
I should like first to examine the
evolution of development
environments and me various
vehicles which developers have
originated to further MT. This is
somewhat cursory and amounts to a
fairly loose description of what I have
encountered in my association with
the MT world.

General Purpose
Programming Languages

In the early days, the computer
languages available to the developer
were limited in scope. They had
extremely poor string handling
capability and were not the least bit
suited to expressing linguistic
algorithms involving parsing or
pattern matching. Among these
languages were various machine
languages (early SYSTRAN code was
written in assembly) and FORTRAN.
Severe problems remained even after
code was written in that the code was
not easily maintained nor was it a
simple matter to initiate a newcomer
to developing in such an
environment.

As early as 1960, formal
specifications arose for general
purpose programming languages
which permitted superior
implementation of algorithms
through devices such as block
structuring and modularity.
Throughout the '60s and '70s
languages like ALGOL, PL/I,
PASCAL, and 'C' were born but with
the exception of PL/I and 'C', they
still lacked formally defined string
handling. At Brigham Young
University, the Translation Sciences
Institute (TSI) as it was to be called,
began to tackle machine translation
and soon chose PL/I, primarily
because they were using IBM
hardware but also for its relatively

22 Language Monthly June 1985

superior algorithmic ability and its
string handling. PL/I furnished a
built-in data structure for strings but
manipulation was still mostly in the
hands of the programmer who was
required to write libraries of routines
for this.

The 'C' programming language has
become an excellent system language
because of its efficiency and
portability, but it is nevertheless
limited in the same way as PL/I and
other 'structured' programming
languages in that it has almost no
built-in string manipulation
functions at all. Furthermore, these
languages do not allow linguistic
algorithms, such as parsing of
morphological analysis, to be written
in concise and intuitively obvious
ways. See Figure 1.

Special purpose languages

In the early seventies, new languages
like LISP and Prolog surfaced, with a
markedly superior ability in linguistic
expression, particularly in expressing
and manipulating semantic
relationships, which was recognised
early on as perhaps the greatest
nightmare to overcome in machine
translation. The Artificial Intelligence
(AI) community has been most active
in their use. Few commercial MT
concerns have begun to use them.
This is, however, understandable for
three reasons. First, their initial
availability on systems was quite
limited and still is in any standard or
portable form. Second, few offer
native language compilation on any
machine thus being difficult to
integrate with existing programs
which is often a requirement in the
commercial setting. Companies like
Automated Language Processing
Systems (ALPS) rely upon a real-time
environment for their translator aids
and cannot accept the relative

slowness of interpreters, particularly
on the existing general-purpose non-
LISP hardware. Last, truly integrated
environments where one finds the
capability of calling special purpose
language functions are scarce or non-
existent. Fully compiled versions of
these languages cannot, by
definition, have all the functionality
of the interpreted versions. In any
case, LISP and Prolog may be well
suited to solving many linguistic or
AI problems, but their use as systems
programming languages is still not
widely accepted nor possible (at least
not on a wide enough range of
hardware). Realistically, a
commercial MT/MAT company must
provide an entire translator
environment, geared to helping the
translator translate rather than
frustrating him (1) and in doing such,
must integrate a great deal of systems
software like word processors and
control environments which cannot
be done practically in the current
array of AI programming languages,
because, as we said, of the relative
unacceptability of systems
programming in these languages. We
look forward to the day when LISP
machines are widely available and at
reasonable prices. See Figure 2.

Comparing general purpose
programming languages like ALGOL
and 'C' with LISP and Prolog in our
context, however, is quite pointless -
like comparing apples and oranges.
To create a good translation
environment, one needs document
production facilities foremost and
that implies systems and general
purpose programming languages for
the reasons already established. To
meet the needs of linguistic
expression - which is worlds apart -
special purpose linguistic languages
are necessary, and most companies
come to that realisation sooner or
later investing a great deal of time
and talent in this area.

Linguistic support
software or 'Lingware'
All projects have used some system
supported programming language or
another but innovators on MT
projects like those of SYSTRAN, the
Translation Sciences Institute,
Weidner Communications Inc. and
ALPS have designed and
implemented what one could call
'lingware' with the goal of permitting
near direct expression of linguistic
algorithms: structural analysis,
syntactic and semantic transfer and
inflection. This lingware had the
benefit of being quite maintainable;
that is, the algorithms they expressed
were easily corrected and improved.

