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Abstract

This paper describes a system combination
module in the MaTrEx (Machine Transla-
tion using Examples) MT system developed
at Dublin City University. We deployed this
module to the evaluation campaign for the
ML4HMT task, achieving an improvement of
2.16 BLEU points absolute and 9.2% relative
compared to the best single system.

1 Introduction

This paper describes a system combination mod-
ule in the MaTrEx (Machine Translation using Ex-
amples) MT system (Du et al., 2009; Okita et al.,
2010b) developed at Dublin City University. We de-
ployed this module to the evaluation campaign for
the ML4HMT task.

System combination techniques often rely on the
Minimum Bayes Risk decoder (MBR decoder) (Ku-
mar and Byrne, 2002) with and without confusion
network. Our system combination approach uses
the MBR decoder with the confusion network (Ban-
galore et al., 2001; Matusov et al., 2006; Du et
al., 2009). One notable addition in this paper is
in the optimization procedure (presented in Section
2) which considers all the possible combinations of
given inputs and may result in excluding the outputs
of some of the systems participating in system com-
bination architecture. As far as we know, there is no
paper yet which discusses in detail how to best se-
lect from the provided set of single best translations.
This paper also seeks to explain the mechanism why
this selection works.

The alternative approach which does not use the
confusion network tends to address the problem
when the MBR decoder has to handle largern in
its n-best lists (Tromble et al., 2008; DeNero et al.,
2009).

The remainder of this paper is organized as fol-
lows. Section 2 describes the system combination
strategy we used in this evaluation campaign. In
Section 3, our experimental results are presented. In
Section 4, we discuss why one inferior system is bet-
ter removed in the overall system combination strat-
egy. We conclude in Section 5.

2 Our System Combination Strategy

Let E be the target language,F be the source lan-
guage, andM(·) be an MT system which maps some
sequence in the source languageF into some se-
quence in the target languageE. LetE be the trans-
lation outputs of all the MT systems. For a given
reference translationE, the decoder performance
can be measured by the loss functionL(E,M(F )).
Given such a loss functionL(E,E′) between an au-
tomatic translationE′ and the reference E, a set of
translation outputsE, and an underlying probability
modelP (E|F ), a MBR decoder is defined as in (1)
(Kumar and Byrne, 2002):

Ê = arg min
E′∈E

R(E′)

= arg min
E′∈E

∑

E′∈E
L(E,E′)P (E|F ) (1)

whereR(E′) denotes the Bayes risk of candidate
translationE′ under the loss functionL. We use
BLEU (Papineni et al., 2002) as this loss functionL.
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system MT output seqs prob expected matches
1 a a a c 0.30 expected-matches(aaac)=0.3*4+0.2*0+0.2*0+0.2*0+0.1*0=1.2
2 b b c d 0.20 expected-matches(bbcd)=0.3*0+0.2*4+0.2*3+0.2*3+0.1*1=2.1
3 b b b d 0.20 expected-matches(bbbd)=0.3*0+0.2*3+0.2*4+0.2*2+0.1*2=2.0
4 b b c f 0.20 expected-matches(bbcf)=0.3*0+0.2*3+0.2*2+0.2*4+0.1*0=1.8
5 f f b d 0.10 expected-matches(ffbd)=0.3*0+0.2*1+0.2*2+0.2*0+0.1*4=1.0

system MT output seqs prob expected matches
1 a a a c 0.33 expected-matches(aaac)=0.33*4+0.22*0+0.22*0+0.22*0+0.00*0=1.32
2 b b c d 0.22 expected-matches(bbcd)=0.33*0+0.22*4+0.22*3+0.22*3+0.00*1=2.20
3 b b b d 0.22 expected-matches(bbbd)=0.33*0+0.22*3+0.22*4+0.22*2+0.00*2=1.98
4 b b c f 0.22 expected-matches(bbcf)=0.33*0+0.22*3+0.22*2+0.22*4+0.00*0=1.98
5 - - - - 0.00

Table 1: Motivating examples. MBR decoding can be schematically described as the expectation of the number of
matching between the MT output sequence and some sequence, as is described in this table. The upper row shows
the MT output sequences consisting of 5 systems, while the lower row shows the MT output sequences consisting of
4 systems. In this case, the expected matches of “bbcd” for 4 systems (lower row) are better than those for 5 systems
(upper row). This suggests that it may be better to remove extremely bad MT output from the inputs of system
combination.

