological class of verbs like put whose 
purpose in life is to resolve such verbs as main verb of the clause.  But to do so a 
rule constraint must first be satisfied, namely, that there be no other more viable main 
verb candidate to the right in that clause. That constraint is tested by a function which 
invokes a block of rules looking for potential main verb candidates to the right.  
Effects of Res2 rule actions on (1) may be seen in the raw German output in (1’): 

(1’) Der Nachdruck, der auf die Frage gestellt wurde, wurde falsch. (Cp.  
   John setzte seinen Hut auf.)  
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Fig. 3 -  Bionet:  Res1 and Res2.  Res modules effect syntactic homograph 
resolution and analysis of clausal structure of the sentence.  As illustrated in the 
present example, homograph resolution consists in finding a single path through 
the 2,239,488 possible paths afforded by this sentence in V1. SAL representation 
shown here is abbreviated to word class only.  Actual representation includes the 
WC(Type; Form) triplet. Not all parts-of-speech are represented by a separate cell. 
For example, in the word close (shown above underlined and bold-faced), the 
adjective cell (j) itself is ambiguous, in reality representing close as both adjective 
and noun.  Though the macro-parse effected by Res1 and Res2 eliminates close as 
a transitive and intransitive verb, the residual ambiguity must await the micro-parse 
effected by the Parse modules.  A key strength of the Res2 module in particular is 
its ability to analyze sentence clause structures, which in the present example is 
quite complex. The sentence overview effected by Res2 provides critical top-down 
guidance to the subsequent micro-parse. 
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To avoid error propagation effects of misresolutions committed early in the pipeline, 
great pressure has always been placed on achieving high accuracy in the Res 
macro-parse. As a result, these modules have undergone several major redesign 
iterations over the course of time, inducing changes which have caused Res2 in 
particular, the workhorse of the macro-parse, to become more and more cortical-like, 
as the following discussion will illustrate (see Fig. 4).  
 
The Res modules taken together contain in excess of 6000 cell-like rules.  As many 
as twenty percent of these rules may in fact be redundant, or ill-formed, having crept 
into the system one way or the other over the years.  For whatever reason, these 
rules to date have not gotten the opportunity to fire and make their presence felt, and 
as such remain as so much undetected, seemingly useless baggage.  Such rules 
could of course be systematically purged were it not for the fact that tests reveal that 
every so often, with new text, some of these rules do in fact get to fire for the first 
time and serve a good purpose. Given this uncertainty, such rules are generally left 
alone. This rather untidy circumstance reflects the fact that Res rules collectively do 
not constitute a body of coherent logic in the usual sense, and are not thought of or 
maintained that way.  Developers can add or delete rules without having to think 
much beyond the empirical effect of an individual rule change as seen in large-scale 
testing.  To be sure, rules presuppose and interact with other rules so the developer 
has to know what he or she is doing, but generally this does not entail elaborate 
reviews of logic. This is especially the case in rule writing for the hidden layers of 
Res. This freedom has resulted in a certain inelegance, but the very extensiveness of 
the rule base precludes the possibility of working in any other way. This untidiness in 
fact affords further grounds for likening the Res knowledge store to the neocortex 
which is also known to have memory cells that are redundant, that become 
inaccessible over time, and/or that may store error (e.g., word misspellings, 
mispronunciations, misconceptions, etc.), and so on.  For a computer model, there is 
little to defend in such an arrangement beyond the fact that it works quite well:  the 
error rate in homograph resolution achieved on previously unseen, unconstrained 
text averages 2% and, thus far, nothing has caused developers to believe these 
results are not still improvable, albeit marginally. Admittedly, such methodology will 
have little appeal to formalists, but one might reasonably argue that the method at 
least has the virtue of having yielded effective, industrial-strength machine 
translation. And it also has made the developers’ job a good deal more fun. 
 
Another cortical-like aspect of Res is that there is often more than one way to achieve 
a parsing objective, and slight differences between otherwise similar input strings 
may in fact cause considerable differences in the selection and sequence of firing 
rules.  This comports with the view that human sentence processing is also subject to 
variation, both inter-personally, in the way different people process the same 
sentence, and intra-personally, in the way the same individual may process the same 
sentence in different contexts, or with only slight sentential variation.   
 
