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Abstract

Designers of SMT system have begun to experiment with tree-structured translation models. Un-
fortunately, SMT systems driven by such models are even more difficult to build than the already
complicated WFST-based systems. The purpose of our workshop was to lower the barriers to entry
into research involving such SMT systems. Our goals were inspired by the successful 1999 MT
workshop, which had a similar purpose. Specifically, we wanted to follow that precedent to

1. build a publicly available toolkit for experimenting with tree-structured translation models;

2. build a tool for visualizing the predictions of such models;

3. demonstrate the feasibility of SMT with tree-structured models by running baseline experi-
ments on large datasets; and

4. demonstrate that it is easy to retarget the toolkit to new language pairs.

We also wanted to preemptively address some of the criticisms of the toolkit released in 1999 by

5. making our toolkit turn-key, i.e. not requiring any additional software for end-to-end opera-
tion;

6. providing extensive documentation; and

7. providing integrated prototype systems, to save the toolkit’s users most of the effort of system
integration.

We have largely achieved these goals. Our toolkit is downloadable from
http://www.clsp.jhu.edu/ws2005/groups/statistical/GenPar.html .

The visualization tool is available separately from
http://www.clsp.jhu.edu/ws2005/groups/statistical/mtv.html .

We also ran some pilot experiments. Based on these experiments, we can make the following
claims:

• Our models can handle language pairs with divergent syntax, such as English and Arabic.

• It is straightforward to improve our joint translation models by using target language models,
the same way it is done in the noisy-channel paradigm.

• Our software scales to hundreds of thousands of sentence pairs, without much optimization,
on commodity hardware.

• A rudimentary system for SMT by Parsing can achieve the same level of accuracy as a
rudimentary WFST-based system with the same target language model.

• The GenPar toolkit makes it easy to run tightly controlled experiments, and to integrate
additional external software.
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Chapter 1

Introduction

Since approximately 2001, the state of the art in machine translation has been defined by statistical
machine translation (SMT) systems. Today’s best SMT systems are weighted finite-state transduc-
ers (WFSTs) of the “phrase”-based variety, meaning that they memorize the translations of word
n-grams, rather than just single words. Translating strings of multiple words as a unit is beneficial
in two ways. First, the translations of individual words are more likely to be correct when they
are translated together with the context of the words around them. Second, phrases can capture
local variations in word order, making the decoder’s job easier. Despite these attractive properties,
SMT based on WFSTs is inherently limited in its scientific and engineering potential.

Major scientific advances often come from deep intuitions about the relationship of models
to the phenomena being modeled. WFST-based translation models run counter to our intuitions
about how expressions in different languages are related. In the short term, SMT research based
on WFSTs may be a necessary stepping stone. In the long term, the price of implausible models is
reduced insight, and therefore slower progress.

From an engineering point of view, modeling translational equivalence using WFSTs is like
approximating a high-order polynomial with line segments. Given enough parameters, the ap-
proximation can be arbitrarily good. In practice, the number of parameters that can be reliably
estimated is limited either by the amount of available training data or by the available computing
resources. Suitable training data will always be limited for most of the world’s languages. On the
other hand, for resource-rich language pairs where the available training data is practically infinite,
the limiting factor is the number of model parameters that fit into our computers’ memories. Either
way, the relatively low expressive power of WFSTs limits the quality of SMT systems.

To advance the state of the art, SMT system designers have begun to experiment with tree-
structured translation models [e.g., Wu, 1995a,b,c, Alshawi, 1996, Yamada and Knight, 2002,
Gildea, 2003, Hearne and Way, 2003, Chiang, 2005, Hearne, 2005]. Tree-structured translation
models have the potential to encode more information using fewer parameters. For example, sup-
pose we wish to express the preference for adjectives to follow nouns in language L1 and to precede
them in language L2. A model that knows about parts of speech needs only one parameter to
record this binary preference. Some finite-state translation models can encode parts of speech and
other word classes [Och et al., 1999]. However, they cannot encode the preferred relative order
of noun phrases and adjectival phrases, because this kind of knowledge involves parameters over
recursive structures. To encode such knowledge, a model must be at least tree-structured. For
example, a syntax-directed transduction grammar (SDTG) [Aho and Ullman, 1969] needs only one
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parameter to know that an English noun phrase of the form (Det AdjP N) such as “the green and
blue shirt” translates to Arabic in the order (Det N AdjP). A well-known principle of machine
learning is that, everything else being equal, models with fewer parameters are more likely to make
accurate predictions on previously unseen data.

Several authors have added tree-structured models to systems that were primarily based on
WFSTs [Eng et al., 2003, Koehn et al., 2003]. Such a system can be easier to build, especially given
pre-existing software for WFST-based SMT. However, such a system cannot reach the potential
efficiency of a tree-structured translation model, because it is still saddled with the large number
of parameters required by the underlying WFSTs. Although such hybrid systems are improving all
the time, one cannot help but wonder how much faster they would improve if they were to shed their
historical baggage. To realize the full potential of tree-structured models, an SMT system must use
them as the primary models in every stage of its operation, including training, application to new
inputs, and evaluation. Switching to a less efficient model at any stage can result in an explosion
in the number of parameters necessary to encode the same information. If the resulting model no
longer fits in memory, then the system is forced to lose information, and thus also accuracy.1 Even
when memory is not an issue, the increased number of parameters risks an increase in generalization
error.

The above considerations, among others, are motivating SMT researchers to build systems
whose every process is driven primarily by tree-structured models. Unfortunately, such systems
are even more difficult to build than the already complicated WFST-based systems. The current
economics of research in this area are very similar to what they were for the SMT approach overall
in 1999. Here is what Al-Onaizan et al. [1999, p.2] wrote at that time:

“Common software tools . . . are not generally available. It requires a great deal of work
to build the necessary software infrastructure for experimentation in this area. Such
infrastructure is available, for example, in the speech recognition community. It is
possible for an individual researcher to

1. come up with a new idea . . .

2. do some initial studies . . .

3. test the new idea [in] the context of an end-to-end speech recognition task . . .

4. revise the idea

5. and compare the final results to previous work.

It is far more difficult to do this sort of thing in machine translation – in fact, it is
seldom done. In practice a huge proportion of the work would need to be spent on
large-scale MT software development, rather than on inventing and revising the new
idea itself. Of course, evaluating machine translation is harder than evaluating speech
recognition word-error rate, and this complicated the picture substantially. However,
the lack of tools and data sets remains the biggest barrier to entry in the field.”

Al-Onaizan et al. [1999] were writing about SMT in general, to explain their main motivation for
the 1999 JHU summer workshop on SMT. It is remarkable that their exact words can be used
to describe today’s barriers to research in tree-structured SMT. These barriers are particularly

1An alternative is to swap the model out to secondary storage, slowing down the system by several orders of
magnitude.
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high for smaller research groups, who lack the human resources “to build the necessary software
infrastructure.” Our estimate is that, out of the hundreds of research groups in the world who are
interested in this area of research, fewer than a dozen can afford that investment.

To remedy the situation in 1999, Al-Onaizan et al. [1999]’s primary goal was to release a software
toolkit for SMT. By all accounts, this effort was spectacularly successful. The EGYPT toolkit and
its descendants opened the doors to legions of new SMT researchers, and catalyzed the dominance of
the statistical approach. The toolkit was popular not only because it commoditized SMT software,
but also because it was demonstrably easy to retarget to new language pairs, and included a tool
for visualization. EGYPT was not perfect, however. The most common complaints were that it (a)
did not include a decoder, (b) was poorly documented, and as a result (c) was difficult to integrate
with other software.

The goals for our 2005 workshop were inspired by the successes and criticisms of the 1999
workshop. Specifically, we wanted to follow in the footsteps of Al-Onaizan et al. [1999] to

1. build a publicly available toolkit for experimenting with tree-structured translation models;

2. build a tool for visualizing the predictions of such models;

3. demonstrate the feasibility of SMT with tree-structured models by running baseline experi-
ments on large datasets; and

4. demonstrate that it is easy to port the toolkit to new language pairs.

We also wanted to improve on EGYPT by

5. making our toolkit turn-key, i.e. not requiring any additional software for end-to-end opera-
tion;

6. providing extensive documentation; and

7. providing complete integrated prototypes, to save the toolkit’s users most of the effort of
system integration.

We have largely achieved these goals. Our toolkit is downloadable from
http://www.clsp.jhu.edu/ws2005/groups/statistical/GenPar.html .

The visualization tool is available separately from
http://www.clsp.jhu.edu/ws2005/groups/statistical/mtv.html .

Chapter 2 of this report is a user guide to the GenPar toolkit. As detailed in that chapter, the
toolkit includes end-to-end SMT systems for 3 language pairs, all of which use the same programs.
Thus we have satisfied goals 4 and 7 above. These systems are rudimentary, but they are complete,
including modules for data preparation, training, testing, and evaluation. Chapter 3 documents
GenPar’s software design. The GenPar source code also includes extensive in-line documentation,
formatted for the Doxygen automatic documentation generator. Thus, our toolkit has the three
levels of documentation that are standard in quality-controlled industrial software projects: user
documentation, design documentation, and code documentation. Chapter 4 is a user guide for the
multitree visualization (MTV) tool. Chapter 5 describes our baseline experiments. N.B.: Chap-
ters 2, 3, and 4 pertain to GenPar-1.1.0 and MTV-1.0.2. Later software releases will
contain documentation that is more up to date. The appendices contain our file formats
and a glossary of terms used in this report.

8



In addition to releasing the above-mentioned software, we ran some baseline experiments. These
were only baselines: We did not have time to compare the many possible configurations of our
toolkit, let alone to improve it. Even so, these baselines enable us to make the following claims:

• Our models can handle language pairs with divergent syntax, such as English and Arabic. Of
course, they can also handle languages from the same family, such as English and French.

• It is straightforward to improve our joint translation models with target language models,
the same way as it is done in the noisy-channel paradigm.

• Our software scales to hundreds of thousands of sentence on ordinary hardware. This scale
was reached without extensive optimization. So, we are confident that further engineering
will allow GenPar to process the same kind and size of data that is used to build today’s best
SMT systems.

• A rudimentary system for SMT by Parsing can achieve the same level of accuracy as a
rudimentary WFST-based system with the same language model. As a point of comparison,
the baseline experiments of Al-Onaizan et al. [1999] also gaged the accuracy of their initial
system at a level comparable to an off-the-shelf representative of the preceding MT paradigm.

• The GenPar toolkit makes it easy to run tightly controlled experiments, and to integrate
additional external software.

9



Chapter 2

GenPar User Guide

N.B.: This chapter pertains to GenPar-1.1.0. Later releases of the toolkit will contain
documentation that is more up to date.

2.1 Introduction

The best place for new users to start familiarizing themselves with GenPar is in GenPar’s sandbox.
This holds both for users who intend to modify GenPar’s core components and for those who
don’t. The sandbox is one of the main features of the GenPar toolkit. The sandbox comprises
several prototype end-to-end systems for statistical machine translation by parsing. Each prototype
contains the software modules and configuration files necessary for training, testing, and evaluation
with a particular language pair. The sandbox has three purposes: education, validation, and
infatuation:

• The sandbox serves an educational purpose. A new user can run some data through the
different stages of system training, application, and evaluation, to get a sense of how these
pieces fit together in the ‘Translation by Parsing’ architecture. For this purpose, we also
recommend the Multitree Viewer (MTV) visualization tool that was developed alongside
GenPar. See http://www.clsp.jhu.edu/ws2005/groups/statistical/mtv.html for more
information.

• The sandbox functions as a validation suite for the software. Each prototype in the sandbox
contains sample data, along with the expected output for that data as it is run through each
of the prototype modules. When a change is made in the code, and the sandbox is rerun, it
will report any differences between the output and the expected output. It’s a good idea to
use the sandbox in this manner regularly during software development, to help catch bugs.

• Eventually, users become infatuated with the GenPar toolkit, and they want to use it for
everything. At that point, the sandbox can serve as the blueprint for a larger system. One
of its prototypes can be copied to a new location on disk, and used on new data sets large
and small.

