
# The University of Washington Machine Translation System for IWSL 2009

Mei Yang, Amittai Axelrod, Kevin Duh, Katrin Kirchhoff

Dept. of Electrical Engineering, University of Washington, Seattle, WA, USA

{yangmei, amittai, duh, katrin}@ee.washington.edu



#### 1

#### Overview

- We participated in two BTEC translation tasks: Chinese-English and Arabic-English
- Our interests include
  - Different preprocessing schemes for Chinese and Arabic
  - Combination of phrase tables based on different alignments
  - Semi-supervised reranking of N-best lists
  - Sentence-type specific part-of-speech (POS) language modeling for rescoring

# 2

#### **Baseline translation system**

- A state-of-the-art two-pass phrase-based SMT system
- Trained within the Moses development and decoding framework
- A 4-gram Language model trained using the SRILM toolkit



#### Preprocessing schemes

- Chinese segmentation and markup
  - The Stanford segmenter for re-segmenting the Chinese data
  - Character-based segmentation for the Chinese data
  - An in-house tool *Decatur* to markup dates and numbers in both the Chinese and English data
  - A simple tool to markup just numbers in both the Chinese and English data
  - Strip off all punctuations in both the Chinese and English data
  - None of the above schemes led to significance improvement over the original segmentation
- Arabic tokenization
  - The Columbia University MADA and TOKEN tools with two schemes:
  - Split off w+, f+, l+, b+, and Al+
  - TOKAN's D2 scheme, which does not split off Al+ but instead separates s+
  - The first scheme yielded better performance



#### Phrase table combination

- Phrase tables learned from GIZA++ and MTTK alignments respectively
- The two individual tables were combined into a single table
- Additional binary features to indicate which alignment produced each phrase pair entry
- The combined table outperformed the individual tables in the Chinese-English system



## Semi-supervised reranking

## f: ranking function

# P<sub>L</sub>: labeled data Pair-wise samples (x<sup>1</sup>, v<sup>2</sup>)

Pair-wise samples ( $x^{l}$ ,  $y^{l}$ ) collected from each N-best list of a held out set, such that  $x^{l}$  ranks higher than  $y^{l}$ 

$$f^* = \underset{f}{argmin}$$

$$\sum e^{-(f(x^l)-f(y^l))}$$

## P<sub>U</sub>: unlabeled data

Pair-wise samples (xu, yu) collected from the N-best list of a given test sentence

$$\sum_{P_{U}} e^{-\left|f\left(x^{u}\right)-f\left(y^{u}\right)\right|}$$

- The labeled data were produced using smoothed sentence-level BLEU scores
- The ranking function was learned using a modified RankBoost algorithm
  - Maximize the margins of the labeled and unlabeled data jointly
  - Treats the reranking problem as a problem of binary classification on hypothesis pairs
- Iteratively train a weak ranker and adjust sample weights according to the classification results
- The final ranking function is a linear combination of the weak rankers from all iterations
- Applied in the second pass for reranking N-best lists
- For IWSLT 2007 Italian-English and Arabic-English data, it achieved substantial improvements
- For this year data, it improved precision based evaluation metrics, such as PER, TER, WER and Precision, but degraded n-gram based metrics, such as BLEU and NIST

## 6

# Sentence-type specific POS language model

- Captures the syntactic differences between questions and statements
- Determine the sentence type using punctuations in the source sentences
- Applied in the second pass for reranking N-best lists
- Led to a small improvement in the Chinese-English system

7

#### Official evaluation results

|        | case+punc | no_case+no_punc |
|--------|-----------|-----------------|
| BLEU   | 0.41      | 0.40            |
| PER    | 0.42      | 0.45            |
| Meteor | 0.66      | 0.62            |
| NIST   | 7.05      | 7.30            |

| able 1: the Chinese-English sy | vstem |
|--------------------------------|-------|
|--------------------------------|-------|

|        | case+punc | no_case+no_punc |
|--------|-----------|-----------------|
| BLEU   | 0.48      | 0.48            |
| PER    | 0.35      | 0.38            |
| Meteor | 0.72      | 0.69            |
| NIST   | 6.85      | 6.93            |

Table 2: the Arabic-English system