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Abstract The alternative approach which does not use the

confusion network tends to address the problem
This paper describes a system combination  when the MBR decoder has to handle largemn

module in the MaTrEx (Machine Transla- its n-best lists (Tromble et al., 2008; DeNero et al.,
tion using Examples) MT system developed 2009).

at Dublin City University. We deployed this The remainder of this paper is organized as fol-
module to the evaluation campaign for the

ML4HMT task, achieving an improvement of lows. Section 2 dgscripes the S)_/stem compination
2.16 BLEU points absolute and 9.2% relative  Strategy we used in this evaluation campaign. In
compared to the best single system. Section 3, our experimental results are presented. In
Section 4, we discuss why one inferior system is bet-
_ ter removed in the overall system combination strat-
1 Introduction egy. We conclude in Section 5.

This paper describes a system combination mo% Our System Combination Strategy
ule in the MaTrEx (Machine Translation using Ex-

amples) MT system (Du et al., 2009; Okita et al.l-et £ be the target languagé, be the source lan-

2010b) developed at Dublin City University. We de-guage, and/ (-) be an MT system which maps some

ployed this module to the evaluation campaign fosequence in the source languafjeinto some se-

the MLAHMT task. guence in the target language Let £ be the trans-
System combination techniques often rely on thiation outputs of all the MT systems. For a given

Minimum Bayes Risk decoder (MBR decoder) (Ku-eference translatiods, the decoder performance

mar and Byrne, 2002) with and without confusiorcan be measured by the loss functib(¥, M (F)).

network. Our system combination approach usesiven such a loss functioh(E, E') between an au-

the MBR decoder with the confusion network (Bantomatic translation”’ and the reference E, a set of

galore et al., 2001; Matusov et al., 2006; Du etranslation output§, and an underlying probability

al., 2009). One notable addition in this paper ignodel P(E|F), a MBR decoder is defined as in (1)

in the optimization procedure (presented in SectiofkKumar and Byrne, 2002):

2) which considers all the possible combinations of . ) ,

given inputs and may result in excluding the outputs £ = 218 73 R(E)

of some of thg systems participating in system com- — argmin L(E,EP(E|F) (1)

bination architecture. As far as we know, there is no E'ecé

paper yet which discusses in detail how to best se-

lect from the provided set of single best translationsvhere R(E’) denotes the Bayes risk of candidate

This paper also seeks to explain the mechanism whsanslation £’ under the loss functiod.. We use

this selection works. BLEU (Papineni et al., 2002) as this loss functibn
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system| MT output seqs| prob || expected matches

1 alalal|c | 0.30]| expected-matches(aaac)=0.3*4+0.2*0+0.2*0+0.2*0+0.1*0=1.2

2 bib|c|d || 0.20| expected-matches(bbcd)=0.3*0+0.2*4+0.2*3+0.2*3+0.1*1=2.1

3 b|b|b|d | 0.20 | expected-matches(bbbd)=0.3*0+0.2*3+0.2*4+0.2*2+0.1*2=2.0

4 bibjc|f 0.20 || expected-matches(bbcf)=0.3*0+0.2*3+0.2*2+0.2*4+0.1*0=1.8

5 f|f|b|d | 0.10 | expected-matches(ffbd)=0.3*0+0.2*1+0.2*2+0.2*0+0.1*4=1.0
system| MT output segs| prob || expected matches

1 alalal|c | 0.33]| expected-matches(aaac)=0.33*4+0.22*0+0.22*0+0.22*0+0.0082=1
2 bib|c|d ||0.22]| expected-matches(bbcd)=0.33*0+0.22*4+0.22*3+0.22*3+0.0Q:A6-
3 b|b|b|d | 0.22]| expected-matches(bbbd)=0.33*0+0.22*3+0.22*4+0.22*2+0.00’28-(L
4 bibjc|f 0.22 || expected-matches(bbcf)=0.33*0+0.22*3+0.22*2+0.22*4+0.00*081
5 - - - 0.00

Table 1: Motivating examples. MBR decoding can be schemlfticlescribed as the expectation of the number of
matching between the MT output sequence and some sequanisegd@scribed in this table. The upper row shows
the MT output sequences consisting of 5 systems, while therloow shows the MT output sequences consisting of
4 systems. In this case, the expected matches of “bbcd” fgstems (lower row) are better than those for 5 systems
(upper row). This suggests that it may be better to removeedly bad MT output from the inputs of system
combination.