7.2.3   Recurrent Circuitry in Res2  (Fig. 4) 
When a Res2 rule fires, three likely actions occur:  (i) paths may be enabled and 
simultaneously other paths inhibited; (ii) SAL elements may be re-labeled in output 
vector V3 or be provided with other notation; (iii) the sentential state array may be 
updated to reflect rule firing.  This last action mimics recurrent circuitry in cortical 
circuits, where the firing of a neuron may cause modulation of an entire cortical 
region, increasing the potential of some neurons to fire and inhibiting others.  Fig. 4 
illustrates recurrent circuitry in Res2 of the Logos Model. 
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Fig. 4 -  Recurrent Circuitry in Bionet Model.  Res2 (R2) completes the work of 
homograph resolution and clause analysis begun in Res1. (Graphic illustrates the fact 
that the Res2 module, over time, has become the most cortical-like component of the 
Logos Model.)  In (1) we see the NL sentence, now as input vector V2, with still 
unresolved parts-of-speech.  In (2), segments of V2’s possible paths are submitted to 
hidden layer R2, units of which become active if their SAL specification matches and 
their state constraint (S) is satisfied. Units may be longer but typically entail only two or 
three SAL elements, i.e., enough to advance a path through V2.  Active rules compete to 
fire, based on rule weights.   A careful inspection of the cells will show how various rules 
have contributed (3) to a resolved path in V3. V3 will serve as input vector to the micro-
parse conducted by the Parse modules (5). As illustrated, rule firing also sends signals to 
a sentential state subnet, causing the state of the hidden layer to be altered. This altered 
state is communicated back to the entire net (recurrent circuitry), enhancing or inhibiting 
the firing potential of cells in the layer. The top-down picture of sentence structure thus 
acquired (4) then helps guide the micro-parse of the next layers (5).  
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Fig. 5 - Bionet:  Parse1.  The Parse1 module initiates the micro-parse of the 
sentence, drawing upon the results of the Res macro-parse output in V3. Notice 
how the complex noun phrase (highlighted by the vertical bar) is progressively 
handled over the sequence of Parse modules shown in Figs. 5-9.  Here in Parse1, 
the simple noun phrase the relatively close movement is concatenated as NP with 
the semantics of the head noun, movement.  In bottom-up parse fashion, output 
vector V4 now serves as input to Parse2. 
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Fig. 6 -  Bionet:  Parse2.  Note, in V5, how the long, complex noun phrase is now 
concatenated as NP with the semantics of movement.  Also note how clausal 
embeddings have been extracted in order to simplify kernel sentence. Note that the 
subjects of the clausal complements (viz., distortion and ability) are repeated in the 
extracted segments.  This is done in order to afford extracted materials all 
information needed for semantic analysis of clausal verb argument structure in 
Parse3.  Any modification that Parse3 analysis might make to the dummy subject is 
conveyed back to the true subject, including target transfers. 
 

 
The sentential state array provides a summary, top-down picture of a sentence and 
its clauses, including embedded clauses, that has been gradually recorded during the 
Res macro-parse, affording top-down guidance to both the marco-parse and the  
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subsequent micro-parse by the Parse modules.  A simple example: when a Res2 rule 
fires causing some ambiguous N/V SAL element to be resolved as V, the firing rule 
communicates this fact to the sentential state array. This automatically causes a  
change in the sentential state, the consequence of which being that any subsequent 
rule that might want to resolve ambiguous N/V elements in that clause to V is now 
inhibited from doing so.  (Such inhibition of course would be qualified if the first 
resolved V were a SAL verb type that invites verbal complementation.)  At the 
conclusion of the macro-parse, each element of output vector V3 (input vector to 
Parse1) carries with it a compressed picture of the sentential state that held at the 
time the element was processed, viz., (i) type of sentence, (ii) type of clause the 
element is in, (iii) if an embedded clause, type of parent clause, (iv) SAL Type and 
tense of clausal verb, (v) SAL Type and number of clausal subject, etc.   
 
7.2.4 Bionet:  Parse1 (Fig. 5) 
The output vector (V3) of Res2 serves as input vector to the Parse1 module.  SAL 
elements in V3 are now resolved with respect to part-of-speech (with some few 
exceptions, noted earlier and discussed below).  Parse1 does have the ability to 
reverse Res decisions regarding part-of-speech selection but this is rather rare.  
Parse1 also makes use of the top-down picture of the sentence and clausal 
structures afforded by the Res macro-analysis.  For example, a rule that sought to 
parse as NP the string N CJ(CRD) N  N  would have to satisfy, among other things, a 
rule constraint that the coordinating CJ not be a clause boundary.  Macro-parse 
information about the clausal structure of a sentence enables the rule to test for this 
constraint. 
 
