Facilitating cross-language retrieval and machine translation by multilingual domain ontologies

Petr Knoth, Trevor Collins, Elsa Sklavounou, Zdenek Zdrahal Knowledge Media Institute, The Open University, UK Systran, France

KMi

22th May 2010

Aims and context

Application in the domain of human genetics

5 Conclusions

Outline

- 1 Aims and context
- 2 Method
- 3 Application in the domain of human genetics
- Properties of the method and work in progress
- 5 Conclusions

A (1) > A (2) > A

• Multilingual access and retrieval of eLearning materials particularly important in domains that are quickly evolving:

イロト イポト イヨト イヨ

- Multilingual access and retrieval of eLearning materials particularly important in domains that are quickly evolving:
 - Lecturers required to often change their materials (e.g. genetics, nanotechnology)
 - Lecturers usually required to produce and deliver teaching materials in their language.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Multilingual access and retrieval of eLearning materials particularly important in domains that are quickly evolving:
 - Lecturers required to often change their materials (e.g. genetics, nanotechnology)
 - Lecturers usually required to produce and deliver teaching materials in their language.
- Typical problems of students: How to find the interesting materials? How to use them?

- **→ → →**

- Multilingual access and retrieval of eLearning materials particularly important in domains that are quickly evolving:
 - Lecturers required to often change their materials (e.g. genetics, nanotechnology)
 - Lecturers usually required to produce and deliver teaching materials in their language.
- Typical problems of students: How to find the interesting materials? How to use them?

Objective

To show how can ontologies be used to improve the multilingual access to domain specific information.

A (1) > A (2) > A

Eurogene

• A 3-year eContentplus supported project (18 content providers, 3 technical partners).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Eurogene

- A 3-year eContentplus supported project (18 content providers, 3 technical partners).
- Architecture for accessing and sharing multilingual resources is one of the project subgoals (KMI & Systran).
 - Cross-language information retrieval (CLIR)
 - Machine translation (MT).
 - Both should be synchronized for terminology.

Outline

3 Application in the domain of human genetics

Properties of the method and work in progress

5 Conclusions

Architecture

LREC 2010

• *MT approach* - Query translated from the source language to the target language and submitted to the search system.

Method

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• *MT approach* - Query translated from the source language to the target language and submitted to the search system.

Method

(a) MT system used to translate the query to all languages of interest.

A D M A A A M M

.

• *MT approach* - Query translated from the source language to the target language and submitted to the search system.

Method

- (a) MT system used to translate the query to all languages of interest.
- (b) A multilingual ontology used to map the submitted query to different languages.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• *MT approach* - Query translated from the source language to the target language and submitted to the search system.

Method

- (a) MT system used to translate the query to all languages of interest.
- (b) A multilingual ontology used to map the submitted query to different languages.
- Statistical approach The system trained on a collection of texts (typically parallel). Query is then mapped to a language independent document vector using approaches, such as LSI (Dumais, 1997).

.

• *MT approach* - Query translated from the source language to the target language and submitted to the search system.

Method

- (a) MT system used to translate the query to all languages of interest.
- (b) A multilingual ontology used to map the submitted query to different languages.
- *Statistical approach* The system trained on a collection of texts (typically parallel). Query is then mapped to a language independent document vector using approaches, such as LSI (Dumais, 1997).

We are using approach 1(a) because:

- Multilingual ontologies are well-suited for domain CLIR.
- Multilingual ontologies can also be used to adapt MT to the target domain.
- Parallel corpora in specific domains often not initially available.

イロト イ理ト イヨト イヨト

Synergy of CLIR and MT

Method has two phases:

- initialization phase
 - Development of a *seed* monolingual ontology reuse of an existing ontology or by using ontology learning methods (Cimiano and Völker, 2005, Sclano and Velardi 2007).
 - Extension of the ontology to multiple languages.

→ ∃ →

Synergy of CLIR and MT

Method has two phases:

- initialization phase
 - Development of a *seed* monolingual ontology reuse of an existing ontology or by using ontology learning methods (Cimiano and Völker, 2005, Sclano and Velardi 2007).
 - Extension of the ontology to multiple languages.
- bootstrapping phase
 - Adaption of the MT dictionaries (hybrid MT system required).
 - Adaption of the multilingual ontology.

.

Architecture

LREC 2010

Monolingual ontology

A monolingual ontology is a 4-tuple $O = \langle C, T, E, f \rangle$:

- C is a set of concepts.
- *T* is a set of terms (representations of concepts).
- *E* is a set of oriented relations (*is-a* relations), such that $\langle C, E \rangle$ is a directed acyclic graph.
- $f: T \rightarrow C$ is a surjective function from terms to concepts.

Multilingual ontology

A multilingual ontology is a 6-tuple $O' = \langle C, T, E, f, L, lang \rangle$

- A monolingual ontology $O = \langle C, T, E, f \rangle$
- L is the set of languages.
- *lang* : $T \rightarrow L$ is a mapping from terms to languages.

Multilingual ontology - example

- Lightweight ontology
- SKOS-like representation

イロト イ団ト イヨト イヨト

Architecture

Petr Knoth (KMI)

LREC 2010

Bootstrapping phase - MT improvement step

Method

The MT system is adapted to a specific domain:

- Using bilingual substitution rules of form: $t_{L_1} \rightarrow t_{L_2}$ extracted from the multilingual ontology.
- Rules satisfy the condition $f(t_{L_1}) = f(t_{L_2})$, where $t_{L_1} \in T_{L_1}, t_{L_2} \in T_{L_2}$ and T_{L_n} is defined as $T_{L_n} = \{t | lang(t) = L_n\}$.
- Flattening the ontological structure and deriving pairs for all supported combinations.