Linguistic tools are incidental to
work in machine translation

by Russell Bateman

Russell Bateman is a computational linguist working on English-French
development for Automated Language Processing Systems

During the development of natural language processing software,
especially computer translation systems or computer aids to translation
(MT, MAT, etc.), tools are created and research performed which are
often wasted when commercial companies die or academic research
projects break up. What is the nature of the tools which are developed
and just what are we losing when the projects die with no more legacy
than the spreading of good minds and ideas to the four winds?

Debugging and ISAMs

Putting together a translation system
is a big affair and the software
becomes very large and complex.
Debugging becomes a concern and is
an indispensable tool to the linguist
and programmer alike. It is almost
always impossible to accurately
diagnose a problem in a system
based on the translated output.
Writing debuggers of some
importance is something that each
project tackles sooner or later
whether or not they first think their
system-supplied debugger is
adequate. An important part of
creating linguistic support tools like a
formalism for syntactic analysis is
providing a means of interpreting
and debugging their output before it
becomes corrupted by another phase
of the translation code.

It is also essential that an MT project
have an ISAM - dictionary lookup
capability, and if the development
system they have chosen does not
offer a suitable one, they will be
under the obligation of writing one -
a non-trivial endeavour. Their ISAM
(or often ISAMs) must provide fast
and accurate access to lexicons as
well as any tables they may use for
grammar, inflection and the like.

Simple morphological
and synthesis tools

Occasioned by every MT effort are
the essential building blocks which
must be in place before one can begin
the more academically satisfying and
more talked-about stage of parsing.
By this I am referring to programs
that break up and define sentences
and words and reduce words
morphologically in order to identify
and by look-up obtain the necessary
syntactic and semantic information
used by the parser. In English this
often occurs in the form of a
reasonably simple algorithm but in
the case of other languages,
extensive tables and character
matching functions are designed.

On the other hand, of course, are the
tools with which the target language
is produced. We call this synthesis
and it entails a host of useful
programs to inflect nominal forms,
conjugate verbs, determine
capitalisation, etc., any of which
could find their application in
assorted CAI (Computer Aided
Instruction), writers' workbench
package and the like.

Research aids, dictionaries
and grammars
There are differing requirements
between the needs of the machine in

24 Language Monthly June 1985

language processing and the needs of
the intelligent human dictionary
user. One example of this is the
reference work L'art de conjuger,
dictionnaire des 12,000 verbes. The
'Bescherelle' as it is commonly called
has been the de facto, popular French
verb conjugation bible for a very long
time. It treats some eighty
conjugation types of the French
language in a way that anyone of
reasonable intelligence can
understand. The problem here is that
the computer is not capable of the
same 'reasonable intelligence', and
so each MT project has had to
reorganise the tables.

Another example - because I work
mostly in French - is the Larousse
Dictionnaire des verbes, a rich work full
of simple, straightforward research
on verb valency (the verb plus
expected, possible complements)
with examples galore. And yet the
work was approached from a more
traditional grammar standpoint in
both the terminology it uses and the
categorisations. I have personally
adapted much of its codings in my
work according to hit-and-miss,
practical requirements imposed upon
me by the necessity I have to 'get the
best out for the current deadline'.
There is a dearth of such reference
material in languages other than
French and German; MT researchers
therefore have to research and codify
their own. We have linguists at ALPS
who have done this sort of thing two
or three times as they went from
project to project.

Allow me to quickly add to this list of
references most often created and
exploited by MT researchers, the
backward or reversed dictionary and
the text corpus. Brown University's
corpus has served almost everyone
since its tagging was finished in the
early seventies, but other languages
are not so fortunate. Corpora, let
alone tagged corpora, are difficult to
obtain in French and other Romance
languages, even though some do
exist in academic environments.
Many MT companies must resort to
compiling their own reverse
dictionaries (essential to the
establishment of morphological
tables) and corpora (used for
statistical and contextual analyses of
words).