We now introduce the idea of searching for the
optimal subsetE0 amongE (whereE is the trans-
lation outputs of all the MT systems participating
in the system combination). The motivating exam-
ple is shown in Table 1. In this example, five MT
output sequences “aaac”,”bbcd”,”bbbd”,”bbcf”, and
“ffbd” are given. Suppose that we calculate the ex-
pected matches of “bbcd”, which constitute the neg-
ative quantity in Bayes risk. If we use all the given
MT outputs consisting of 5 systems, the expected
matches sum to 2.1. If we discard the system pro-
ducing ”ffbd” and only use 4 systems, the expected
matches improve to 2.20. As a conclusion, it is not
always the best solution to use the full set of given
MT outputs, but to remove some MT output can be
a good strategy. This suggests to consider all the
possible subsets of the full set of MT outputs, as is
shown in (2):

Ê = arg min
Ei⊆E

∑

E′∈Ei

L(E,E′)P (E|F ) (2)

whereE0 ⊆ E indicates that we chooseE0 from all
the possible subsets ofE (or a power set ofE). 1

We now move on to obtain each value of
argminE′∈Ei

∑
E′∈Ei

L(E,E′)P (E|F ) and con-
sider a confusion network which enables us to com-
bine several fragments from MT outputs. In the first

1A power set ofE = {1, 2} is {{1, 2}, {1}, {2}, ∅}.

step, we select the sentence-based best single system
via a MBR decoder. Note that single system outputs
are often used as the backbone of the confusion net-
work. For example in Table 2, system t1 is selected
as the backbone. Note that the backbone determines
the general word order of the confusion network.

In the second step, based on the backbone which
is selected in the first step, we build the confusion
network by aligning the hypotheses with the back-
bone. In this process, we used the TER distance
(Snover et al., 2006) between the backbone and the
hypotheses. We do this for all the hypotheses sen-
tence by sentence. Note that in this process, deleted
words are substituted as NULL words (orǫ-arcs).
For example in Table 2, the lower half shows an ex-
ample of a confusion network. hyp(t2),. . . , hyp(t5)
are aligned according to the backbone(t1). Note that
∗ denotesǫ-arcs, (D) denotes deletion, (I) denotes
insertion, and (S) denotes substitution following the
terminology in the TER distance literature. The right
most column in Table 2 in the rows of the confusion
network, that is 57.14, 71.43, and so forth, shows the
TER score for this example.

In the third step, the consensus translation is ex-
tracted as the best path in the confusion network.
The most primitive approach (Matusov et al., 2006)
is to select the best word̂ek by the word posterior
probability via voting at each positionk in the con-
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segment 782
Input t1 since the a team of almost 1000 policemen is in charge of security .
Input t2 since the previous day an equipment of almost 1000 policewomen is being in charge of the safety .
Input t3 from the previous day a team from almost 1000 police officer himself is using of the security
Input t4 from the previous day a team of almost 1000 police is occupying of the security .
Input t5 since the day before a team of almost 1 policemen is pursuing security .

backbone(t1) since the a team of almost 1000 policemen is in charge of security .

hyp(t2) since the previous(I) day(I) an(S) equipment(S) of almost 1000 policewomen(S) is being(I) 57.14
in charge of the(I) safety(S) .

hyp(t3) from(S) the(I) previous(I) day(S) a team from(S) almost 1000 police(I) officer(I) himself(S) 71.43
is using(S) the(S) of security .

hyp(t4) from(S) the previous(I) day(I) a team of almost 1000 police(S) is occupying(S) the(S) of security . 50.00
hyp(t5) since the day(I) before(I) a team of almost 1(S) policemen is*(D) *(D) pursuing(S) security . 42.86

output since the previous day a team of almost 1000 policemen is in charge of security .

Table 2: Example from the 782th sentence from the testset. First we choose the first input as the backbone. Second,
we make the confusion network measuring the performance by TER. Then, the consensus translation of ”since the
previous day a team of almost 1000 policemen is in charge of security .” is obtained as an output.

fusion network, as in (3):

Êk = argmax
e∈E

pk(e|F ) (3)

Note that this word posterior probability can be used
as a measure how confident the model is about this
particular word translation (Koehn, 2010), as de-
fined in (4):

pi(e|F ) =
∑

j

δ(e, ej,i)p(ej |F ) (4)

whereej,i denotes thei-th word andδ(e, ej,i) de-
notes the indicator function which is 1 if thei-th
word is e, otherwise 0. However, in practice as is
shown by (Du et al., 2009; Leusch et al., 2009),
the incorporation of a language model in this vot-
ing process will improve the quality further. Hence,
we use the following features in this voting process:
word posterior probability, 4-gram and 5-gram tar-
get language model, word length penalty, and NULL
word length penalty. Note that Minimum Error-Rate
Training (MERT) is used to tune the weights of the
confusion network. In Table 2, “since the previous
day a team of almost 1000 policemen is in charge of
security .” is selected in this voting process. In the
final step, we remove theǫ-arcs if existed.