With the GenPar toolkit, we have provided prototypes for three different language pairs: Arabic-
English, French-English and English-English. Each of these prototypes conforms to the overall
sandbox description given in Section 2.2, which gives an overview of all of the modules in the
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Figure 2.1: Sandbox directory structure and default order of execution.

sandbox, their directory structure, and the flow of data when all of the modules of the sandbox
are run in the default order. Section 2.3 explains the 3 main ways that you can use the sandbox,
corresponding to its 3 purposes above. In Section 2.4 we discuss sandbox configuration files.

Important: The code distributed with GenPar is sufficient to run all but the preprocess

modules. The default configuration of the sandbox is to use previously preprocessed data sets
that were shipped with the software, so it is sufficient for educational and development purposes.
However, the preprocessing modules are necessary for using the system on new data sets. Additional
language-specific software is necessary in order to run these additional modules. The INSTALL-ext
file describes how to obtain and install the additional software.

2.2 Sandbox Contents

The sandbox directory contains four subdirectories. Three of them are prototypes for specific
language pairs. The fourth subdiretory, called shared, stores common elements of the three pro-
totypes. To reduce code duplication and maintenance effort, many of the files controlling the
operation of the prototypes are just symbolic links to files in shared. Each prototype conforms to
the sandbox directory structure illustrated in Figure 2.1. Broadly speaking, the train directory
of each prototype is responsible for extracting a translation model from a set of sentence pairs,
the apply directory uses that model to perform multiparsing or translation, and the evaluate

directory judges the output of apply on some objective creteria.
The train, apply, and evaluate directories contain 6, 4, and 1 subdirectories, respectively.

Except for the input subdirectories, each subdirectory corresponds to a prototype module. The
arrows in Figure 2.1 show the default order of module execution. Figure 2.2 shows how the various
kinds of data in each prototype are manipulated by each module: a solid arrow from x to y indicates
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that x provides y, a dotted arrow from y to x indicates that y is used by x and a dashed double
arrow between x and y indicates that x changes y.

The tasks carried out by each train module are as follows:

• train/input does not run any code. Files L1.text and L2.text contain the source and
target training sentences respectively. It is assumed that the text on the nth line of L1.text
is translationally equivalent to the text on the nth line of L2.text. Generally, the text on
each line should correspond to a single sentence, but this is not a strict requirement.

• train/preprocess is responsible for all the monolingual preprocessing necessary for the data
in train/input. Usually, this includes tokenization. It may or may not include monolingual
parsing. The tokenized sentence pairs are placed in file output.snt. The source language
parse trees, if any, are placed in file L1.tb and the target language parse trees in L2.tb.

• train/w2w induces a word-to-word translation model over the tokenized source and target
language sentence pairs in preprocess/output.snt.1 The translation model is written to file
model final. From this model, the file links is generated. This file contains word alignments
for every sentence pair in the training set.

• train/hieralign takes as input the source and target sentence pairs in preprocess/output.snt,
the source parse trees in preprocess/L1.tb, the target parse trees in preprocess/L2.tb and
the links file generated by train/w2w. From these, it runs code to generate a set of multitrees
– hierarchically aligned tree pairs – written to the file tb.out.

• train/initgrammar executes the code responsible for extracting a Weighted Multitext Gram-
mar (WMTG) from hieralign/tb.out; this grammar is written to file pmtg.mle.

• train/retrain refines the grammar created by train/initgrammar, writing this refined
grammar to pmtg final.

The tasks carried out by each apply module are as follows:

• apply/input does not run any code. Files L1.text and L2.text contain the source and
target test sentences respectively. The target test sentences are necessary if you wish to
multiparse rather than translate. They are also used as references by the evaluate modules.

• apply/preprocess is responsible for tokenizing the source language strings and the target
language strings. The tokenized sentence pairs are placed in file output.snt and the tokenized
source sentences are placed in file output.1D.snt.

• apply/multiparse takes as input the file preprocess/output.snt, which contains pairs of
sentences, and the grammar in file train/retrain/pmtg final. It executes code to assign a
multitree to each of the test sentence pairs; these multitrees are output to file tb.out.

• apply/translate takes as input the file
preprocess/output.1D.snt, which contains the source test sentences, and the grammar in

1Currently, the GenPar toolkit includes two software systems for this purpose: the GIZA++ system by Franz
Och, and our homegrown ‘w2w’ system. Each system is used in at least one prototype.

12



file train/retrain/pmtg final. It executes code to assign a multitree to each of those sen-
tences, where each multitree expresses the target-language string in its leaves. The multitrees
are written to file tb.out, the pairs of sentences expressed by the multitrees are written to
file translations.snt and the target sentences expressed by the multitrees are written to
file translations.txt.

At the time of writing, the sandbox includes only one evaluation procedure, which is based on
n-gram matching with a reference translation. evaluate/ByNgram takes the output translations
from apply/translate/translations.txt and the reference translations in apply/input/L2.text

and passes them to the GTM tool for MT evaluation. The scores assigned are written to files
evaluate/ByNGram/Fmeasure1 and evaluate/ByNGram/Fmeasure2, which correspond to GTM
runs with exponents 1 and 2. See http://nlp.cs.nyu.edu/GTM for more information.

2.3 Using the sandbox

Once you are in the sandbox directory, there are four main2 commands you can execute to run the
system.

• Typing make run causes all of the modules of the sandbox to run in sequence.

• Typing make valid also causes all modules to run. In addition, it compares the actual output
and expected output for each module, using the *.expected files in each module, and reports
an error if there is a mismatch at any point.

• If you have already run the sandbox, and you want to run it again from scratch, you can
return it to its original state with the make clean command.

• There is also a make expected command. If you type make expected in the sandbox, it will
overwrite all the *.expected files to match your current output, setting the new standard
for validation. This means all future output will be compared to your current output. This
command is usually used after changing the code. It should be used with extreme caution
and only after a thorough investigation of what the differences are between the current output
and the expected files.

Typing any of these commands from the top-level sandbox directory will cause each of the three
prototypes contained in that directory to run — these are directories AtoE, EtoE and FtoE as shown
in Figure 2.1. However, by moving into any one of these three prototype directories and typing a
make command, just that particular prototype will run. Similarly, any module of a prototype can
be run individually over a particular dataset by simply going to the directory for that prototype
and module and executing a make command.

2.4 Configuration Files

Three prototype modules – train/hieralign, apply/multiparse and apply/translate – execute
the program gp. However, these modules perform different tasks because they each specify a distinct
set of configurations according to which gp is run. Each prototype module directory contains a

2There are a couple of other utility commands that we didn’t get around to documenting — details in the Makefiles.
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input preprocess w2w hieralign initgrammar retrain

training training word-to-word multi- test multi-
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pairs model

input preprocess multiparse translate ByNGram

apply and evaluate

Figure 2.2: Prototype data flow. A solid arrow from x to y indicates that x provides y, a dotted
arrow from y to x indicates that y is used by x and a dashed double arrow between x and y indicates
that x changes y.

subdirectory called config in which the files specifying the required configuration are stored. In
this section we outline some of the configuration options for gp, many of which are also used by
other GenPar executables such as viterbiTrain. However, note that the configuration files for gp
and the other GenPar programs were designed to be very flexible, and even their relation to each
other can be changed without recompiling.

Figure 2.3 shows the gp configuration file hierarchy that is used in the prototypes distributed
with the toolkit. This arrangement of configuration files happens to be almost the same for all
invocations of gp in the sandbox, but this need not be the case in general. Each box in the
hierarchy represents a config file, the name of which is given at the top of the box. The remainder
of the box gives the options to be set for that file. Options given in bold take the name of another
config file as their value. Each module using gp has a main config file – the topmost file in the
hierarchy – from which all the other config files are specified. The only optional config file shown in
figure 2.3 is SubGrammar.config, which is used in the default configuration of hieralign modules
only.
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Figure 2.3: gp configuration file hierarchy. Each box in the hierarchy represents a config file, the
name of which is given at the top of the box. The remainder of the box gives the options to be set
for that file. Options given in bold take the name of another config file as their value.
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Chapter 3

GenPar Design

N.B.: This chapter pertains to GenPar-1.1.0. Later releases of the toolkit will contain
documentation that is more up to date.

3.1 Introduction

We present an object-oriented design of a software toolkit for generalized parsing. The design is
based on the architecture laid out by Melamed and Wang [2005]. It is helpful but not mandatory
to understand the architecture before attempting to understand the design. The design has two
goals:

1. flexibility: The toolkit should support many parser variants, and should be easily configurable
into one of them at run time.

2. extensibility: It should be easy to add new features and new functionality.

To satisfy the above requirements, we decompose the parser into different components and let
the Parser class act as a “central controller”. Each type of component is defined by an object
class family. The parser refers to each component via a pointer1 to the abstract type of the
component and the concrete component type is allocated during the parser’s construction. A better
decomposition of the parser helps the parser to support more variations and to be easily configured
on demand. It also makes the parser more easily extensible. To support a new component, one can
merely add a new class to define the new component.

The parser implements the generic parsing algorithm in Figure 3.1. Almost all parsing algo-
rithms ever published can be viewed as special cases of this parsing algorithm. The input of the
algorithm is a logic, a grammar, a search strategy, a semiring, a termination condition, and a tuple
of sentences to parse. The output is a semiring value, such as a Viterbi parse tree.2 The main
loop proceeds as follows. If the agenda is empty, indicating that the parsing has just started, the
logic generates the first batch of inferences to initialize the agenda. These inferences are based on
the logic’s axioms.3 In subsequent iterations of the main loop, the parser first pops an item from
the agenda called the “trigger”, and then passes that item to the logic. Taking this trigger, the

1Some of the components are references, in the C++ sense, but we call them pointers for simplicity.
2Under other semirings, we might return a parse forest, or just a score.
3Such terms are defined in the glossary.

16



Input: tuple of sentences, Grammar, Logic, Comparator, TerminationCondition

1: Agenda(Comparator).clear()

2: Item e = NULL;
3: repeat
4: if not Agenda.empty() then
5: Item e← Agenda.pop()

6: set〈Item〉 I ← Logic.expand(e, Grammar)
7: for Item i ∈ I do
8: Agenda.push(i)

9: until TerminationCondition is achieved

Output: a semiring value, such as a parse tree

Figure 3.1: Generic parsing algorithm, a special case of the abstract parsing algorithm presented
by Melamed and Wang [2005].

logic decides whether the item should be pruned with the help of a pruning strategy. If the item
survives, new items are generated according to the constraints of the grammar. These items are
then pushed onto the agenda. If the parsing goal is achieved, the loop terminates.

To support the generic parsing algorithm, a parser can be decomposed into the following major
abstract components.

• Logic: a set of inference type signatures, a set of item type signatures and a set of axioms.

• Grammar : an evaluator of parse structures.

• Semiring : specifying what type of values the parser computes, and the relevant operators
for computing them.4

• Search strategy: how the inferences on the agenda are scheduled.

• Termination Condition: a function that decides when to stop parsing.

There can be many varieties of each component, and each of the components has its own sub-
components. For example, the Logic generates Items for the Chart. Each of these components and
subcomponents are described in the following sections. Table 3.1 shows the main classes involved
in the parser.

The relationship between the parser and its components is one of aggregation. The idea is
that a Parser contains the five main components via a pointer to the abstract base class of each
component type. The implementation of the parser is realized by calling abstract operations in
component base classes. Figure 3.2 shows how different abstract components make up a Parser.
The types of the concrete components are specified via the Parser constructor’s arguments.5 In the
figure, there is a member pointer to Logic which will refer to the concrete BottomUpLogic or to
some other Logic at runtime, depending on the config files. In addition, there are pointers to other
abstract base classes.

4Only the Viterbi-derivation semiring is currently implemented.
5We pass the configuration information in a config file – see Section 3.4.
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class functionality

Parser central controller; implements the main parsing algorithm
Logic the logic (axioms and inference templates) used in the deduction
Grammar an evaluator of parse structures
Chart container of items already derived
Agenda contains new chart items that have not been expanded upon
ParsingStats specifies what type of values to compute and how to compute them
Item represents a partial parse
Inference inference rule in the logic
HeadMTree headed multitree, used to represent parse trees
HeadProduction production rule (specific to WMTGs)
SentenceTuple sentence for which we are going to get its parse
Comparator compares two items in Agenda
ParseStats holds diagnostic info from the parse
GrammarIndex for efficiency of querying production scores
OutsideCostEstimator for computing outside costs of items

Table 3.1: Prominent classes and class families in the GenPar design

Abstract
Component Logic

Concrete
Class

Concrete
Class

BottomUpLogic

SomeOtherLogic

+parse(...)