Summary
To recap the products which are
created incidental to work on every
MT project, allow me to re-
enumerate specifically: 1) String
handling functions for the
programming languages used; 2)
Parsers and/or special purpose
programming languages for

expressing grammatical formalisms
developed by linguists; 3) Other tools
often involving compilers and
interpreters for performing the steps
in the translation process such as
morphological reduction, ordering,
inflection/conjugation and
capitalisation or other graphological
adjustments of the output; 4)
Debugging or diagnostic display
packages created for use by the
implementors; 5) ISAM capability as
a basis for lexicons and tables if none
is available or suitable on the
development system chosen; 6)
Compiled data from prepublished
grammar research, corpus study,
statistical lexicography, semantics
research, etc.

Is it feasible to sell or
otherwise distribute these
materials?

Of course, that is the question that
my superiors and board of directors
would be most likely to ask! The
problem of feasibility seems to lie in
two principal areas: the possibility of
producing a workable package to sell
and the desire or willingness of the
producing company to share its
development with potential
competitors.

The packaging of such information
can take several of many traditional
forms: publishing in the case of
dictionaries and grammar research or
installation in the case of producing
actual software packages like parsers
and verb conjugators.

The more obvious impediment to the
proliferation of specific linguistic
tools in the commercial let alone
public domain is the understandable
desire of any company which
perceives its existence as depending
on MT systems sales, to alone reap
the benefits of its own R & D
lingware and technological edge. To
digress, I might state that this
mentality prevails even when the
tools they are currently developing
and using are academically obsolete
when compared with the latest as
defined by the participants in
conferences like CALICO, COLING
and other ACL happenings, and the
various conferences on AI; indeed, it
is doubtful that any of the truly
commercial MT companies are now
employing any linguistic knowledge
or techniques that are not at least five
to ten years old. And it is also very
doubtful that real AI is being used in
any of the companies with actual
products now on the market!

In view of the small number of MT
companies in existence, the real

market for computational linguistic
tools and information might Be the
academic institution. Much
information reaches the public
domain through the conferences just
mentioned and is not fully exploited
by the MT and university
communities. In addition, however,
publishers of dictionaries should be
interested as the increased
computerisation of their industry,
including their traditionally paper-
medium products, will certainly
overturn much of what has been
compiled over the centuries. This, of
course, applies dramatically to
traditional schoolboy grammars but
can also find its application in age-old
authorities such as Bescherelle and
Grevisse's Le Bon Usage.

To a large extent, the public domain
would be benefitted by the efforts of
MT researchers, past and present,
particularly in two immediate areas:
dictionaries and grammars.

France, for example, is currently in a
great period of informatisation or
computerisation to place a world of

information in the form of on-line
reference materials, shopping and
banking services only as far away
from each citizen as his or her
telephone and television screen.
Prototype systems have already been
installed in various French cities.
Soon, I believe, the reliance upon
manual, intelligent methods will be
upstaged by the arrival of automatic
unintelligent ones and the publishers
of grammars and dictionaries will be
urged by software developers of
these systems to modify their formats
because the computer cannot operate
on the implicit information.

In the area of grammatical theory and
research, MT excels as a proving
ground. To a great extent, the old
schoolboy grammars have been
shown to be inadequate by attempts
made to apply them on the machine.
It is true that present machine
applications can be unfair, especially
in light of difficult semantic
considerations, but coding any
grammar's rules in a machine can be
very instructive as the BYU-TSI
project found out during the decade
of its work with Junction Grammar.

Conclusions

In conclusion, I have shown that a
great variety of useful by-products in
actual tools and important research
are created 'from scratch' each time
an MT project is launched. I believe
that we in the MT world are doing a
disservice to the general
advancement of MT by not
examining possible and (in the case
of private ventures) commercially
harmless, outlets for the mass of
knowledge gained on each project.

Notes

1. A discussion of just what environments
constitute aids to translation rather than
frustration is found in Bateman, R.,
"Introduction to Interactive Translation" in the
proceedings of the November 1983 ASLIB
conference, London, England.

2. The grammar was discussed by Grischman,
R. and Ngo Thanh Nhan, in a presentation
entitled "Automated Determination of
Sublanguage Syntactic Usage" and published
in the proceedings of the July 1984 COLING
conference held at Stanford University,
California.

©Russell Bateman, ALPS, Avenue Beauregard3,
CH-2035Corcelles, Switzerland, 1985.

