

Enriching SCFG Rules Directly from Efficient Bilingual Chart Parsing

Martin Čmejrek, Bowen Zhou, Bing Xiang {martin.cmejrek,bzhou,bxiang}@us.ibm.com IBM, T. J. Watson Research Center, Yorktown Heights

IWSLT '09, Tokyo

Dec 1, 2009

© 2009 IBM Corporation

Enriching SCFG Rules Directly from Efficient Bilingual Chart Parsing

	_	_	
			_
		the second se	
		-	
	_		
_	100		_

Europarl: German-English, hierarchical MT

Outline

- Baseline: Formally syntax-based system (ForSyn)
- Bilingual chart parsing with SCFG
- Estimating rule probabilities from the parse forest using EM
- Improving grammar coverage
- Proposing new rules with rule arithmetic
- Experiments and results

-	

2009/12/2

Formally syntax-based system

Synchronous Context-Free Grammar (SCFG)

A synchronous rewriting system generating source and target pairs simultaneously $X \to \langle \gamma, \alpha, \sim \rangle$ only one nterm. X, γ , α are term./nterm. strings, ~ is coindexation.

- (David Chiang. 2007. Hierarchical phrase-based translation)
- Decoder: ForSyn (Bowen Zhou et al., 2008. Prior derivation models for formally syntax-based translation using linguistically syntactic parsing and tree kernels)

. . .

- $X \triangleq \langle der, of the \rangle$
- $X \stackrel{\Omega}{=} <$ sitzungsperiode, session>

 $X \cong$ <wiederaufnahme X_1 , resumption X_1 > $X \cong$ < $X_1 \text{ der } X_2$, X_1 of the X_2 >

Glue $X \stackrel{{}_{\scriptstyle \mbox{\footnotesize O}}}{=} <\!\! X_1 \, X_2 \, , \, X_1 \, X_2 \! > \!$

. . .

Modeling

- Baseline: a log-linear framework including 9 features
- conditional rule probabilities in both directions: $P(\alpha|\gamma)$ and $P(\gamma|\alpha)$
- lexical weights in both directions: $P_w(\alpha|\gamma)$ and $P_w(\gamma|\alpha)$
- other 5 features: LM, word bonus, abstraction, rule, and glue penalties

Decoding implemented as searching for the optimal derivation

$$egin{aligned} P(D) \propto P_{LM}(e)^{\lambda_{LM}} imes \ & \Pi_i \prod_{X o \langle \gamma, lpha
angle \in D} \phi_i(X o \langle \gamma, lpha
angle)^{\lambda_i}, \end{aligned}$$

TBM

... Modeling

- Problem with $P(\alpha|\gamma)$ and $P(\gamma|\alpha)$
- phrasal rules features can be estimated by maximum likelihood
- abstract rules counts are not so reliable, eg:

- Solution: Use EM to estimate SCFG rule probabilities!
- Use Bilingual Chart Parsing to obtain parse forest
- Compute inside, outside probabilities, and expected counts
- Re-estimate joint probabilities $P(\alpha, \gamma)$, then compute $P(\alpha|\gamma)$ and $P(\gamma|\alpha)$
- S. Huang and B. Zhou, "An EM algorithm for SCFG...", ICASSP'09

		1 . 1		
		_		
	_			
			-	
			-	
	-	_		
_				_

2009/12/2

Bilingual Chart Parsing (CKY)

1:wiederaufnahme 2:der 3:sitzungsperiode 1:resumption 2:of 3:the 4:session

chart cell [i, j, k, l]

[1,1,1,1] X \triangle <wiederaufnahme, resumption>

rule

 $[3,3,4,4] X \cong \langle sitzungsperiode, session \rangle$

[2,2,2,3] X <u> ∩</u> <der, of the>

 $\begin{array}{l} [1,3,1,4] \ X \ \underline{\Omega} < & \text{wiederaufnahme } X_1, \text{ resumption } X_1 > [2,3,2,4] \\ X \ \underline{\Omega} < & X_1 \ \text{der } X_2, X_1 \ \text{of the } X_2 > [[1,1,1,1],[3,3,4,4]] \\ X \ \underline{\Omega} < & X_1 \ X_2, X_1 \ X_2 > [[1,1,1,1],[2,3,2,4]], [[1,2,1,3],[3,3,4,4]] \end{array}$

Success!