Note that in V4 (Fig. 5), Parse1 has reduced all simple noun phrases to NP.  Note also 
that Parse1 recognizes and concatenates the phrase this past year as an ADV of 
time.  Regarding the unresolved AJ/N ambiguity of the word close, Parse1 will resolve 
this by forming a search argument of close plus the right-adjacent SAL noun element 
(movement) and then querying appropriate rules in Semtab.  Absent some rule 
specifying a context that would dictate otherwise (e.g., close procedure), the default 
ruling for AJ/N in the adjectival position would be to AJ.  
 
 
 
Fig. 7 - Detail of 
NP Formation in 
Parse2.  In this 
Figure, a segment 
of short-term 
memory cells in 
input vector V4 
interacts with one 
of the long-term 
memory cells in 
hidden layer P2 
specialized for this 
SAL pattern.  Rule 
constraints also 
have to be satisfied 
for rule to fire. 
Output in V5 is 
rewrite of input 
pattern with 
semantics of head. 
NP node is 
annotated for PP 
complementation.   

V4

n

i i+1 i+2

P2

V4V4

P2P2 j j+1 j+2

V5
k

np

n

p

p

n npn n np

n

movement

V5

V4

hidden  
 layer  
   P2

movement  of dollar

Synapse-like Interaction between SAL Elements 
in Input Vector and Units (Rules) in Hidden Layer 

 



 12

 
 
 

 

BOS   

Let 

me 

note 

that 

because of  

movement 

, 

currency 

has 

declined 

along with 

dollar 

against 

currencies 

adv(year) 

, 

removing 

distortion 

. 

 

 

 

BEG NST. CL 

(distortion) 

was 

hampering 

ability 

END NST. CL. 

BEG NST. CL. 

(ability) 

to-compete 

with 

producers 

overseas 

END NST. CL 

. 

Interface
 structure V5

u

v

v

v

v

v

u

b

n

n

n

n

n

v

n

n

b

n

n

p

p

u

p

u

x

x

t

r

p

Interface
 structure V6

u

v

v

v

v

v

u

b

n

n

n

n

v

b

n

pp

u

pp

u

x

x

t

r

 

BOS   

Let 

me 

note 

that 

because of-movement 

, 

currency 

has 

declined 

along with-dollar 

against-currencies 

adv(year) 

, 

removing 

distortion 

. 

 

 

 

 

 

 

BEG NESTED CL 

(distortion) 

was 

hampering 

ability 

END NESTED CL. 

BEG NESTED CL. 

(ability) 

to-compete 

with-producers 

overseas 

END NESTED CL 

. 

 

pp

pp

hidden 
layer

P3

 
      

Fig. 8 - Bionet:  Parse3.  The graphic shows prepositional phrases being concatenated as 
PP.  Other key Parse3 functions include (i) analysis of grammatical relationships within a 
clause, and (ii) polysemy resolution of verbs and converbal prepositions, via interaction with 
the Semantic Table.  Parse3 also identifies and re-labels any as yet unanalyzed constituents, 
e.g., subjects, indirect objects, objects, and various types of adverbial PP’s. 
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Fig. 9 – Bionet:  Parse4.   Source analysis is completed, materials at the end of the 
sentence are restored to their original places, and source constituents are submitted 
to linked target rules for structural transfer.  (See Logos System—Principles and 
Motivations for discussion of target generation).  Multi-language translations of the 
Example Sentence are given in 1.3.  

 
 
1.2.5   Bionet:  Parse2 (Fig. 6)  
The Parse2 module includes the following functions: (i) concatenation of simple NP’s 
with their prepositional phrase complements;  (ii) extraction of relative clauses and 
other clausal embeddings from their parent clause, leaving behind a trace linked to 
the extracted material.  Extracted clausal matter is thereafter treated as separate (but  
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not unrelated) sentences.  This is done for two reasons: (i) to simplify the original 
sentence; (ii) to afford the extracted material benefit of complete parsing functionality. 
Push-down list methods allow handling of up to ten such embeddings. 
 