3 Experiments

We use MERT (Och, 2003) internally to tune the
weights and language modeling is provided by

SRILM (Stolcke, 2002). We did not use any external
language data resources.

Our results as obtained by the system described
in Section 2 (which automatically selects and dis-
cards translations provided by the component MT
systems) are shown in the results line in Table 3. Al-
though the organizers provide the reference set for
the testset, the decision that we make in the fol-
lowing is based on the results obtained on the de-
velopment set performance since we cannot access
the reference set in “real life” situations. Due to the
performance on the development set, we tuned the
parameters in our system as is described in Section
2.

The improvement in BLEU was 2.16 points abso-
lute and 9.2% relative compared to the performance
of system t2, the single best performing system
(we optimized according to BLEU). Except for ME-
TEOR, we achieved the best performance in NIST
(0.14 points absolute and 2.1% relative), WER (0.71
points absolute and 1.1% relative) and PER (0.64
points absolute and 1.3% relative) as well.

In order to shed further light on the intermedi-
ate results, we sampled three combinations of single
best translation outputs, which are shown in Table 3
as well. Combination 1 includes all of the five sin-
gle best translation outputs. Combination 2 includes
t1, t2, t4, and t5 which eliminates system t2 which
performed worst in terms of development set perfor-
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NIST BLEU METEOR WER PER
system t1 6.3934 0.1968/0.1289∗ 0.5022487 62.3685 47.3074
system t2 6.3818 0.2337/0.1498∗ 0.5732194 64.7816 49.2348
system t3 4.5648 0.1262/0.0837∗ 0.4073446 77.6184 63.0546
system t4 6.2136 0.2230/0.1343∗ 0.5544878 64.9050 50.2139
system t5 6.7082 0.2315/0.1453∗ 0.5412563 60.6646 45.1949

results 6.8419 0.2553 0.5683086 59.9591 44.5357

combination 1 (1,2,3,4,5) 6.7151 0.2505 0.5701207 60.6993 45.5148
combination 2 (1,2,4,5) 6.8419 0.2553 0.5683086 59.9591 44.5357
combination 3 (2,4,5) 6.7722 0.2498 0.5687383 60.6723 45.2257

Table 3: We do experiments and obtained the results as above (See the results line). All the scores are on testset except
those marked∗ (which are on devset). On comparison, we did sampling of three combinations of the single systems,
which shows that our results are equivalent to the combination 2. These exeprimental results validate our motivating
results: it is often the case that some radically bad translation output may harm the final output by system combination.
In this case, system t3 whose BLEU score is 12.62 has a negative effect on the results of system combination. The
best performance was achieved by removing this system, i.e.the combination of systems t1, t2, t4, and t5.

mance. Combination 3 includes t2, t4, and t5 which
eliminates the two worst systems in terms of the de-
velopment set performance.

It is evident that our overall result is equivalent
to Combination 2. Combination 2 achieved the
best performance among these three combinations in
NIST (0.13 points absolute and 2% relative), WER
(0.70 points absolute and 1.1% relative) and PER
(0.66 points absolute and 1.4% relative) as well.
Combination 1 is second best in terms of BLEU
scores. The improvement in BLEU was 1.68 points
absolute and 7.1% relative. Combination 3 achieves
1.61 points improvement absolute and 6.9% relative.

4 Discussion

In Statistical Machine Learning (Vapnik, 1998), the
term Bayes risk refers to the minimum risk over all
possible measurable functions. This strategy leads
to find the best hypothesis under the worst case anal-
ysis which is called agnostic learning (Kearns et al.,
1994). In agnostic learning, with probability 1-δ, the
number of training samples sufficient to ensure that
every hypothesisH having zero training error will
have a true errorm of at mostǫ, is investigated as is
shown in (5):

m ≥ 1

ǫ
(ln |H| + ln |1

δ
|) (5)

In Support Vector Machines (Vapnik, 1998; Cris-
tianini and Shawe-Taylor, 2000), this strategy is

called the empirical risk minimization or the struc-
tural risk minimization. For example, in the case of
an (independent) regression problem,2 Bayes risk is
defined as in (6):

R(t) = inf
g
R(g) (6)

wheret is a target function andg is a true function.
Bayes risk can be further rewritten as in (7):

R(g) = P (g(X) 6= Y ) = E(1g(X) 6=Y ) (7)

where1 denotes an indicator function. As we can-
not measure this risk sinceP is unknown, we use
the following empirical risk (8) to measure the per-
formance:

Rn(g) =
1

n

n∑

i=1

1g(Xi) 6=Yi
(8)

This leads to the theory of worst case analysis taken
by Support Vector Machines. To seek minimal risk
is equivalent to seeking high probability mass in
the hypothesis space since Eq (8) counts how many
g(Xi) andYi disagree with each other. We seek high
counts of disagreement.