 $RSpans := precompute(R, \mathbf{e}, \mathbf{f})$ for i, j, k, l in bottom-up order, such that $1 \le i \le j \le M,$ $1 \le k \le l \le N$ for $\rho \in RSpans(i, j, k, l)$ switch $\rho.n$ case 0: $t_{ijkl}.push(\rho)$ case 1: if $(filled(t_{\rho.bp1}))$ $t_{ijkl}.push(\rho)$ case 2: if $(filled(t_{\rho.bp1})\&filled(t_{\rho.bp2}))$ $t_{ijkl}.push(\rho)$

	-			
			International Association	
_	_		_	_
_	-	_		-

Computing inside probabilities

- Inside probability probability of generating a parallel sequence from X $\beta_{ijkl}(X) = P(X \Rightarrow^* e_i^j; f_k^l)$
- Can be defined recursively (there is only one non-terminal, so we can omit X)

$$\beta_{ijkl} = \sum_{\rho \in t_{ijkl}} P(\rho.r) \prod_{(i'j'k'l') \in \rho.bp} \beta_{i'j'k'l'}$$

• And computed dynamically while parsing...

 $\beta_{1,1,1,1} = P(X \cong \langle wiederaufnahme, resumption \rangle)$

$$\beta_{1,3,1,4} = P(X \ \underline{\Omega} < wiederaufnahme X_1, resumption X_1 >) \beta_{2,3,2,4} + P(X \ \underline{\Omega} < X_1 \ der X_2, X_1 \ of the X_2 >) \beta_{1,1,1,1} \ \beta_{3,3,4,4} + P(X \ \underline{\Omega} < X_1 \ X_2, X_1 \ X_2 >) \beta_{1,1,1,1} \ \beta_{2,3,2,4} + P(X \ \underline{\Omega} < X_1 \ X_2, X_1 \ X_2 >) \beta_{1,2,1,3} \ \beta_{3,3,4,4}$$

TBM

Computing outside probabilities

Outside probability – probability of generating the parallel sequence outside of X.

 $\alpha_{ijkl}(X) = P(S \Rightarrow^* e_1^{i-1}, X, e_{j+1}^M; f_1^{k-1}, X, f_{l+1}^N)$

and 2 non-terminals:

- Can be computed by iterating the chart in top-down ordering, starting from the root cell: $\alpha_{1,M,1,N} := 1$
- And propagating the probability mass to backpointed cells for rules with 1 non-terminal: $\alpha_{\rho,bp1} + = P(\rho,r)\alpha_{ijkl}$

 $\alpha_{\rho,bp1} + = P(\rho,r)\alpha_{ijkl}\beta_{\rho,bp2}$ $\alpha_{\rho,bp2} + = P(\rho,r)\alpha_{ijkl}\beta_{\rho,bp1}$

So that in the root cell [1,3,1,4] the updates would look like:

 $\alpha_{2,3,2,4}$ += P(X \triangle <wiederaufnahme X₁, resumption X₁>) * 1

 $\begin{array}{l} \alpha_{1,1,1,1} \mathrel{+}= \mathsf{P}(\mathsf{X} \mathrel{\triangleq} <\mathsf{X}_1 \; \text{der} \; \mathsf{X}_2 \; , \; \mathsf{X}_1 \; \text{of the} \; \mathsf{X}_2 >) \; ^* \; 1 \; ^* \; \beta_{3,3,4,4} \\ \alpha_{3,3,4,4} \mathrel{+}= \mathsf{P}(\mathsf{X} \mathrel{\triangleq} <\mathsf{X}_1 \; \text{der} \; \mathsf{X}_2 \; , \; \mathsf{X}_1 \; \text{of the} \; \mathsf{X}_2 >) \; ^* \; 1 \; ^* \; \beta_{1,1,1,1} \end{array}$

$$\begin{aligned} &\alpha_{1,1,1,1} \mathrel{+=} \mathsf{P}(\mathsf{X} \mathrel{\underline{\cap}} <\mathsf{X}_1 \mathrel{X}_2 \;, \: \mathsf{X}_1 \mathrel{X}_2 >) \mathrel{*} 1 \mathrel{*} \beta_{2,3,2,4} \\ &\alpha_{2,3,2,4} \mathrel{+=} \mathsf{P}(\mathsf{X} \mathrel{\underline{\cap}} <\mathsf{X}_1 \mathrel{X}_2 \;, \: \mathsf{X}_1 \mathrel{X}_2 >) \mathrel{*} 1 \mathrel{*} \beta_{1,1,1,1} \end{aligned}$$