In Fig. 7 we see illustrated the synapse-like way the input vector interacts with units 
in the hidden layer. The way rules are ordered and matched assures that rules of a 
more specific nature are always consulted first, before less specific rules. That is, 
rules whose index element is specified at the SAL subset level are looked at before 
rules specified at the set, superset or universal set level. 
 
1.2.6   Bionet:  Parse3 (Fig. 8) 
The principal work of Parse3 is to examine the main verb of each clause in relation to 
its clausal context. This is done by sending the SAL string containing the verb and its 
clausal context to the Semantic Table (Semtab) for analysis (pattern matching).  Deep 
structure rules in Semtab seek match-up with the verb’s argument structure, allowing 
(i) resolution of polysemy among the clausal constituents, especially verbs and 
prepositions; (ii) labeling of converbal and adverbial PP’s; (iii) connecting of verbs 
with non-contiguous verb particles. Deep structure Semtab rules can be either word-
specific or generic (based on SAL Type). 
 
1.2.7  Bionet:  Parse4 (Fig. 9) 
Parse4 completes the analysis of the Example Sentence, reducing the sentence to its 
abstract clausal constituents, which together constitute S.  The materials extracted in 
Parse2 are now restored.  In German source, some case ambiguities are not 
resolved until Parse4.  For example, the case ambiguity of the two NP’s in (36) must 
be resolved on the basis of agentiveness of one of the NP’s.  Output is unedited. 

(2)  Dieses Garten liebt meine Mutter. 
(2’) My mother loves this garden.  

 
1.3  MULTI-LINGUAL TRANSLATIONS OF EXAMPLE SENTENCE 
The Tgt Gen module generates output by taking the instructions for transfer, word 
order and morphology that were established during analysis and the incremental 
transfer phase, and applying them now to literal target strings.  Raw output of Tgt 
Gen is given below for French, German, Spanish, Italian, and Portuguese, the five 
target languages currently linked to English source.  (Portuguese is the most recent 
of these and is least developed, as may be evident.) 
 

(3)        English Example Sentence 
Let me also note that because of the relatively close movement of the Canadian dollar 
with the U.S. dollar, our currency has declined along with the U.S. dollar against these 
other currencies this past year, removing much of the exchange rate distortion that was 
hampering the ability of Canadian firms to compete with producers overseas. 

 
French Output 

Permettez-moi également de noter qu'à cause du mouvement relativement proche du 
dollar canadien avec le dollar américain, notre monnaie a décliné cette année 
dernière avec le dollar américain contre ces autres monnaies, en enlevant beaucoup 
de la distorsion de taux de change qui gênait la capacité des compagnies 
canadiennes de faire concurrence aux producteurs outre-mer. 
 

German Output 
Erlauben Sie mir auch, zu bemerken, dass wegen der relativ nahen Bewegung des 
kanadischen Dollars mit dem US Dollar, unsere Währung dieses letzte Jahr mit dem 
US Dollar gegen diese anderen Währungen gesunken ist, was viel von der 
Wechselkurs-Verzerrung entfernt, die die Fähigkeit kanadischer Firmen behinderte, 
mit Herstellern nach Übersee zu konkurrieren. 
 

 



 15

Spanish Output 
Deje también observe que debido al movimiento relativamente cercano del dólar 
canadiense con el dólar estadounidense, nuestra moneda ha disminuido este año 
último junto con el dólar estadounidense contra estas otras monedas, retirando 
mucha de la deformación de tarifa de cambio que impedía la posibilidad de las 
empresas canadienses de competir con los productores a ultramar. 

 
               Italian Output 
Fatemi notare anche che a causa del movimento relativamente vicino del 
dollaro canadese con il dollaro degli Stati Uniti, la nostra valuta ha declinato 
questo anno scorso con il dollaro degli Stati Uniti contro queste altre valute, 
togliendo molta della distorsione del cambio che impediva la capacità delle ditte 
canadesi di competere con i produttori all’estero. 
 
                                              Portuguese Output 
Deixe observa me que devido ao movimento relativamente fechar do dólar 
canadiano com o dólar E.U., nossa moeda diminuiu este ano final juntamente 
com o dólar E.U. contra estas outras moedas, mudando muito da distorsão de 
taxa de câmbio que impediu a possibilidade das empresas canadianas de 
competir com os produtores do estrangeiro. 

 
 
___________________________________________________________________ 
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