We now introduce the idea of searching for thestep, we select the sentence-based best single system
optimal subset, amongé& (whereé is the trans- via a MBR decoder. Note that single system outputs
lation outputs of all the MT systems participatingare often used as the backbone of the confusion net-
in the system combination). The motivating examwork. For example in Table 2, system t1 is selected
ple is shown in Table 1. In this example, five MTas the backbone. Note that the backbone determines
output sequences “aaac”,"bbcd”,"bbbd”,"bbcf”, andthe general word order of the confusion network.

"flbd” are given. Suppose that we calculate the ex- | the second step, based on the backbone which
pected matches of “bbcd”, which constitute the negy sejected in the first step, we build the confusion
ative quantity in Bay_/es risk. If we use all the given,atwork by aligning the hypotheses with the back-
MT outputs consisting of 5 systems, the expecteflone. |n this process, we used the TER distance
mat_che”s sum to 2.1. If we discard the system prQgnoyer et al., 2006) between the backbone and the
ducing "ffbd” and only use 4 systems, the expecteglynotheses. We do this for all the hypotheses sen-
matches improve to 2.20. As a conclusion, it is NOfence by sentence. Note that in this process, deleted
always the best solution to use the full set of giver,ords are substituted as NULL words (erarcs).
MT outputs, but to remove some MT output can bggr example in Table 2, the lower half shows an ex-
a gogd strategy. This suggests to consider all ”_'@mple of a confusion network. hyp(t2),., hyp(t5)
possible subsets of the full set of MT outputs, as igre gligned according to the backbone(t1). Note that
shown in (2): « denotesc-arcs, (D) denotes deletion, (I) denotes
£ — arg min Z L(E,E)P(E|F) (2) mser_tlon, an_d (S) denotgs SUbStI.tu'[IOI’l foIIowmg_ the
&ice = terminology in the TER distance literature. The right
' most column in Table 2 in the rows of the confusion
where€, C € indicates that we choos® from all  network, that is 57.14, 71.43, and so forth, shows the
the possible subsets 6f(or a power set of). 1 TER score for this example.

We now move on to obtain each value of In the third step, the consensus translation is ex-

: !
argmingree, )_pree, L(E, E)P(E|F) and €ON- a0 as the best path in the confusion network.

sider a confusion network which enables us to COMrhe most primitive approach (Matusov et al., 2006)

bine several fragments from MT outputs. In the firsFS to select the best woré), by the word posterior

A power set of = {1,2} is {{1,2}, {1}, {2}, 0}. probability via voting at each positiohin the con-
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segment 782
Input t1 since the a team of almost 1000 policemen is in charge of ggcur
Input t2 since the previous day an equipment of almost 1000 policeemisibeing in charge of the safety |.
Input t3 from the previous day a team from almost 1000 police officerseilf is using of the security
Input t4 from the previous day a team of almost 1000 police is occupgirthe security .
Input t5 since the day before a team of almost 1 policemen is purseicigrisy .
backbone(tl)| since the a team of almost 1000 policemen is in charge of ggcur
hyp(t2) || since the previous(l) day(l) an(S) equipment(S) of aim@&dlpolicewomen(S) is being(l) 57.14
in charge of the(l) safety(S) .
hyp(t3) || from(S) the(l) previous(l) day(S) a team from(S) almost@@0lice(l) officer(l) himself(S) 71.43

is using(S) the(S) of security .
hyp(t4) || from(S) the previous(l) day(l) a team of almost 1000 pol&)aé occupying(S) the(S) of security|. 50.00
hyp(t5) || since the day(l) before(l) a team of almost 1(S) policemexi3 *(D) pursuing(S) security . 42.86
output || since the previous day a team of almost 1000 policemen isdargetof security .

Table 2: Example from the 782th sentence from the testsedt \We choose the first input as the backbone. Second,
we make the confusion network measuring the performanceH§y. Then, the consensus translation of "since the
previous day a team of almost 1000 policemen is in chargeaufrgg .” is obtained as an output.

fusion network, as in (3): SRILM (Stolcke, 2002). We did not use any external
- language data resources.
E, = F 3
k 818 glggcpk(d ) @) Our results as obtained by the system described

Note that this word posterior probability can be used Section 2 (which automatically selects and dis-
as a measure how confident the model is about thggrds translations provided by the component MT
particular word translation (Koehn, 2010), as deSystems) are shown in the results line in Table 3. Al-

fined in (4): though the organizers provide the reference set for
- 5 7 4 the testset, the decision that we make in the fol-
pi(elF) = Z (e, e5a)p(ej|F) 4) lowing is based on the results obtained on the de-