Parser

Figure 3.2: Class Parser is the central component of the architecture.
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Figure 3.3: Top-level design of the generalized parser

19



Parser

ParseStats

m_parseStats

m_pRecur

Grammar

m_pGrammar Logic

m_pGrammar

Agenda

m_pAgendam_pLogic

Figure 3.4: Parser Collaboration Diagram

The UML diagram in Figure 3.3 shows the top-level design of the parser. At the center of
the diagram is the Parser, and around the Parser are its components. Among the four major
parser components, the grammar is realized by the Grammar class family. The logic corresponds
to the Logic class family. The semiring is fixed and currently corresponds to no classes. The
Viterbi-derivation semiring is currently hardwired into the code, though this should not be difficult
to generalize, if it’s ever deemed necessary. Finally, the search strategy is implemented by the
SearchStrategy class family.

3.2 Classes

3.2.1 Parser

The class Parser is the core of the generalized parser. It is a “mediator” of different parser compo-
nents [Gamma et al., 1994]. A Parser contains pointers to several different objects: A Logic which
creates inferences, a Grammar which evaluates the partial parse structures, and an Agenda of items
which have not been expanded upon. A Parser also keeps track of the diagnostic info of the parse
in ParseStats. The collaboration diagram for this class is shown in Figure 3.4. The Parser runs
the generic chart parsing algorithm, as seen in Figure 3.1, and references each of these components
when needed during this algorithm.

3.2.2 Grammar

A Grammar is, essentially, an evaluator of parse structures. It decides what parse structures can be
inferred and assigns scores to different allowable structures. While traditional grammars in formal
language theory have “productions,” grammars in the generalized parser do not necessarily need
productions, as long as the grammar has some way of assigning scores6 to partial parses.

The Grammar class family is shown in Figure 3.5. The base class is called Grammar. Since the
base should be sufficiently general to encompass all imaginable grammars, it contains very little
beyond sets of terminals and nonterminals, and some utility methods. Most of the grammar devel-

6These scores are semiring values. This means that the scores can be boolean.
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Grammar

GrammarMix LearnableGrammar WMTG

WMTGGrammarMix LearnableWMTG

NaiveWMTG

IndexedWMTG

IndexedPMTG

HeadPMTG

HeadPMTGA HeadPMTGB

BigramGrammar EmptyMTGPseudoMTG TreeConstrainedMTG

Figure 3.5: Grammar class family

opment to date has focused on (Generalized) Multitext Grammars [Melamed et al., 2004]. WMTG
is an abstract class for Weighted Multitext Grammars. Its signature includes methods for querying
the standard components of an MTG with weights, as well as for conversion into a Generalized
Chomsky Normal Form (GCNF). It also supports query methods that are necessary for bottom-up
parsing. The GrammarMix class is an abstract base class for grammar mixtures. Its concrete
subclass WMTGGrammarMix is currently used to mix in a target language model for translation,
by way of a BigramGrammar. The other direct subclass of Grammar, LearnableGrammar, includes
methods required for parameter estimation. The longest chain of WMTG subclasses is the most
frequently used. NaiveWMTG is a concrete class that includes a Histogram of HeadProductions.
Such a simple structure cannot be queried efficiently, so the IndexedWMTG subclass adds a pro-
duction rule index. The IndexedPMTG class adds a normalization method to make the grammar
probabilistic.

Statistics over production rules are too crude to generalize well to unseen data. To improve
generalization, we have designed generative processes that decompose the generation of each pro-
duction rule into a series of smaller events. The generative processes are stochastic, and they can
assign a probability to any parse structure. We therefore call them Probabilistic Multitext Gram-
mars (PMTGs). All the currently implemented PMTGs include information about head-children,
so the class that serves as the abstract interface to such grammars is called HeadPMTG. It presents
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just a couple of methods for manipulating the events of an arbitrary generative process. The spe-
cific PMTGs that are currently implemented are HeadPMTGA and HeadPMTGB. They differ
only in whether the precedence arrays in each component of an HeadProduction are generated
independently of each other.

A subset of the subclasses of WMTG have no production rules to constrain what antecedent
items can compose. At the moment, this set of classes is used for hierarchical alignment. The
first grammar in this set, PseudoMTG, is a grammar which is made up of one or more sub-
grammars, each applying constraints for only one component at a time. PseudoMTG takes the
constraints imposed in each component and decides what the combined constraints are over all
components. It also contains a word-to-word model. The implemented sub-grammars that can be
used in PseudoMTG are TreeConstrainedMTG, which encodes a parse tree as a constraint, and
EmptyMTG, which simply composes any items given to it because it is virtually constraintless.
PseudoMTGs offer the flexibility to decide what constraints you want to apply in each dimension.7

This means you can apply syntactic constraints from a monoparser on all, some, or none of the
dimensions of the parser. For example, to apply a tree constraint in only one component, you might
perform alignment using a PseudoMTG, with a TreeConstrainedMTG in one component and an
EmptyMTG in the other.

3.2.3 Logic

A Logic can be seen as a factory of items. Each concrete Logic subclass is characterized by a
different set of inference types. For example, the inference types involved in traditional bottom-up
parsing are Compose and Scan; those involved in Earley parsing8 are Scan, Predict, and Complete.

Figure 3.6 shows the Logic class hierarchy. Four concrete Logic types are currently imple-
mented in the Logic class family. BottomUpTranslationLogic corresponds to LogicCT in [Melamed
and Wang, 2005], which uses Scan, Load and Compose inferences. It is a subclass of BottomUp-
Logic, presented in that paper as LogicC. FasterBottomUpTranslationLogic is a variant that uses
a word-to-word translation model to constrain Load inferences. The CKYTranslator is described
in Section 3.2.16.

Figure 3.7 shows the collaboration diagram of Logic. The main member variables in class Logic
are a Chart, an OutsideCostEstimator and a PruningStrategy. The Chart is in Logic because, for-
mally speaking, Charts are just a bookkeeping device for efficiency, and no other parser component
needs to know about them. The OutsideCostEstimator is currently unused but will eventually be
moved up to be a component of Parser, rather than of Logic. The PruningStrategy is in Logic be-
cause pruning strategies can be viewed as side conditions of inferences, and the Logic is responsible
for creating new Items by firing Inferences. A ParsingGoal is often part of the Parser’s termination
condition. This part of it is implemented in a class contained in the Logic. The logic also contains
a pointer to the Grammar. New logics can be added by providing any necessary new types of
items, inferences, grammars, and charts. However, most new logics will be able to reuse many of
the classes built for previous logics, as we have done with our translation logics.

7“Dimension” is the same as “component,” and refers to one of the texts in a multitext, one of the components of
a multiparsing logic, one of the languages generated by a transduction grammar, etc.. In the latter case, we intend
the formal language theory sense of “language” — a transduction grammar that generates pairs of strings that are
both in the same natural language is still considered to range over two formal languages. This ambiguity of the word
“language” is why we prefer “dimension” or “component.” See Melamed and Wang [2005] for details.

8not implemented yet
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Figure 3.6: The Logic class hierarchy.
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Figure 3.7: The Logic collaboration diagram.
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abstract abstract abstract

concrete concrete concrete

Figure 3.8: The Abstract classes with some example instantiations.
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Item

Hedge

NodeRefHedge

Figure 3.9: Item class family

While Figure 3.7 shows the collaboration diagram for the Logic abstract base class, Figure 3.8
shows a typical implementation of the Logic. Everything above the dotted line are abstract base
classes, and everything below the line are concrete classes; the Logic acts as a mediator of all these
parts. Note that it is the Logic’s responsibility to construct the concrete Chart, OutsideCostEs-
timator, PruningStrategy and ParsingGoal. The Logic constructor takes in parameters indicating
which concrete classes to instantiate.

The key method provided by Logic is expand(trigger), which generates a batch of new items:
expand(Item trigger){

#Get “sibling” item from trigger
Item item2 = chart.matchItem(trigger);

#Get “parent” from trigger and sibling
set 〈 Item 〉 I = grammar.getPossibleCons(trigger,item2);

return I;

}

In the implementation of expand, a NULL pointer to the trigger indicates the beginning of
parsing. In this case, expand will generate the first batch of inferences from the axioms, so that
the agenda can be initialized by them. For example, if the logic is BottomUpTranslationLogic, the
first iteration creates Scan and Load inferences.

3.2.4 Item

Different logics make use of different types of items. There is currently only one immediate subclass
of Item called Hedge. Hedges corresponds to what is called an edge in 1D CKY parsing; the name
“hedge” is short for hyper-edge. A Hedge is composed of a nonterminal link, a d-span vector, and
heir information. In addition, all items maintain a pointer to the inference that they were the
consequent of, which is necessary for reconstructing a parse. A subclass of Hedge, NodeRefHedge,
also contains a pointer to a node in a PositionTree, used during hierarchical alignment. Figure 3.9
shows this class family.

3.2.5 Chart

The Chart is a container that holds items that have already been inferred. The current Chart class
family is shown in Figure 3.10. The abstract base class Chart is just an interface. It does not even
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HedgeChart< ItemT >

AbstractHedgeChart

Chart

Figure 3.10: Chart class family

inference antecedents consequent relevant logic(s)

Scan input word Hedge BottomUpLogic and subclasses
Load none Hedge BottomUpTranslationLogic and subclasses
Compose 2 Hedges Hedge BottomUpLogic and subclasses

Table 3.2: Inferences

know the type of items that will be stored. AbstractHedgeChart has methods that are specific to
Hedges, but only the concrete HedgeChart specifies data structures.

When a trigger item is introduced to the logic, the chart is consulted to see which items sat-
isfy the linear precedence constraints for composition. Inferences of different logics might derive
different kinds of items, requiring different types of containers for the items. For example, Bot-
tomUpTranslationLogic builds Hedges, so it needs a HedgeChart to store its items. HedgeChart
contains Hedges or their subclasses like NodeRefHedges.

All Charts provide an insert method which takes an Item to be inserted in the chart, and an
exportParses method which returns a vector of parse trees with their scores. If a full parse was
not found, the chart returns a “maximum cover” which is as few parse trees as possible that cover
the entire span.

3.2.6 Inference

An Inference deduces an item based on items that have already been derived. The currently
implemented inference types are listed in Table 3.2. A Scan or Load has only the axioms as
antecedents. Compose inferences are made from two “adjacent” Hedges, in addition to the usual
grammar term.

3.2.7 PruningStrategy

Our parser supports both relative pruning and absolute pruning. Figure 3.11 shows the family
of pruning strategies. Constructing the relative pruning strategy requires specifying the pruning
factor, which decides the size of the pruning beam. The absolute pruning strategy involves two
scores: one serves as the threshold used to prune inferences whose consequent f-cost is larger, the
other serves as the increment from the previous pruning threshold. This is useful for multi-pass
parsing. It is also possible to use a composite of both pruning strategies, with thresholds set for

25

$classAbstractHedgeChart.html
$classChart.html


Figure 3.11: PruningStrategy class family

each. The absolute count pruning strategy sets a maximum number of inferences which can exist
over a given span of the input.

As shown in Figure 3.11, the RelativePruningStrategy class contains an index of items. This in-
dex maps from item spans to items. Items located by the same key belong to the same beam, the size
of which is decided by the pruning factor stored in RelativePruningStrategy. The AbsolutePrun-
ingStrategy does not require such an item index, because it is able to decide whether to prune an
item only by the cost of the item and the absolute threshold stored inside AbsolutePruningStrat-
egy. The composite strategy uses an item index for relative pruning and an absolute threshold
for absolute pruning. The AbsoluteCountPruningStrategy uses an index of items like that used in
RelativePruningStrategy. It then prunes all but the k lowest cost inferences over a given span.

