I²R's Machine Translation System for IWSLT 2009

Xiangyu Duan, Deyi Xiong, Hui Zhang, Min Zhang and Haizhou Li

Institute for Infocomm Research, Singapore

{xduan, dyxiong, mzhang, hli}@i2r.a-star.edu.sg, zhangh1982@gmail.com

1. Three Layer Machine Translation Framework: individual systems + rescoring + system combination

Individual Systems

Lavender: Phrasal Translation System

Tranyu: Max-entropy-based ITG Translation System

- Bound: boundary words based reordering model
- Lar: boundary words based reordering + linguistically annotated reordering mode
- · UniBrack: boundary words based reordering + syntax-driven bracketing model

2. Experimental Results

2.1 Baseline Performance

Alignmentor		Baseline	+dev
Berkeley	Dev	0.4630	-
	Tst	0.4526	0.4629

Lavender as our baseline system

Alignmentor: alignment by agreement (Berkeley) +dev: add development set (CSTAR 2003) into training set Tst: test set in lab (IWSLT 2008 test set)

2.2 Performance of Word Alignments Combination

Performance of combination of Berkeley alignments

	grow	grow-diag	Grow+grow-diag
Dev	0.4630	0.4609	0.4635
Tst	0.4526	0.4472	0.4598
Tst (+dev)	0.4629	0.4523	0.4732

Performance of combination between Giza++ and Berkeley's alignments

	Giza++_grow-diag-final-and + Berkeley_grow+grow-diag		
Dev	0.4760		
Tst	0.4636		
Tst (+dev)	0.4710		

3. Official Result of BTEC: Chinese-To-English

Primary	Contrastive1	Contrastive2	Contrastive3
0.4595	0.4599	0.4441	0.4527

Primary: weighted vote on train+d+t

•Contrastive1: weighted vote on train+d

 Contrastive2: n-gram expansion on train+d+t •Contrastive3: UniBrack on train+d+t

Rescoring

Rich additional feature functions

Dir/Inv IBM model 1 and 3 score 2) Word-based association score 3) lexicalized word/block reordering probabilities 4) 6-gram target LM 5) 8-gram target word-class based LM 6) source and target length ratio

7) question feature 8) frequency of n-grams in the N-best 9) n-gram post-probabilities 10) sentence length post-probabilities

System Combination

- n-gram expansion: generation of new hypotheses
- · Collect all the n-grams from the original n-best
- Continuously expand the partial hypothesis through the n-grams
- Weighted voting: sentence level system combination
- 1-bests of four individual systems: Lavender, Tranyu(Bound), Tranyu(Lar) and Tranyu(UniBrack)
- · 1-best of n-gram expansion

2.3 Performance of Rescoring

		Lavender	Tranyu: Bound	Tranyu: UniBrack	Tranyu: LAR
Dev	before	0.4635	0.4719	0.4478	0.4597
	after	0.4858	0.4951	0.4882	0.5008
Tst	before	0.4598	0.4521	0.4471	0.4594
	after	0.4618	0.4715	0.4743	0.4760
Tst	before	0.4732	0.4604	0.4572	0.4589
(+ <i>dev</i>)	after	0.4799	0.4755	0.4816	0.4790

rescoring on Lavender's outputs improves performance marginally

rescoring on syntax-based systems improves performance dramatically. UniBrack achieves the best performance after rescoring.

2.4 Performance of System Combination

	Dev	Tst	Tst (+dev)
UniBrack	0.4882	0.4743	0.4816
n-gram expan	0.5106	0.4841	0.4880
weighted vote	0.5185	0.4897	0.4944

4. Conclusion

•System combination framework incorporates mainly two kinds of our in-house SMT systems

- · phrase-based system: Lavender
- ITG-based system: Tranyu

•Following the workflow of word alignment combination, rescoring and system combination, we improve performance significantly over baseline.