J

velopment set performance since we cannot access
wheree;; denotes the-th word andd(e,e;;) de- the reference set in “real life” situations. Due to the
notes the indicator function which is 1 if thieth performance on the development set, we tuned the
word is e, otherwise 0. However, in practice as isparameters in our system as is described in Section
shown by (Du et al.,, 2009; Leusch et al., 2009)2.
the incorporation of a language model in this vot- The improvement in BLEU was 2.16 points abso-
ing process will improve the quality further. Hencejute and 9.2% relative compared to the performance
we use the following features in this voting processof system t2, the single best performing system
word posterior probability, 4-gram and 5-gram tar{we optimized according to BLEU). Except for ME-
get language model, word length penalty, and NULITEOR, we achieved the best performance in NIST
word length penalty. Note that Minimum Error-Rate(0.14 points absolute and 2.1% relative), WER (0.71
Training (MERT) is used to tune the weights of thepoints absolute and 1.1% relative) and PER (0.64
confusion network. In Table 2, “since the previougoints absolute and 1.3% relative) as well.
day a team of almost 1000 policemen is in charge of |n order to shed further light on the intermedi-
security .” is selected in this voting process. In theyte results, we sampled three combinations of single
final step, we remove thearcs if existed. best translation outputs, which are shown in Table 3
as well. Combination 1 includes all of the five sin-
gle best translation outputs. Combination 2 includes
We use MERT (Och, 2003) internally to tune thetl, t2, t4, and t5 which eliminates system t2 which
weights and language modeling is provided byerformed worst in terms of development set perfor-

3 Experiments
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NIST [ BLEU METEOR | WER [ PER
system t1 6.3934| 0.1968/0.1289 | 0.5022487| 62.3685| 47.3074
system t2 6.3818| 0.2337/0.1498 | 0.5732194 | 64.7816| 49.2348
system t3 4.5648| 0.1262/0.0837 | 0.4073446| 77.6184| 63.0546
system t4 6.2136| 0.2230/0.1343 | 0.5544878| 64.9050| 50.2139
system t5 6.7082| 0.2315/0.1453 | 0.5412563| 60.6646| 45.1949
| results | 6.8419 | 0.2553 | 0.5683086] 59.9591 | 44.5357 ||
combination 1 (1,2,3,4,5) 6.7151[ 0.2505 0.5701207] 60.6993[ 45.5148
combination 2 (1,2,4,5) | 6.8419| 0.2553 0.5683086| 59.9591| 44.5357
combination 3 (2,4,5) | 6.7722| 0.2498 0.5687383| 60.6723| 45.2257

Table 3: We do experiments and obtained the results as aBeedlfe results line). All the scores are on testset except
those marked (which are on devset). On comparison, we did sampling oktkmmbinations of the single systems,
which shows that our results are equivalent to the comlinati These exeprimental results validate our motivating
results: it is often the case that some radically bad tréinslautput may harm the final output by system combination.
In this case, system t3 whose BLEU score is 12.62 has a neggffict on the results of system combination. The
best performance was achieved by removing this systentheecombination of systems t1, t2, t4, and t5.

mance. Combination 3 includes t2, t4, and t5 whiclealled the empirical risk minimization or the struc-
eliminates the two worst systems in terms of the ddural risk minimization. For example, in the case of
velopment set performance. an (independent) regression problémBayes risk is

It is evident that our overall result is equivalentdefined as in (6):
to Combination 2. Combination 2 achieved the
best performance among these three combinations in R(t) = ing(g) (6)
NIST (0.13 points absolute and 2% relative), WER
(0.70 points absolute and 1.1% relative) and pERheret is a target function angl is a true function.
(0.66 points absolute and 1.4% relative) as welBayes risk can be further rewritten as in (7):
Combination 1 is second best in terms of BLEU
scores. The improvement in BLEU was 1.68 points Rlg) = Plg(X)#Y)=E(lyxz) (1)
absolute and 7.1% relative. Combination 3 achieveghere1 denotes an indicator function. As we can-

1.61 points improvement absolute and 6.9% relativyot measure this risk since is unknown, we use

4 Discussion the following empirical risk (8) to measure the per-

formance:
In Statistical Machine Learning (Vapnik, 1998), the n
term Bayes risk refers to the minimum risk over all R.(9) = 1 Z 1y(x,)2Y; (8)
possible measurable functions. This strategy leads ni4

find th h hesi h - .
tofind the best hypothesis under the worst case am1Jh|s leads to the theory of worst case analysis taken