3.2.8 OutsideCostEstimator

This class family realizes different estimators for the outside costs of items proposed by the logic.
The base class OutsideCostEstimator specifies the public interface of this class family. We currently
are not using OutsideCostEstimators, but they will be needed for optimization purposes, and so
some of the needed classes exist.

3.2.9 ParsingGoal

The ParsingGoal determines when the parsing should terminate. The ParsingGoal class family
is designed as a flexible utility for this purpose. For example, the parsing could continue until
a specific item is derived, or until any item with a given label is derived, or until some set of
items is derived. Other goals might be a span, a threshold, a time limit, or the composition of
them. Figure 3.12 shows the ParsingGoal class family. In this family, all goals excluding Con-
junctCompositeParsingGoal and DisjunctCompositeParsingGoal are primitive parsing goals. The
ConjunctCompositeParsingGoal is used to compose primitive or composite goals into a larger goal.
Only when all the subgoals are reached will the parsing terminate. DisjunctCompositeParsingGoal
also composes subgoals, but parsing terminates if any subgoal is reached. Based on this class family,
we can specify a large variety of parsing goals.
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ParsingGoal

ConjunctCompositeParsingGoal

DisjunctCompositeParsingGoal

LabelParsingGoal< Label >

SpanParsingGoal

ThresholdParsingGoal

TimeParsingGoal

Figure 3.12: Parsing goal class family.

SearchStrategy

AgendaSearchStrategy

AStarSearchStrategy

Figure 3.13: SearchStrategy class family.

The ParsingGoal class family provides two main methods: add and achieved. The former adds
a subgoal into the current parsing goal, and returns an ID for the just added goal. The latter checks
whether the goal has been achieved by the item that has just been derived.

3.2.10 SearchStrategy

The SearchStrategy governs the order the Parser processes Items. The base SearchStrategy class
is abstract. There are two concrete implementations. AgendaSearchStrategy uses an Agenda and
Comparator to schedule items. AStarSearchStrategy uses an OutsideCostEstimator to do best first
parsing. This is implemented using the Agenda with a BestFirstComparator.

A BestFirstComparator compares two items based on the scores (i.e., f-cost); a SmallestSize-
FirstComparator compares two items according to their spans, as in ordinary CKY parsing. Agenda
is implemented using a priority queue templatized over a concrete Comparator class.
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Agenda

CompactAgenda< Comp >

CompactAgenda< BestFirstComparator >

CompactAgenda< BottomUpComparator >

LazyAgenda< Comp >

LazyAgenda< BestFirstComparator >

LazyAgenda< BottomUpComparator >

< BestFirstComparator >

< BottomUpComparator >

< BestFirstComparator >

< BottomUpComparator >

Figure 3.14: Agenda class family.

The difference between the LazyAgenda and the CompactAgenda is that the latter never du-
plicates items of the same signature. However, this space efficiency comes at the price of some time
efficiency – the time necessary to detect and remove duplicates. Both LazyAgenda and CompactA-
genda are template classes with Comparator type being their template parameter.

3.2.11 The Atomic Units: Terminal and SynCat

Terminals and SynCats are both just numbers. They represent the atomic units in the parser that
are grouped together to make the links. A Terminal represents a “word” in the input language,
and every Terminal is associated with its corresponding word in the terminal vocabulary. SynCats
represents “syntactic categories”, which are also indexed in a dictionary. Both of these types are
implemented using typedefs.

3.2.12 Nonterminals

Nonterminals can be seen as the smallest unit in a single dimension that is being rewritten. In a non-
lexicalized grammar, a Nonterminal contains simply a SynCat, but in some grammars, nonterminals
have more information than just the syntactic category. For example, the code-base uses LexNTs,
which are Lexicalized Nonterminals. LexNTs are a subclass of Nonterminal, and so they inherit a
syntactic category, but they also have a Terminal member, which represents the lexical head of the
Nonterminal. There is also a subclass of LexNT called LexNTWithExtremumTerminals, used for
grammar mixtures that combine a WMTG with a target language model.

28

$classCompactAgenda.html
$classCompactAgenda.html
$classCompactAgenda.html
$classLazyAgenda.html
$classLazyAgenda.html
$classLazyAgenda.html


class
T

T

Figure 3.15: Static decorator pattern

3.2.13 NTLinks and TLinks

Terminals and Nonterminals are grouped into links called TLinks (terminal links) and NTLinks
(nonterminal links). Terminal links are a D-dimensional vector of Terminals, one in each compo-
nent. NTLinks are a D-dimensional vector of Nonterminal pointers, which allow for polymorphism.
Many components of the code don’t need to know whether a Nonterminal pointer is lexicalized or
not, (i.e. whether it is pointing to a Nonterminal or a LexNT) and so it just passes the Nonterminal
pointer along to the next part of the code without dereferencing the pointer. If at any time the
code needs to know what kind of Nonterminal pointer it has, it can simply dereference and get the
correct type using static or dynamic casting.

Care needs to be taken when using NTLinks since they are vectors of pointers. When first
initialized with just a size parameter, the pointers in an NTLink are not yet initialized, since it is
unclear which kind of Nonterminal pointer the user wants to put into the NTLink. The NTLink
copy constructor and operator= copy the values of the Nonterminals pointed to, not the pointers,
using the clone() operation on each member nonterminal. clone() is a virtual method which,
when called on a object, returns a new instance of that object.

3.2.14 Parse Trees

The two main classes used to represent parse trees are HeadMTree (headed multitree) and Posi-
tionTree. Either kind of parse tree is a tree container composed of tree nodes, each node containing
such features as the Precedence Array Vector (PAV), the HeirVector, and the constituent label
assigned to the node. There are quite a few types of features for the parse tree to maintain. To
avoid a potentially huge parse tree class that maintains all the features, we prefer the parse tree be
a composition of several simpler parse trees, each manipulating only one type of feature. We use a
design technique knows as the “static decorator pattern” to meet the requirement. A static deco-
rator is a template class, and at the same time, derives from the template type (see Figure 3.15). It
is intended to decorate other objects of the template type by adding more methods to or overriding
the methods in the decorated object being inherited. Both the decorating and decorated classes
share the same data, and there is no extra data inside the decorator. All methods of both the
decorating and decorated classes operate only on the shared data. The decorator is initialized by
copying the pointer to the data inside the decorated object. The reason we call it “static” is that
the decoration is achieved through template and inheritance, and thus is a “compile time struc-
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ture”. To apply the static pattern to the design of the parse tree, we first design some simple trees,
such as a PAVTree that maintains only the PAV information, and an HeirTree that maintains only
the heir information. Then a more complex tree can be obtained according to the static pattern
by templatizing the PAVTree over the HeirTree, and the HeirTree over a boost::tuple<RHSElem,

PAV, Vector<void*> >. (RHSElem is either an NTLink or TLink. See Section 3.2.15 for more
information.) Compared to the standard decorator pattern [Gamma et al., 1994], the static deco-
rator pattern doesn’t require the methods of each class (base or subclass) to be exactly the same,
saving much code if each class has a large number of methods.

It is worth mentioning how to implement the methods involving several features (e.g., PAV and
label) in a simple tree. In a simple tree, we don’t know the type of the base class (it is only a
template parameter), neither could we know the types that tuple is templatized over (they are also
template parameters). But most methods involving multiple features need to know the types of the
base class and data, and must make sure they are of certain type(s). In this case, we add a test
to the very beginning of the method implementation. A test consists of some casting statements,
which checks the types of the base class and data type at compile time.

There are 3 simple trees that make up a HeadMTree, namely, SpanTree, HeirTree, and the
generic tree. All the general methods should be added to the generic tree classes. Each simple tree
has such defined types as “value type” standing for the data type contained and “ Base” for the
type of the base class.

A PositionTree is implemented in much the same way as a HeadMTree. However, instead of
containing PAVs in each node, it contains Spans. Note that PAVs are directly obtainable from
these spans. PositionTrees are used as the constraining tree in TreeConstrainedMTG.

The file formats used for multitrees are described in the MTV documentation.

3.2.15 HeadProduction

The HeadProduction class family represents the production rules of MTGs. It consists of an LHS,
which is an NTLink, an HeirVector, which keeps track of which child is the heir in each dimension,
a PAV, which gives the linear ordering of the children in each component and a RHS, which is a
dequeue of RHSElems. RHSElems are a boost variant of NTLinks and TLinks. This means that
they can either contain a NTLink or TLink. The = operator is used on a variant to set it to any
of its associated types. Later, when you want to obtain the link, you simply check which type it is
first. See boost.org for more information on the syntax of boost variants.

Since NTLinks and TLinks are numerous, we use variants to avoid an unneeded common su-
perclass that uses extra memory.

3.2.16 CKY Translator

There are a small number of classes designed specifically for translation using the CKY parsing al-
gorithm: CKYTranslator, CKYHedgeChart, CKYCell and CKYEquivalence. This implementation
of the parsing algorithm is a special case of the general GenPar algorithm in that it does not really
use its Agenda and has an alternative data structure for the chart.

The onePassParse function in the Parser class is used in the same way, except that the complete
CKY algorithm is called via the expand function in the CKYTranslator class, which is a subclass
of BottomUpTranslationLogic. The set of items returned to the parser is empty, so nothing gets
pushed onto the Agenda, and the parser terminates after the first iteration.
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CKYHedgeChart implements the chart, which is simply an array with an indexing function
which identifies a particular cell given a start position and length.

CKYEquivalence determines whether an item is already in the chart for dynamic programming
purposes, given a start position and length (which identifies a cell) and the item. The nonterminal
label of the item is used as part of the key. For head-lexicalized models the nonterminal label
includes the head(s).

Currently the Viterbi algorithm is hard-coded in the insert function in the CKYEquivalence
class. However, one of the motivations for developing this set of classes was to allow a complete chart
to be built, so that inside-outside scores could be computed, perhaps leading to a new translation
metric. Building the complete chart would require all equivalent items to be stored, say as a linked
list, rather than simply the highest scoring item.

There is currently only a simple pruning strategy implemented, which only allows an item to be
inserted if the item’s Viterbi-max probability is within some factor of the highest probability item
for the cell. The BEAM parameter is hard-coded in the CKYTranslation class; ideally this should
be read from one of the existing pruning configuration files.

This set of classes has been tested only on a small number of sentences in the English-English
sandbox.

3.3 Serialization

Serialization has been implemented using the boost serialization library to enable convenient i/o
of large objects like grammars. To be serializable, all classes must contain a serialize function
templatized on archive type. If a class inherits from another, it must explicitly serialize the base
class as well using ar & boost::serialization::base object<BaseClass>(*this); The base
class serialization should not be called by an explicit typecast, as this skips some essential steps in
associating derived and base classes.

The serialize function simply archives all member variables and, if applicable, recurses through
the base class(es) to serialize those member variables as well. Files must #include
<boost/serialization/serialization.hpp>.

Example:
template<class Archive>

void serialize(Archive & ar, unsigned int version) {
ar & boost::serialization::base object< base>(*this);

ar & m depHeirDistribs; }
If the member variables include multiple ways of accessing the same object, the object itself must
be archived before the pointers to it (so that only one copy of the relevant object is created upon
restoration).

Abstract base classes must #include <boost/serialization/is abstract.hpp> and use the macro
BOOST IS ABSTRACT(ClassName).

All standard library containers are automatically serialized using boost, but classes derived from
them must #include the relevant serialization file, e.g. <boost/serialization/vector.hpp> for the
Vector class.

Repeated serialization and restoration will not produce exactly the same archive contents every
time, but the restored objects will be identical.
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When a derived class object is referred to via a pointer to a base class, a few extra steps must
be taken to ensure that the object is recognized and restored correctly. The relevant output and
input archives must explicitly register the derived type, which instantiates an object of that type
at compile time so that a subsequently archived base class pointer “recognizes” the existence of
the derived class. Because the derived object is instantiated, the derived classes and all the classes
from which it inherits must contain default constructors. If the derived object is templatized, the
specific classes on which it is instantiated in the grammar must be registered. For example:

std::ofstream ofs(filename.c str());

boost::archive::binary oarchive oa(ofs);

oa.register type<HeadPMTGA>();

oa << oldGrammar;

Function pointers cannot be directly serialized. They are instead mapped one-to-one to strings
and restored to pointers on loading. The mapping is created using NameAddressMap, and any new
function pointers used in new classes must be added to the mapping manually. Files instantiating
the function pointers must then use the pointers created by the mapping - for an example, refer to
HeadPMTGA.cpp and LazyCD.hpp.