2Let us consider an input spaceX and output spaceY. We
assume that a set ofn IID pairs (Xi, Yi) sampled according
to an unknown but fixed distributionP . Suppose that our task
is to predict a functiong : X → Y where we callg a true
function. Now, lett be a target functiont(x) = sgnη(x) where
η(x) = E[Y |X = x] = 2P[Y = 1|X = x]− 1.
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In the case of Machine Translation, this analogy
can be extended. As is shown in Eq (1), MBR de-
coding seeks to obtain the translations whose prob-
ability mass are concentrated (Koehn, 2010) where
each word is split as in Eq (4) if we take the con-
fusion network-based approach of system combina-
tion. Hence, if the same words appear in the same
word position, such words may occupy the high
probability mass in Eq (4). If we include incorrect
translation output among candidate translation out-
puts in the same word position, incorrect words may
occupy the high probability mass. Then, the result-
ing output may include such bad words, causing the
overall BLEU score to be low. Although this is not a
conclusive explanation, this explains the possibility
in a qualitative way why our combination 1 can be
worse than our combination 2 in Table 3.

5 Conclusion and Further Studies

This paper describes the system combination mod-
ule in the MT system MaTrEx developed at Dublin
City University. We deployed the system combi-
nation module to this evaluation campaign. In this
paper, we introduce a new input selection mech-
anism which removes some radically bad systems
for the sake of achieving final better overall perfor-
mance. Although this phenomenon was observed
between JP-EN (Okita et al., 2010b), we imple-
mented this mechanism in the procedure in this pa-
per and showed the same to hold between ES-EN.
Improvement was 2.16 BLEU points absolute and
9.2% relative compared to the best single system.

Further study will investigate the effect of bad
translation inputs in system combination. Currently
our implementation of Eq (2) is somewhat naive, in
that the approach considers all subsets of transla-
tions contributed by the individual MT systems. We
will work on a strategy how to select translation in-
puts optimally. In particular such a discussion will
be fruitful if our inputs are the 1000-best list as in
the case of Tromble et al. (Tromble et al., 2008) and
DeNero et al. (DeNero et al., 2009). Their improve-
ments are in general quite small compared to the
confusion network-based approach. As is shown in
Figure 1, the 100-best list and the 1000-best list pro-
duced by Moses (Koehn et al., 2007) tend not to be
sufficiently different and do not produce meaning-

ful translation alternatives. As a result, their BLEU
score tends to be low compared to the (nearly best)
single systems. This means that in our strategy those
MT inputs may be better removed rather than em-
ployed as a useful source in system combination.

Figure 1: The upper left figure shows the count of exact
matches among the translation outputs of Moses as a 100-
best list after stop-word removal and sorting; We project
each sentence in a 100-best list onto vector space model
and count the number of points. The lower left figure
shows the same quantity for a 1000-best list. The upper
right figure shows the same quantity for a 7-multiple ref-
erence (human translation). We use the parallel data of
IWSLT 07 JP-EN where we use devset5 (500 sentence
pairs) as a development set and devset4 (489 sentence
pairs) as a test set; 7-multiple references consist of de-
vset4 and devset5 (989 sentence pairs). For example, the
upper left figure shows that 7% of sentences produce only
one meaningful sentence in a 100-best list and the other
99 sentences in a 100-best list is just a reordered version.
In contrast, the upper right figure of human translation
shows that more than 70% of sentences in 7 multiple ref-
erences are meaningfully different.

Yet another avenue for further study is to pro-
vide prior knowledge into the system combination
module. In word alignment, one successful strategy
is to embed prior knowledge about alignment links
(Okita et al., 2010a; Okita, 2011; Okita and Way,
2011), which work as the link between statistical
learning and linguistic resources. We have shown
that the selection of MT input sentences is an effec-
tive strategy in this paper. Similarly, it would be in-
teresting to incorporate some prior knowledge about
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system combination, for example, (in)correct words
or phrases in some particular translation output.
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