)1/;|§4V)Vh|lgglsngzltlii?eﬁg?nsnCV\I/ietﬁmrlggaE;(Iei?rdﬁhe; alby Support Vector Machines. To seek minimal risk
- g 9, P Y is equivalent to seeking high probability mass in

number of training samples sufficient to ensure thf% e hypothesis space since Eq (8) counts how many

every hypothesid having zero training error will . . .
have a true errom of at moste, is investigated as is 9(X;) andY; disagree with each other. We seek high
' counts of disagreement.

shown in (5):
1 1 2Let us consider an input spaféand output spacH. We

> “(lnlH Inl= 5 assume that a set of 11D pairs (X;, Y;) sampled according

meo= e( n| | +hn | 1) |) ) to an unknown but fixed distributiof?. Suppose that our task

. . o is to predict a functiory : X — Y where we callg a true
In Support Vector Machines (Vapnik, 1998; Cris-tynction. Now, lett be a target function(x) = sgm(x) where

tianini and Shawe-Taylor, 2000), this strategy is)(z) = E[Y|X = 2] = 2P[Y = 1|X = 2] — 1.
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In the case of Machine Translation, this analogyul translation alternatives. As a result, their BLEU
can be extended. As is shown in Eq (1), MBR descore tends to be low compared to the (nearly best)
coding seeks to obtain the translations whose proBingle systems. This means that in our strategy those
ability mass are concentrated (Koehn, 2010) whedT inputs may be better removed rather than em-
each word is split as in Eq (4) if we take the conployed as a useful source in system combination.
fusion network-based approach of system combina-
tion. Hence, if the same words appear in the samr
word position, such words may occupy the higt |
probability mass in Eq (4). If we include incorrect m

translation output among candidate translation ou
puts in the same word position, incorrect words ma:
occupy the high probability mass. Then, the result
ing output may include such bad words, causing th
overall BLEU score to be low. Although thisisnota -
conclusive explanation, this explains the possibilit
in a qualitative way why our combination 1 can be J
worse than our combination 2 in Table 3.

5 Conclusion and Further Studies s

This paper describes the system combination mod-

ule in the MT system MaTrEx developed at DublinFigure 1: The upper left figure shows the count of exact
City University. We deployed the system combi-matches among the translation outputs of Moses as a 100-
nation module to this evaluation campaign. In thi$est list after stop-word removal and sorting; We project

paper, we introduce a new input selection mecI‘F—aCh sentence in a 100-best list onto vector space model

anism which removes some radically bad systengrr:d count the number of points. The lower left figure

for th ke of achieving final b I ¢ ows the same quantity for a 1000-best list. The upper
or the sake of achieving final better overall perforg figure shows the same quantity for a 7-multiple ref-

mance. Although this phenomenon was observegence (human translation). We use the parallel data of
between JP-EN (Okita et al., 2010b), we impletwSLT 07 JP-EN where we use devset5 (500 sentence
mented this mechanism in the procedure in this paairs) as a development set and devset4 (489 sentence
per and showed the same to hold between ES-ERairs) as a test set; 7-multiple references consist of de-
Improvement was 2.16 BLEU points absolute any§Set4 and devsets (989 sentence pairs). For example, the

9.2% relative compared to the best single system. upper left figure shows that 7% of sentences produce only
one meaningful sentence in a 100-best list and the other

Further study will investigate the effect of badgg sentences in a 100-best list is just a reordered version.

translation inputs in system combination. Currentlyn contrast, the upper right figure of human translation
our implementation of Eq (2) is somewhat naive, irshows that more than 70% of sentences in 7 multiple ref-

that the approach considers all subsets of translerences are meaningfully different.

tions contributed by the individual MT systems. We

will work on a strategy how to select translation in- Yet another avenue for further study is to pro-
puts optimally. In particular such a discussion willvide prior knowledge into the system combination
be fruitful if our inputs are the 1000-best list as inmodule. In word alignment, one successful strategy
the case of Tromble et al. (Tromble et al., 2008) an to embed prior knowledge about alignment links
DeNero et al. (DeNero et al., 2009). Their improve{Okita et al., 2010a; Okita, 2011; Okita and Way,
ments are in general quite small compared to the011), which work as the link between statistical
confusion network-based approach. As is shown ilearning and linguistic resources. We have shown
Figure 1, the 100-best list and the 1000-best list prahat the selection of MT input sentences is an effec-
duced by Moses (Koehn et al., 2007) tend not to bive strategy in this paper. Similarly, it would be in-
sufficiently different and do not produce meaningteresting to incorporate some prior knowledge about
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system combination, for example, (in)correct words machine translation systems using enhanced hypothe-

or phrases in some particular translation output. ses alignmentIn Proceedings of the 11st Conference
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