For more information on serialization using the boost library, refer to
http://boost.org/libs/serialization/doc/index.html.

3.4 Data Encapsulation via Nested Configuration Files

We generally define the behavior of class objects via the arguments of the class constructor. How-
ever, our design has many classes composed of other classes and so the number of parameters being
passed around can get large. To solve this problem, we turn to configuration files to construct class
objects instead of using constructor arguments.

Any class with configurable options has a separate configuration file. The class itself defines
which option names and types it knows about and reads the option values from the configuration
file whose name is typically passed as the only constructor argument. The options reader (from the
boost::program options library, see below) accepts only options that the class specifically defines.
This way we ensure data encapsulation: Just as classes themselves are small encapsulated units
containing only the data and behavior they need locally, so is every configuration file a single unit
containing only the values that the specific class needs.

Figure 3.16 shows the config files used by the gp program and their relationships. Each node
represents a config file, lines connecting nodes represent the composition (containment) relation.
The relationships between config files are almost isomorphic to that in the overall design of the
generalized parser (figure 3.1). The gp program takes as parameters the names of the config files of
the Parser and the Grammar, as well as the options specifying, for example, the sentence tuple file.
The Parser config file not only contains the values of member variables of the Parser class itself,
but also the names of the config files of class Agenda and class Logic. The Logic configuration file
then contains the config file names of OutsideCostEstimator and PruningStrategy.

Each config file is of the following format:

\# The Config File for Agenda class family.

\# the type of agenda

AgendaType = LAZY

\# The search strategy used by the agenda
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gp−config

grammar−config

parser−config

pruner−config

agenda−config

logic−config

outsideCostEstimator−config

Figure 3.16: The config files of the Generalized Parser.

SearchStrategy = BESTFIRST

Comments starts with symbol ”#”. An option name and its value are separated by symbol “=”.
The option names and types that a class defines are inherited to its subclasses. For example,

the class NaiveWMTG defines an option FanOut, and so its subclasses HeadPMTG, HeadPMTGA,
HeadPMTGB know about and accept such an option in their respective configuration files.

Suppose you implement MySubClass, a subclass of BaseClass. Your class has to take a config
file name as a constructor argument and pass it on to the base class in the member initialization
list:

MySubClass(const string& configFile) : BaseClass(configFile){

// ...

}

The base class will read the config file and provide the values through its member functions.
If it does not provide the values you need you will have to parse the config file yourself, which
means you need a boost::program options::options description object that contains the names and
types of the options expected in the config file. Fortunately, the base class defines those options
descriptions for you. You just have to construct the options description object and pass it to the
base class in the initialization list. GenPar classes take a smart pointer (boost::shared ptr) to an
options description as an optional constructor argument. After the base class is initialized your
options descriptions object will automatically be filled with the expected options, e.g. the string
option TreebankGrammar. You are ready to parse the config file:

shared_ptr<options_description> optionsDescription;

MySubClass(const string& configFile) : BaseClass(configFile,

optionsDescription){

string optTreebankGrammar;

variables_map vm;

ifstream ifs(configFile.c_str());

store(parse_config_file(ifs, *optionsDescription), vm);

notify(vm);

if(vm.count("TreebankGrammar"))
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optTreebankGrammar = vm["TreebankGrammar"].as<string>();

// ...

}

This way you can get all the options the user has specified in the config file. But this might
still not be enough. Now you want to add your own options description. You want the config file
to also contain an integer option MaxValue. Remember that the same config file will be read by
the base class and by MySubClass. Therefore, they both have to know that such an option might
occur. You have to add MaxValue before you construct the base class:

shared_ptr<options_description> optionsDescription;

MySubClass(const string& configFile)

: BaseClass(configFile,

addOptionsDescriptionsTo(optionsDescription)){

int optMaxValue;

variables_map vm;

ifstream ifs(configFile.c_str());

store(parse_config_file(ifs, *optionsDescription), vm);

notify(vm);

if(vm.count("MaxValue"))

optMaxValue = vm["MaxValue"].as<int>();

// ...

}

shared_ptr<options_description>

MySubClass::addOptionDescriptionsTo(shared_ptr<options_description> optionsDesc){

optionsDesc->add_options()

("MaxValue", value<int>()->default_value("99999"), "Defines the max value");

return optionsDesc;

}

That is all you have to know if you want to write your subclass with its own options handling in
GenPar. If you want others to be able to again subclass your class you must make its constructor
take a smart pointer to an options description as optional argument:

MySubClass(const string& configFile,

shared_ptr<options_description> priorOptions =

shared_ptr<options_description>(new options_description()));

This will make sure that others can also pass in an optional options description when they
construct your class as their base class, the same way we did it with BaseClass in the above
example.

See NaiveWMTG.cpp and IndexedWMTG.cpp for good examples of config file handling in our
code base. For more information on the boost::program options library see
http://www.boost.org/doc/html/program options.html.
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3.4.1 “Builder” classes

The “builder” classes [Gamma et al., 1994], also known as “virtual constructors,” are responsi-
ble for instantiating concrete classes based on the config files that they receive. These builder
classes include the AgendaBuilder, GrammarBuilder, LogicBuilder, OutsideCostEstimatorBuilder
and PrunerBuilder. For example, the GrammarBuilder is given a config file that contains what type
of concrete Grammar needs to be instantiated by the Parser, for example a HeadPMTGA. The
GrammarBuilder parses the file, and instantiates this concrete Grammar and then passes it back
to the Parser. The Parser then maintains a pointer to this Grammar and whenever it is accessed,
it is in fact the concrete class being accessed. This means that the Parser need not know what
kind of Grammar it is pointing to. Another benefit is that the Grammar construction code, which
is quite involved, need not be implemented more than once. All of the builder classes follow the
singleton design pattern.

3.5 Examples of implemented applications

We describe three programs that have been implemented using the GenPar classes. There are many
others in the GenPar/tools/ directory of the toolkit.

3.5.1 The program gp

gp acts as a front end to the Parser class. The front end’s main job is to handle configuration and
I/O.

To use the Parser class, we first allocate the necessary components of the parser. Next, we
allocate the parser object, passing the references (pointers) to the components into the parser.

The following statement allocates a HeadPMTGA object:

Grammar* grammar = new HeadPMTGA(...)

We omitted the arguments of the HeadPMTGA constructor. Readers can refer to the Doxygen-
generated system documentation for details. After the grammar is allocated, we define the parser
object.

Parser* parser = new Parser(grammar, ...)

The grammar object has been passed into the parser as a constructor argument. The construc-
tor arguments also specify the types of other components, which will be allocated at construction
time. Using the parser object, we now can parse a sentence tuple.

gp can perform hierarchical alignment, ordinary multiparsing and translation. Alignment
uses a different grammar class than multiparsing and translation. The only difference between
translation and multiparsing is the number of input sentences. If the dimensionality of the input
sentence tuple is less than that of the grammar, it is translation. If it is equal, we are doing
hierarchical alignment or ordinary multiparsing.
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3.5.2 The grammar initializer: trees2grammar

To create a weighted MTG instance from a multitreebank, we read in the multitrees from the tree-
bank, and increment them into the grammar object. First we instantiate the NaiveWMTG class.

NaiveWMTG mtg(...);

Next, we read one tree at a time and break it down into the grammar using the increment function.
ist is an input stream.

HeadMTree mtree;

ist>> mtree;

mtg.increment(mtree);

We do this for all trees in the treebank. After we have incremented all the trees into the NaiveWMTG,
we can create a more sophisticated PMTG and increment these new productions into it:

PMTG model(...);

model.increment(mtg);

The HeadPMTGA decomposes each production into smaller units under some Markovian inde-
pendence assumptions. Lastly, we dump the model to standard out.

cout << model;

At this point, this program has created a HeadPMTGA from a multitreebank.

3.5.3 The re-estimation program: viterbiTrain

The re-estimation program performs (a simplistic approximation to) the EM algorithm, using the
classes illustrated in Figure 3.17. It first builds an empty WMTG, and then instantiates the GPEM
class.

WMTG* initialGrammar = GrammarBuilder::Instance()->build(...);

GPEM em(emConfigFile);

Next it sets up a file to read the input sentence tuples.

iFile data(sntFileName);

Lastly, it calls GPEM.run() which runs the EM algorithm.

em.run(data, initialGrammar, grammarConfigFile);

The run function in GPEM basically alternates between calling the same functions as gp to parse
the input sentence and calling the same functions as trees2grammar to build a new grammar.
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Parser

GPEM

+increment(HeadMTree)
+normalize()

LearnableGrammar

Grammar

WMTG

LearnableWMTG

Figure 3.17: Classes used by the viterbiTrain program.

viterbiTrain is not intended to be a serious tool for machine learning, but merely a demonstra-
tion of how GenPar can serve as the inference engine for grammar induction. On the other hand,
given a good inference engine, machine learning need not be complicated.
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Chapter 4

MTV User Guide

N.B.: This chapter pertains to MTV-1.0.2. Later releases of the tool will contain
documentation that is more up to date.

4.1 Introduction

The Multitree Viewer is an application originally created to visualize output of the GenPar toolkit.
It can now be used by any MT developer to visualize their multitree output and optionally, their
PMTG grammar output. Users who are running this with GenPar should read the GenPar user
guide before reading this guide for help on locating the input files.

4.2 Compiling MTV

To compile MTV, download package directory to a system with at least Java 1.5 installed. In a
Windows-based Visual Java program, create a project with the package directory and compile all
files. On Unix/Linux, first make sure that your JAVAHOME environment variable is set to indicate
where your java executables live. Then type make in the package directory.

Users who are interested in developing MTV and want to read the javadoc should type make

doc in the package root. This will put the javadoc in doc/design/.

4.3 Running MTV

To run MTV on a Unix/Linux system, execute the runit command from any directory. To run
MTV in a Windows-based Visual Java program, specify Mtv.java as the main class and run the
project.

MTV comes with sample input files to enable sample compile/runs. Users wanting to use their
own input files should refer to the next section. Sample Files provided:

• examples.tree: DO NOT delete/move this file. MTV will use it as default tree file if the
user-requested file is not found. It has several interesting parses so it’s suggested the user
check these out on first run.
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• english.tree: This is early English/English output from GenPar. The trees are messy, but the
file is included to enable sample use of a grammar file.

• english.grammar: The accompanying grammar file to english.tree

• symbol.converter: A short converter file that should be used with examples.tree

• *.tvcb: A sample vocabulary file for terminal vocabulary

• *.ntvcb: A sample vocabulary file for nonterminal vocabulary

NOTE: No examples of integerized input is provided as GenPar has stopped producing it. Users
are welcome to try their own.

MTV loads in all the information from the input files at the beginning, so it needs enough heap
space to do this. Experiments on a Solaris system have shown that the necessary amount of heap
space (in MB) can be found by multiplying the number of input sentences by 0.15.

For example, 5000 sentences will need about 750MB of heap space, to be safe. If not enough
MB are available on the user system for their input, its suggested the input be segmented into
smaller files.

4.4 Configuration

All user configuration files and settings must be specified in mtv.config in the MTV package root.
After specifying all configuration settings, run MTV again to see visualization of input.

NOTE: Absolute paths must be specified with a “/” in front. A relative path is assumed relative
to MTV package root on Windows, or directory from which MTV was run on Unix systems (runit
command may be run from outside package root).

BaseDirectory On Unix systems, MTV will automatically set this to the directory from
which the program was run. It may need to be specified for some Windows systems. This variable
is only used for locating the images used in the GUI.

DataDirectory Users who have all their data files in one directory (such as the provided data
directory in the MTV package) can specify that directory here. Users with data files in various
locations should leave this blank.

MTV will concatenate DataDirectory, if it exists, with the filenames below to locate files. For
each of the file variables, users can specify filename, relative path, or absolute path.