イロト イヨト イヨト イヨト

Bootstrapping phase - MT improvement step

Method

The MT system is adapted to a specific domain:

- Using bilingual substitution rules of form: $t_{L_1} \rightarrow t_{L_2}$ extracted from the multilingual ontology.
- Rules satisfy the condition $f(t_{L_1}) = f(t_{L_2})$, where $t_{L_1} \in T_{L_1}, t_{L_2} \in T_{L_2}$ and T_{L_n} is defined as $T_{L_n} = \{t | lang(t) = L_n\}$.
- Flattening the ontological structure and deriving pairs for all supported combinations.

Example

linkage analysis_{en} \rightarrow Kopplunganalyse_{de} analyse de liasion_{fr} \rightarrow Analisis de ligamiento_{sp}

イロト イポト イヨト イヨ

Architecture

Petr Knoth (KMI)

LREC 2010

Bootstrapping phase - Ontology refinement

Method

- Content grows over time.
- New parallel texts can be automatically recognized (Resnik, 2003) and used by the machine translation system for training.
- If new pairs of text are discovered, statistical training is performed to improve the MT language model.

Bootstrapping phase - Ontology refinement

Method

- Content grows over time.
- New parallel texts can be automatically recognized (Resnik, 2003) and used by the machine translation system for training.
- If new pairs of text are discovered, statistical training is performed to improve the MT language model.
- The ontology is adapted by rules of form $(t_{L_1}, t_{L_2}, conf, lang_q)$ produced as an output of the statistical phase.
 - *conf* is the confidence measure of translating term *t*_{L1} to *t*_{L2} estimated from text.
 - $lang_q: T \rightarrow L$ is a mapping from terms to languages.

イロト イヨト イヨト イヨト

Bootstrapping phase - Ontology refinement

Method

- Content grows over time.
- New parallel texts can be automatically recognized (Resnik, 2003) and used by the machine translation system for training.
- If new pairs of text are discovered, statistical training is performed to improve the MT language model.
- The ontology is adapted by rules of form $(t_{L_1}, t_{L_2}, conf, lang_q)$ produced as an output of the statistical phase.
 - *conf* is the confidence measure of translating term *t*_{L1} to *t*_{L2} estimated from text.
 - $lang_q: T \rightarrow L$ is a mapping from terms to languages.

Example

 $\langle indirekte DNA-Analyse_{de}, linkage analyse_{en}, 0.85 \rangle$

• • • • • • • • • • • •

Architecture

Petr Knoth (KMI)

LREC 2010

Outline

Aims and context

2 Method

Application in the domain of human genetics

Properties of the method and work in progress

5 Conclusions

< 17 ▶

Eurogene portal

- Ontologies used for:
 - Annotation
 - CLIR
 - Query expansion
 - Navigation across content in multiple languages (semantic similarity)
 - MT

< ロ > < 同 > < 回 > < 回 >

Eurogene portal

- Ontologies used for:
 - Annotation
 - CLIR
 - Query expansion
 - Navigation across content in multiple languages (semantic similarity)
 - MT
- Statistics:
 - About 20,000 files (papers, presentations, videos, images)
 - About 15,000 ontological terms.
 - Nine languages (English, French, Spanish, German, Greek, Italian, Dutch, Czech, Lithuanian).
- http://eurogene.open.ac.uk/

< ∃ ►

Outline

- Aims and context
- 2 Method
- 3 Application in the domain of human genetics
- Properties of the method and work in progress

5 Conclusions

4 A N

- E - N

Properties of the method and work in progress Properties of the approach

- Performance of both CLIR and MT should never decrease as a result of any bootstrapping iteration.
- Two steps where an error may be introduced:
 - The update of the MT rule base.
 - The update of the multilingual ontology.

Properties of the method and work in progress Properties of the approach

- Performance of both CLIR and MT should never decrease as a result of any bootstrapping iteration.
- Two steps where an error may be introduced:
 - The update of the MT rule base.
 - The update of the multilingual ontology.
- Evaluation many components involved:
 - Coverage and specificity of the ontology.
 - Amount of domain corpora available.
 - Performance of the statistical training.
 - Validity of human judgements.
 - Other factors ...

Outline

- 1 Aims and context
- 2 Method
- 3 Application in the domain of human genetics
- Properties of the method and work in progress

5 Conclusions

4 A N

Summary

• Multilingual ontologies suitable for domains with rich terminology.

< ロ > < 同 > < 回 > < 回 >

Summary

- Multilingual ontologies suitable for domains with rich terminology.
- Can be used as a synchronization component for domain adaption of CLIR and MT systems.

A D M A A A M M

Summary

- Multilingual ontologies suitable for domains with rich terminology.
- Can be used as a synchronization component for domain adaption of CLIR and MT systems.
- The solution is easily readable and adjustable by humans.

Conclusions

Summary

- Multilingual ontologies suitable for domains with rich terminology.
- Can be used as a synchronization component for domain adaption of CLIR and MT systems.
- The solution is easily readable and adjustable by humans.
- Publishing of multilingual ontologies on the Web in a standard format may allow an application to decide which domain ontology to use for query expansion and for adaption of the MT system based on the context of the query.

Thank you for attention !

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- E