GrammarFile A description of that file format can be found in Appendix B. If the user
specifies an integerized file here, then the user must also specify vocabulary files for each of the
input dimensions below so MTV can display words to the user.

Users who simply want to see multitrees visualized with no probability information can choose
to leave this blank.

TreeFile A description of that file format can be found in Appendix B. If user specifies an
integerized file here, user must also specify vocabulary files for each of the input dimensions below
so MTV can display words to the user.
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Figure 4.1: An annotated screenshot of the MTV User Interface.

dim[#]Converter A description of this file format can be found in the appendix to this
document. Users who are inputting a dimension with transliterated characters can specify an
ASCII to Unicode mapping in a converter file here. Converter files can be specified for 0, 1, or both
dimensions. Leave blank if none needed.

dim[#](NT)VocabFile Users who are inputting integerized input must specify terminal and
nonterminal vocabulary files here for both dimensions with a mapping for all integers used.

VocabFormat Users who are inputting integerized input should specify 1 here. Users in-
putting deintegerized input should specify 2 here.

4.5 User Interface

As a visualization program, MTV is designed to have a user-friendly GUI. Hopefully, it succeeded.

4.5.1 Menu/ToolBar

The four menus in the menu bar, File, Config, Select, View, are duplicated in the iconic toolbar
below it.
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File The Save to Image command allows the user to specify a filename and directory to
save a “screenshot” of the current view as a JPEG file. The image will be the same pixel size as
the view, so users should resize as desired. The Quit command allows the user to quit MTV.

Config The configuration file can be modified inside or outside of MTV, as preferred by the
user. MTV will always look at mtv.config for its settings when loading up, but once loaded, MTV
can load settings from any file.

The Load command allows the user to choose a file to load settings from. This will replace all
the currently displayed trees with the trees from the loaded file. The Edit command provides a
graphical form for the user to change the current settings. This will not save the new settings to
any file, but will reload trees and grammar in MTV as specified. The Save command writes the
current config settings to a user specified file.

Select These commands allow the user to specify their “selection”(rollover) mode. This affects
the displayed probabilities and highlighted nodes. In Node selection mode, only the currently
selected node will be highlighted. In Span selection mode, the currently selected node and all its
descendants will be highlighted. In Parent selection mode, both the currently selected node and
its parent will be highlighted.

View The Zoom In command will zoom in 10% each time clicked. The Zoom Out command
will zoom out 10% each time clicked. The Zoom Fit command will attempt to zoom so that all
nodes are visible on the screen. For Parallel and Tree views, this also centers the nodes.

4.5.2 Probability Status Bar

The probability status bar displays the currently calculated probabilities, if a grammar file is
provided, and depending on selection mode.

In node mode, only the probability of the production containing that node (i.e. the selected
node and its child) is calculated.

In span mode, the probability of the selected nodes and all productions below it are multiplied
together.

In parent mode no probabilities are calculated.
The probability is displayed in terms of the events in the grammar file (see the glossary).

Probability ranges from 0 to 1.

4.5.3 Parse Browsing

This bar will help in browsing through the parse trees loaded.
The Previous button can be used for going to the previous parse tree, and the Next button

can be used for going to the next parse tree. The parse number is displayed next to Page: .
Remember the parse number of interesting parses you’d like to be able to jump to, as you can
select it in the combo box and click the Go to button to jump to that parse.

This bar also displays the dimension 1 sentence next to DIM 1:, and the dimension 2 sentence
next to DIM 2: .
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Figure 4.2: A typical grid view

4.5.4 Views

MTV features four views (Grid, Parallel, Tree, Side-by-Side Tree) that display all the informa-
tion contained in the multitree output in varying representations. It’s suggested that users explore
the views and decide which view conveys the information in the way that makes the most sense to
them. Everyone’s got their favorite! In all four views, pink represents a 1-dimensional node that is
null in dimension 2, yellow represents a 1-dimensional node that is null in dimension 1, and blue
represents a 2-dimensional node (one that is non-null in both dimensions).

Grid View

This view displays a grid of 2-dimensional information, like a birds-eye view.
By convention, dimension 1 information is represented on the horizontal axis, and dimension 2

information is represented on the vertical axis.
A 2-dimensional node is positioned according to the position of its two dimensions’ lexical

heads in their respective sentences. A 1-dimensional node is positioned according to the position
of its non-null dimensions’ lexical head along with the position of the lexical head of the nearest
2-dimensional ancestor.

A fully linked node (see glossary) is represented as a square, and all other nodes are represented
as triangles.
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Figure 4.3: A typical parallel view

Nested triangles represent a solely 1-dimensional heir chain, while nested squares represent a
2-dimensional heir chain - the innermost square represents the highest node which received the
lexical head of a lowest link in both dimensions.

Arrows indicate dependency in at least one dimension. The user can know which dimension
the child node is dependent on only by looking at where on the parent it landed. If it lands on a
corner, it is dependent in both dimensions; if it lands on the upper or right edge, it is dependent
in dimension 1; and if it lands on the lower or left edge, it is dependent in dimension 2.

Selecting the node in parent mode will also aid the user in figuring out dependency, as the arrow
will be highlighted only if the dependent child is selected.

Parallel View

The parallel view displays two rows of 1-dimensional information with lines between indicating
word alignment.

By convention, dimension 1 information is conveyed by the top sentence and row of circles, and
dimension 2 information is conveyed by the bottom row.

Each of the biggest circles represents a terminal in that dimension, and these biggest circles are
ordered according to their position in the sentence. The word above a biggest circle is the terminal.
Thus, the sentence in each dimension can be read off from left-to-right.
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Figure 4.4: A typical tree view

The nested circles represent the 1-dimensional heir chain of the terminal; the innermost circle
represents the highest node which received that lexical head (regardless of what happened in the
other dimension).

The curved arrows above the top circles and below the bottom circles represent 1-dimensional
dependencies. In a full parse, there will always be an arrow from each innermost circle to a nested
circle elsewhere (unless user selects the parent-less ROOT). In a partial parse situation, the user can
expect to see far fewer dependency arrows and nested circles as there is not as much parent/child
information in the parse.

The straight lines between circles indicate a lowest link (see glossary).

Tree View

The root is the highest node in the tree, if it is a full parse. Nonterminal nodes are designated
by colored text on black backgrounds, terminal nodes are designated by black text on colored
backgrounds.

The nonterminal category and lexical head information for each language is displayed on the
node. By convention, dimension 1 information is on the top row and dimension 2 information is on
the bottom.

The lines between nodes indicate a parent/child relationship. A thin line indicates a child is
dependent on its parent; a thick lines indicates the child is the heir of the lexical head.
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Figure 4.5: A typical side by side tree view

The absence of one of the rows indicates that dimension is null for that word (this is always the
case with terminals and preterminals when the tree is generated by a GMTG in GCNF).

Because of the possibility of differing PAVs in the multiple dimensions, the ordering of the
multidimensional nodes is not significant. They are simply output in the order they are generated.

Side by Side Tree View

This view displays the multitree separated into two 1D trees with links between them.
The root is the highest node in the tree, if it is a full parse. Nonterminal nodes are designated

by colored text on black backgrounds, terminal nodes are designated by black text on colored
backgrounds. The nonterminal category and lexical head information for each language is displayed
on the node.

The lines between nodes indicate a parent/child relationship. A thin line indicates a child is
dependent on its parent; a thick lines indicates the child is the heir of the lexical head.

This view is different from the Tree view in the following ways:

• A node will be drawn in a dimension’s parse tree only if it is non-null in that dimension.
Because we are now drawing one dimension’s parse tree at a time, there is only one precedence
array per node and therefore MTV can order the nodes according to the precedence array, so
the ordering of the nodes is significant.

• The sentence can be read off by reading the terminals from left to right.
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Chapter 5

Pilot Experiments

The vast majority of the workshop was devoted to software engineering. The experiments described
in this section were executed in great haste during the closing days of the workshop. After the
workshop, we discovered (and fixed) several serious bugs in our software. Therefore, the results
in this section are NOT indicative of GenPar’s potential, even with relatively primitive
machine learning techniques. If we assume that bug fixes can only improve speed and accuracy,
then the results that we report here can serve as very loose lower bounds. Even with these loose
lower bounds, we can make a few claims:

• Our baseline models produce translations of a quality comparable to baseline finite-state
models.

• Our software scales to hundreds of thousands of sentence pairs, without much optimization,
on commodity hardware.

• Our models can handle language pairs with widely divergent syntax.

• It is straightforward to improve our joint translation models with target language models,
the same way it is done in the noisy-channel paradigm.

Our main measure of translation quality was the F-measure, as computed by the General Text
Matcher software [Turian et al., 2003]. This measure has an “exponent” parameter that controls
the relative importance placed on longer matching n-grams. Setting this parameter to 1 eliminates
all importance for longer n-grams, and reduces the measure to an F-measure over a bag of words.
An exponent of 2 gives longer matching n-grams quadratic gain and, conversely, quadratic loss
for unmatched n-grams. In the results tables that follow, FMS-1 stands for the F-measure with
exponent 1, and likewise for FMS-2. Turian et al. [2003] showed that even with the exponent set
to 1, the F-measure correlates with human judgments more highly than the BLEU score or the
NIST score. We report the latter two scores because this has become standard practice in the MT
literature. However, we are not aware of any situation in which these measures would be more
informative than the more principled and less biased F-measure.

5.1 Baseline Model

Our baseline experiments used a simplistic generative model, inspired by the lexicalized head-driven
models of Collins [1997]. In practice, because of the sparse data problem, our model will have poor
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estimates for most of the probabilities that we need. To make better use of the training data, we
break down the PMTG productions into more fine-grained elements, and assume some statistical
independence among these elements. In particular, we shall assume that the nonterminal links on
the RHS of a given production are rewritten in a depth-first order. We shall then assume that,
given the LHS, the RHS of each production is generated in stages, as follows:

1. Generate a valency v for the production, from a multinomial distribution over non-negative in-
tegers in a small finite range. In the HeadPMTGA grammar that we used, which is binarized,
the valency is either 0, for terminal productions, or 2, for nonterminal productions.

2. IF v == 0
THEN it’s a terminal production, so copy out the lexical heads of the LHS to the RHS and
quit;
ELSE it’s a nonterminal production, so continue.

3. Generate the HeirRoleVector for the production, which determines which child is the lexical
heir in each component.

4. Generate the heir nonterminals of the LHS, which inherit the lexical heads. (I.e. only the syn-
tactic category labels are chosen stochastically, so the probability of a nonterminal lexicalized
with a different head is zero.)

5. Generate the remaining (non-heir) nonterminal links as dependents of the LHS. (This includes
the lexical head and syntactic category).

6. Generate a D-dimensional PAV for the dependents, where D is the dimensionality of the
LHS. The PAV must be in normal form, so that the order of the dependents in the originally
generated list is not disturbed in at least the first dimension.

In principle, each of the decisions in the above stochastic process can be conditioned on the
entire derivation history up to that decision point. In practice, we must make some independence
assumptions to reduce the effects of sparse data. As a starting point, we will assume that

• The valency of each production depends only on the LHS.

• The HeirRoleVector depends only on the LHS and the valency.

• The syntactic categories of the heir portions of a link on the RHS depend only on the LHS.

• Each of the dependent portions of a nonterminal links depend only on the LHS of the pro-
duction and, if applicable, any heir portion already generated in that nonterminal link in the
prior step.

• Each dimension of the PAV depends only on that dimension of the RHS and that dimension
of the LHS.

Under the above assumptions, we can compute the probability of MTG productions as follows.

– Let hn, an and bn be terminals.

– Let L[hn] be a nonterminal on the LHS.
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– Let A[an] and B[bn] be nonterminals on the RHS.

– Let P be the PAV.

– Let Pi be the i’th dimension of the PAV.

– Let H be the HeirRoleVector.

Then, the probability of a terminal production is:

Pr

(

L[h1]
L[h2]

⇒
h1

h2

)

= Pr

(

v == 0|
L[h1]
L[h2]

)

(5.1)

And the probability1 of a nonterminal production is:

Pr

(

L[h1]
L[h2]

⇒ P,H,
A[a1]
A[a2]

B[b1]
B[b2]

)

=

Pr

(

v == 2|
L[h1]
L[h2]

)

∗Pr

(

H|
L[h1]
L[h2]

)

∗















Pr

(

A

A
|H,

L[h1]
L[h2]

)

if H =
1
1

Pr

(

A
|H,

L[h1]
L[h2]

)

∗ Pr

(

B
|H,

L[h1]
L[h2]

)

if H =
1
2

∗















Pr

(

B[b1]
B[b2]

|H,
L[h1]
L[h2]

)

if H =
1
1

Pr

(

B[b1]|H,
L[h1]
L[h2]

,
B[b2]

)

∗ Pr

(

A[a2]
|H,

L[h1]
L[h2]

,
A[a1]

)

if H =
1
2

∗
∑

i=1,2

Pr (Pi|L[hi], A[ai], B[bi])

The above generative process and independence assumptions are encoded in GenPar’s HeadPMTGA.
There are many other ways to stochasticize an MTG. Each makes a different set of independence
assumptions. In the maximum likelihood paradigm, fewer independence assumptions usually lead
to more computationally expensive parameter estimation. More independence assumptions lead to
less predictive power.

5.2 Arabic-to-English

For the Arabic-to-English experiments, since we had access to syntactic parsers for both Arabic
and English, we used parse trees for both sides of the input in the hierarchical alignment process.
The preprocessing decisions made for Arabic originate in the task of parsing. In order to parse the
Arabic data, we required a syntactically annotated corpus. We follow the procedure described by
Mona Diab for parsing Modern Standard Arabic (MSA) [Diab, 2005].

1We show the probability when H =
1
1

or
1
2
. A similar approach is used when H =

2
1

or
2
2
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Arabic is a morphologically rich language which encodes many syntactic functions in inflectional
affixes. For example, definiteness, which is expressed in English by the articles the and a, is
expressed in Arabic by a prefix that appears only when a word is definite. Similarly, prepositions
are often agglutinated with the words to which they attach. This agglutination is often fusional,
meaning that the modified word is transformed to allow for the composite of the word and the
preposition. Languages of this type must be dealt with differently than languages like English in
order to perform syntactic analysis. In the following sections we describe the Arabic preprocessing
stages that address these linguistic features.

5.2.1 Arabic Preprocessing

In this section we describe the tools used for preparing the Arabic side of a parallel Arabic-to-English
corpus for use with GenPar. The preprocessing objective is to produce syntactically annotated
Arabic sentences (Arabic parse trees). We used Mona Diab’s SVM-based Arabic morphological
analysis toolkit (ASVMT) to perform tokenization, lemmatization (described shortly), and part-
of-speech (POS) tagging [Diab et al., 2004]. Additionally, these tools generate base-phrase labeled
bracketings; however, our Arabic parser was unable to make use of these.

A brief description of each of the preprocessing stages follows:

Tokenization Tokenization of Arabic involves breaking apart syntactic units (those that resulted
from inflectional morphological agglutination). The version of the ASVMT used attempts to
make the same tokenization decisions that were made in the construction of the Penn Arabic
Treebank [Maamouri et al., 2004, LDC, 2005]. During the workshop, Mona Diab provided
a version of the Penn Arabic Treebank that was modified to be consistent with additional
tokenization decisions made by the ASVMT tokenizer.

Lemmatization When an Arabic function word (e.g., a preposition) combines with another word,
the word forms may change (e.g., the final letter of a word may change to accommodate the
affixed preposition). During tokenization, the words are split into their components; however,
the stem may have been altered in the original agglutination. Lemmatization, as it’s called in
the ASVMT, is the process of recovering the original unmodified version of the stem words.

POS tagging The ASVMT produces POS tags according to the reduced tag set for the Penn
Arabic Treebank. The reduced set is consistent with the POS tags in the modified Treebank.

Parsing Dan Bikel’s parser is used along with the Arabic parsing configuration file [Bikel, 2004].
The parser was trained on the training section of the Penn Arabic Treebank (parts 1, 2, and
3). Mona Diab provided a split of the data which is to be released as the standard training,
development, and test sets for the treebank. We used the parser with POS tags generated by
the ASVMT tagger.

English Tokenization As with the Arabic data, raw English text is tokenized prior to training or
evaluation. We use the standard English preprocessing scripts as provided by the University
of Pennsylvania for the Penn Wall Street Journal Treebank.

English POS tagging and Parsing The English side of the parallel corpus was parsed using
Dan Bikel’s parser. Standard training data is used, specifically the Penn Wall Street Journal
Treebank sections 2-21. We used the Ratnaparkhi POS tagger [Ratnaparkhi, 1997] as a
preprocessing stage prior to parsing.
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5.2.2 Word Alignments

The GenPar hierarchical alignment algorithm is constrained by a word-alignment model. In the
Arabic-English experimental framework, we used GIZA++ to generate the alignment model. We
chose to use a simplified version of the bidirectional alignment technique that was used for French-
English (described above). An outline of the process is as follows:

1. Generate GIZA++ alignments for Arabic-to-English and English-to-Arabic.

2. For each sentence, take the union (or intersection) of these alignments. The resulting set is
the set of training alignments.

3. Compute a joint probability distribution over the alignments for the entire training set. We
use the Maximum likelihood estimate as computed by the relative frequency estimator:

c(warabic, wenglish)
∑

warabic,wenglish
c(warabic, wenglish)

This results in a bilexical probabilistic dictionary.

4. For each sentence pair in the training set, extract all word-pairs (candidate alignments) for
which there is a non-zero probability in the bilexical dictionary. Add the word-pairs with
their probabilities to the candidate set of alignments. These are used as constraints on the
tree-alignment algorithm.

In the current implementation, we provide for generating the word-alignment constraints via a
unidirectional alignment, the union of a bidirectional alignment, or the intersection of a bidirectional
alignment. In the experiments explored during the workshop period, we used the union method to
estimate the probabilistic dictionary.

5.2.3 Arabic Data

Both the Arabic and English parsers used have been trained on news text: the English parser
is trained on the standard Penn Treebank training set, and the Arabic parser is trained on the
Penn Arabic Treebank. In the following experiments, we train the word-alignment models and
GenPar on the Arabic-to-English parallel news corpus (LDC catalog number: LDC2004T18). We
restrict the training data to contain only one-to-one sentence alignments. Furthermore, we exclude
sentence pairs for which one of the preprocessing stages had failed (POS tagging, parsing, etc.).
This results in approximately 43K sentence pairs from which we selected subsets in order to explore
the performance and accuracy of the GenPar toolkit.

The NIST 2003 machine translation evaluation set (MTeval03) is used as the evaluation dataset
for our experiments. The results reported in the next section are for tokenized versions of the
hypothesized translations and reference translations.

5.2.4 Experiments

In this section we report the results for a baseline GenPar system with a small dataset. The word-
to-word constraining model is trained on the full corpus of 43K sentence pairs. Due to the relatively
unconstrained model, the grammar induced from pairs of parse trees becomes large. Since these
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experiments were run before we fixed numerous memory leaks, we limited our experiments to a
subset of the training corpus. We report results for a subset of 7k sentence-pairs. This data set
was additionally filtered by removing sentences with more than 8 commas; we do this in order to
exclude flat structures from the training trees.

In the first set of experiments, we explore various levels of translation-time pruning for a model
trained on 7K sentence-pairs.

Translation pruning Off Medium Heavy

FMS-1 0.1720 0.1720 0.1700
FMS-2 0.0831 0.0831 0.0820
BLEU 0.0151 0.0151 0.0149
NIST 1.7606 1.7606 1.7680

In the second set of experiments we explore the same translation-time pruning thresholds for a
model trained on the same 7K dataset, but with training-time pruning:

Translation pruning Off Medium Heavy

FMS-1 0.1751 0.1751 0.1749
FMS-2 0.0829 0.0829 0.0825
BLEU 0.0089 0.0089 0.0088
NIST 1.6555 1.6555 1.6737

As expected, the accuracy of the model decreased when pruning is applied during training;
however the purpose of pruning is to reduce the computational effort exerted during training and
translation. Currently, we are utilizing a relatively crude pruning strategy which may explain the
loss in accuracy. In fact, the results indicate that in order to increase training speed without loss
in accuracy, we must develop more accurate pruning criteria.

These preliminary Arabic-to-English translation results suggest that GenPar is capable of learn-
ing from syntactic trees for which there is a large amount of structural divergence.

5.3 French-to-English

Our French-to-English experiments were carried out on the EuroParl corpus [Koehn, 2005]. We
automatically parsed the English section of the corpus using Dan Bikel’s parser [Bikel, 2004]. The
resulting data was then split into training sets consisting of 5K, 10K, 50K and 100K randomly
selected English–French sentence pairs, with the English side containing parsed sentences. In
addition we held out a number of development sets from the original corpus for each training set.
The size of the development data was set at 10% of the size of the testing data (e.g. 500 sentences
were in the development set for the 5K training set). The development sets and training sets were
disjoint.

Word alignment was performed using the refined word alignment method as described by Tiede-
mann [2004] (following the method described by Och and Ney [2003], or Koehn et al. [2003] for
a more recent implementation). Word alignment is performed in both source-target and target-
source directions. These unidirectional alignments are then combined and the intersection is taken,
producing a set of highly confident word alignments. The intersection set can then be extended
iteratively by adding adjacent alignments present within the union of the unidirectional alignments.
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Figure 5.1: Learning curve for French-to-English experiments

This process is continued until no new adjacent alignments can be added. In a final step, alignments
are added to the set that occur in the union, where both the source and target words are unaligned.

The parsed English sentences, their un-parsed French translations, and the corresponding word
alignment sets were submitted to the hierarchical alignment process. We did not have a French
parser, so for the French-to-English experiments the hierarchical alignment process was constrained
by the word-to-word links and by English parses only. The resulting multitreebank was fed into
a Viterbi training process for HeadPMTGA (described in previous section). During training, a
best-first search strategy was used, with relative pruning set at -ln(0.2). This pruning is quite
harsh but was set initially in order to facilitate the actual performance of experiments, due to the
fact that at earlier stages of development the training was much less efficient and far from optimal.
In order to maintain consistency this pruning threshold was maintained across all training set sizes.
During translation no pruning was used. For each training set, translation was performed on the
corresponding development set. The results are in Table 5.1 and Figure 5.3.

Table 5.1: French-to-English translation baselines. Training set size is in terms of number of
training sentence pairs.

training set size FMS-1 FMS-2 BLEU NIST

5K 0.2824 0.1170 0.0409 2.6369

10K 0.2996 0.1217 0.0499 2.8515

50K 0.3247 0.12703 0.0624 3.0895

100K 0.3639 0.13321 0.0779 3.3484
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5.4 Target language models

A close look at the bilingual parsing process revealed that the competing translations for particular
input spans differed widely in fluency. There were two competing items on the agenda, for example,
covering the French NP la politique régionale. The English output dimension of one item was policy
Regional, another item contained regional policy. As it happened, the bilingual grammar assigned
the first item a higher score although the second one contained the better English translation.

Incorporating a target language model can alleviate this problem of non-fluent translations. We
ran some basic experiments, mixing a bilingual grammar (HeadPMTGA) with a bigram grammar.2

The scores were calculated using a simple factorization:

Pr

(

S

S[I see you]
→

NP

NP [I]
V P

V P [see you]

)

=

Pr

(

S

S
→

NP

NP

V P

V P

)

· Pr(I see you) (5.2)

For the bilingual grammar, we used the models described in Section 5.2.4. We trained three
different English bigram models on 10, 15, and 20 million words of the English Gigaword corpus.

Table 5.2 and 5.3 show the results of tests on a set of 100 Arabic sentences, with different
pruning thresholds. Throughout all experiments, mixing in a bigram model greatly improves the
translation accuracy. The trend is: the better the bigram model, the better the translation results.
Similar conclusions hold for experiments with French (Table 5.4 and 5.5). Here, we used the trained
models described in 5.3, again with a smaller test set, i.e. the first 100 sentences.

The best results seem to reach those of other rudimentary SMT systems: We trained GIZA++
alignments and the CMU LM toolkit on the same 7k Arabic-English sentence pairs as described
above. The results are comparable: FMS1: 0.2310, FMS2: 0.1024. However, the CMU toolkit was
just trained with the default parameters.

These experiments show that it is possible to integrate a target language model into the bilingual
parser. However, the amount of data used to train and test the model is very small. Furthermore,
the factorized model is deficient. Members of our team are planning to run further experiments with
integrated target language models on more data, using linear interpolation or log-linear models.

No pruning Medium pruning Heavy pruning

No bigrams 0.1735 0.1735 0.1735

10M 0.2149 0.2149 0.2117

15M 0.2337 0.2295 0.2295

20M 0.2305 0.2305 0.2303

Table 5.2: FMS1 scores: Arabic-to-English with different bigram models. Adding a bigram model
greatly improves the translation accuracy. Medium pruning means using a beam size of 1/10,000,
heavy pruning means a beam size of 1/3.

2See Melamed [2004] for details of grammar mixtures.
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No pruning Medium pruning Heavy pruning

No bigrams 0.0837 0.0837 0.0837

10M 0.0967 0.0967 0.0934

15M 0.1008 0.0983 0.0983

20M 0.1008 0.1008 0.0987

Table 5.3: FMS2 scores: Arabic-to-English with different bigram models.

Medium pruning Heavy pruning

No bigrams 0.3140 0.2408

10M 0.3375 0.2751

15M 0.3355 0.2724

20M 0.3417 0.2853

Table 5.4: FMS1 scores: French to English with different bigram models. Heavy pruning (beam
size: 1/3) degraded the French-English results. Still, the bigram models improved the results for
both pruning experiments. Running the French experiments without pruning was not possible, due
to memory limitations.

5.5 Late-Breaking Result

Just before this report was published, in November 2005, we decided to try an experiment with
a configuration that was even more simplistic than the ones we used previously. We used an
IndexedWMTG instead of the HeadPMTGA. The IndexedWMTG just memorizes whole production
rules and does not permit the inference of any rule that was not seen in training data. We used
100K training sentence pairs in French and English, and tested on 50 previously unseen sentence
pairs, without a target language model. The training and test sets were not exactly the same as
the ones described in Section 5.3, so the results are not directly comparable. In the hierarchical
alignment stage of the experiment, we tried two kinds of word-to-word translation models. The
first model was induced by the refined method described in Section 5.3. The second model was
induced by the very simple Method A of Melamed [2000]. Table 5.6 shows the results.

These results are based on a very small test set, so they are suggestive rather than conclusive.
However, we were surprised that such a simple word-to-word translation model did not degrade
accuracy, relative to a state-of-the-art model. We conjecture that word-to-word models developed
for WFST-based SMT might not be good starting points for systems that are primarily driven by

Medium pruning Heavy pruning

No bigrams 0.1115 0.1035

10M 0.1200 0.1110

15M 0.1205 0.1105

20M 0.1217 0.1121

Table 5.5: FMS2 scores: French to English with different bigram models.
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Table 5.6: French-to-English results starting from different word-to-word models.

word-to-word model FMS-1 FMS-2

“refined” [Tiedemann, 2004] 0.41 0.21

Method A [Melamed, 2000] 0.43 0.20

tree-structured models. It is also worth noting that only the word-to-word model was varied in this
experiment, and the rest of the system was exactly the same, which demonstrates how easy it is to
run controlled experiments with the GenPar toolkit.
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Chapter 6

Conclusion

It was a very hectic summer, and we are now a long way from where we started. Yet there is still a
long way to go. We have laid the foundations, and now everyone can build on them. After the 1999
workshop, it took our research community several years to establish the superiority of the statistical
approach. Likewise, we expect the full impact of our workshop to become apparent within the next
couple of years. Workshop team members at at least three universities are continuing to work to-
wards that goal, and new researchers from other institutions have already joined the effort. New col-
laborators are always welcome! To join the fun, see http://nlp.cs.nyu.edu/GenPar/join.html.
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Appendix A

Glossary

This glossary contains terms relating to the bilingual case. All terms starting with bi, e.g. biparsing,
generalize to the multilingual case by replacing bi with multi.

• antecedent: either an item or a production used to infer another item in an inference rule

• axiom: Goodman [1999] refers to productions or items which cannot be consequents as
axioms

• bitext: see parallel text

• component text / component: one of the texts in a tuple of parallel texts; analogously,
the part of a production rule or inference rule that pertains to one of the components of the
multitext being generated or inferred

• Compose inference: an inference which combines items using a nonterminal production in
a CKY-style logic

• consequent: an item created through use of an inference rule

• dimension: same as component

• dimensionality: number of components in a parallel text (This term generalizes to the
dimensionality of a grammar etc.)

• D-GMTG: a GMTG which generates D-tuples of strings

• generalized Chomsky normal form (for GMTGs): a generalization of Chomsky normal
for the GMTG case.

• fully linked node: a node (of a multitree) that is a lowest link or has an heir that is a lowest
link

• lowest link: a multitree node that is the lowest node where some pair of nonterminals are
linked

• heir: A constituent which is the head among its siblings.
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• heir vector: a vector of heirs, usually one per dimension

• inactive production component (in a GMTG): whenever a component of a production
on the LHS is (), the RHS of the component must also be (); in this case the production
component is referred to as inactive

• inference rule: a rule schema showing how items can be deduced from existing items and
productions; an inference rule consists of a set of antecedents and an inferred consequent
(an instance of an inference rule schema is also referred to as an inference rule)

• link (also NTLink): links express the translational equivalence between nonterminals in
different components of a production (there doesn’t appear to be a specific term for this
in the original papers; Lewis and Stearns [1968] talk about a “correspondence” between
nonterminals; Aho and Ullman [1972] talk about an “association”)

• logic: using a logic to describe a parsing algorithm is motivated and explained by Shieber et al.
[1995] and Goodman [1999]. The logic describes how items can combine, abstracting away
from any values being computed by the parsing algorithm (typically using some semiring)
and the order in which items combine (except of course that any antecedents must be built
before the consequent in an inference rule).

• generalized multitext grammar (GMTG): grammar formalism used to generate tuples
of strings (see relevant papers for formal definition)

• multitree: a D-tuple of trees plus a hierarchical alignment between all pairs

• parallel text: texts that are translations of each other

item precedence array: a data structure that describes the relative order and contiguity of
a set of nonterminals in one component of a production rule or inference rule

• precedence array vector: a vector of precedence arrays, usually one per component

• production (in a GMTG): a production rule consisting of a D-tuple of nonterminals on the
LHS, and a D-tuple of sequences of terminals and indexed nonterminals on the RHS; indexes
express translational equivalence between nonterminals on the LHS and RHS.

• rank of a production: the number of nonterminal links on the RHS

• scan inference: an inference which deals specifically with terminal productions

• search strategy: logic-based descriptions of parsing algorithms are (deliberately) non-
deterministic; a search strategy determines the order in which the parse space is explored.

• semiring: an algebraic object which can be used to describe and unify many of the values
typically calculated during parsing, e.g. Viterbi-best parse, parse forest, inside scores [see
Goodman, 1999].

• split heir: an RHS of a production rule where the heir is not in the same link in all compo-
nents
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• syntax-directed transduction grammar (SDTG): the original transduction grammar
formalism defined by Lewis and Stearns [1968]

• transduction: a tuple of strings

• transduction grammar: a grammar that generates tuples of strings

• translation: mathematically, simply any mapping from one set of strings to another

• valency: number of children on RHS of production

• Viterbi-derivation semiring: a semiring which computes the highest-probability derivation
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Appendix B

File Formats

MTV was originally designed to be bundled with the GenPar toolkit, so it expects input in the
same format as the GenPar output. The format is similar to “standard” 1-dimensional tree and
grammar output but with extensions to handle the multiple dimensions.
NOTE: Spaces are necessary between all symbols in the input, as is shown in the examples.

B.1 General Formatting Conventions

In all cases, dimension 1 information is given first and dimension 2 information is given second,
and a | separates the two dimensions’ info.

tree level: new nesting level is indicated by (, end of level indicated by )

nonterminal node: ( { NP [ Inauguration ] } | { NP [ for ] } )

NT category on outside of [ ] , lexical head inside.

terminal node: ( also | null )

Word in each dimension - one is always null .

PAV: [ 1 2 | 2 1 ]

Size of PAV corresponds to number of children under node, and numbers refer to nth child
(1 is first), arrangement of numbers describes order of children.

Span: [ 1 2 | ]

Since span is used only for terminals in these files, one dimensions’ span is always empty.
Sentence span starts at 0. First word spans from 0 to 1.

heir marker: * 0 * 1

This indicates what dimensions this node is the heir in. 0 refers to dimension 1, 1 refers to
dimension 2.

B.2 PMTG Grammar File

See example file EtoE.grammar in the MTV data directory The grammar reader expects to start
reading in relevant information after encountering the first </SCORESET> tag in the file. After
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that it expects to read in 8 scoresets of PMTG events separated by <SCORESET>,</SCORESET>

tags. Each line should begin with an integer representing the number of times that particular event
was seen, a tab, and then the event. The event scoresets must be in the following order: valency
events, heir vector events, 2-dimensional heir events, dependency events, heir events in dimension
1, heir events in dimension 2, PAV events in dimension 1, and PAV events in dimension 2. The
format for each particular event is explained with an example below:

valency event: LHS followed by integer representing valency.
{ PP [ near ] } | { PP [ Near ] } 2

heir vector event: LHS followed by valency, heir vector (first element indicates position of heir
child in first dimension, second element indicates position of heir child in second dimension)
{ PP [ at ] } | { PP+PP [ at ] } 2 1 2

heir event: LHS followed by RHS heir (nonterminals only)
{ NP [ Inauguration ] } | { NP [ for ] } { NNP } | { PP+<PP+PP> }

dependency event: LHS followed by dependent RHS
{ NP [ city ] } | { NP [ city ] } { PP [ of ] } | { PP [ of ] }

1-d heir event: LHS followed by RHS with “heirmark” designating heir portion
{ PP [ for ] } | { PP+PP [ for ] } { NP [ boy ] } | { PP+PP [ heirmark ] }

PAV event: LHS followed by PAV
{ NNP [ Free ] } { NNP [ Zone ] } [ 1 2 ]

B.3 Multitree File

See example file EtoE.tree in the MTV data directory.
The MTV tree reader expects to see one parsetree per line. This parse may consist of one

complete parse tree or many partial parse trees, separated by tabs. Each nonterminal node must
start with a 2-dimensional PAV and each terminal node must end with a 2-dimensional span vector.
All heir nodes must also begin with an heir marker. Because MTV must have a default node to align
unlinked terminal nodes in partial parse trees to in Grid View, the terminal in the last position of
the sentence should always be “eosh” (end of sentence head). The span in each sentence is assumed
to begin at position 0. Though MTV can read deintegerized input, it maps every unique word/label
to an integer internally. There are several keywords that MTV has pre-mapped to integers and
always expects them to be represented by that integer in integerized input. Nonterminal keywords:

“NULL” : 0

“ROOT” : 1

“EOSH” : 2

“DUM” : 3

“UNK” : 4

“UNKPT” : 5
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“UNDEF” : 6

“HEIRMARK” : 7

Terminal keywords:

“null” : 0

“root” : 1

“eosh” : 2

“dummy” : 3

“unk” : 4

“unkprtm” : 5

“undef” : 6

“heirmark” : 7

B.4 Vocabulary File

See example files L1.tvcb, L1.ntvcb, L2.tvcb, L2.ntvcb in data directory.
Vocabulary files must begin and end with <VOCAB>, </VOCAB> tags, respectively. The files
must have one mapping per line. The first column indicates the integerization of the word/label in
the second column. Columns are separated by tabs.

B.5 MTV Converter File

See example file arabic.converter in data directory.
The converter file must have one mapping per line, with at least 2 columns. The first column
indicates the character that is to be replaced, and the second column indicates the Unicode that
should replace that character. Anything after those columns will be ignored, so it can be left blank
or commented for human readers. Columns are separated by tabs.
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