 $\begin{array}{l} \alpha_{1,2,1,3} \mathrel{+=} \mathsf{P}(\mathsf{X} \mathrel{\underline{\cap}} <\mathsf{X}_1 \mathrel{X}_2, \mathsf{X}_1 \mathrel{X}_2 >) \mathrel{*} 1 \mathrel{*} \beta_{3,3,4,4} \\ \alpha_{3,3,4,4} \mathrel{+=} \mathsf{P}(\mathsf{X} \mathrel{\underline{\cap}} <\mathsf{X}_1 \mathrel{X}_2, \mathsf{X}_1 \mathrel{X}_2 >) \mathrel{*} 1 \mathrel{*} \beta_{1,2,1,3} \end{array}$

Computing expected counts

• Contributions to rule expected counts can be computed by iterating the chart in any ordering

$$c(\rho.r) + = \frac{P(\rho.r)\alpha_{ijkl} \prod_{i=1}^{\rho.n} \beta_{\rho.bp_i}}{\beta_{1,M,1,N}},$$

• Collect counts from the whole training corpus.

M-step

• Finally, joint probabilities are re-estimated as

 $P(r) = \frac{c(r)}{\sum_{r' \in R: L(r') = L(r)} c(r')}$

L(r) means the left-hand side of the rule r. (Always X, trivial)

• Conditional probabilities $P(\alpha|\gamma)$ and $P(\gamma|\alpha)$ are computed as normalized probabilities of rules with the same source and target side, respectively.

P(r) for scoring

- The joint probability of a rule is normalized for length by $c_{size}(s)^{s-1}$
- Combination of all rule features is used (lexical weights are important too)

Improving the grammar coverage

Many sentences cannot be parsed

- On Europarl data, 70% for *union*, 20% for *grow-diag-final*
- Structural complexity

Every parse needs one of the following rules:

X \mathfrak{L} <erneut X₁ , X₁ again X \mathfrak{L} <X₁ verweisen , raise X₁>

Low frequency words and asymmetric translation pairs

nach monatelangen und weltweiten konsultationen wird nun im donaldson ... and after consulting world wide for many months the donaldson report ...

As a consequence, either the whole sentence pair cannot be parsed (losing expected counts for other words), or another asymmetric rules (trying to fix weltweiten konsultationnen) are boosted

- Add Swap Glue to increase parsability: $X \cong \langle X_1 X_2, X_2, X_1 \rangle$
- Insertion and deletion rules (ITG like) X 으 <X₁, X₁ e>, X 으 <X₁, e X₁>, X 으 <X₁ f, X₁>, X 으 <f X₁, X₁>

		1 . 1		
		_		
	_			
			-	
			-	
	-	_		
_				_

2009/12/2

_	_	_	_
_	_		_
			_
		- 1	
		_	-

Proposing new rules

- Parse the sentence pair, estimate expected counts
- Select the "most promising" rule usages
 - Currently selected as productions p with the highest contributions to expected counts

Use Rule arithmetic to combine rules

- 1) create span projections for both rules
- 2) merge span projections
- 3) collect rules

Parse again, this time also using new proposed rules, estimate expected counts

die herausforderung besteht darin diese systeme zu den besten der welt zu machen

the challenge is to make the system the very best

"Rule arithmetic Hello world" Combining phrasal rules

TEM

die herausforderung besteht darin diese systeme zu den besten der welt zu machen

Combining phrasal rules (contiguous projections required)

2009/12/2

<u> </u>			
		_	

die herausforderung besteht darin diese systeme zu den besten der welt zu machen

the challenge is **to make** the system the very best

Combining phrasal rule and swap glue.

2009/12/2

-	-		-
		-	-
	-	-	
		_	

die herausforderung besteht darin diese systeme zu den besten der welt zu machen

the challenge is to make the system the very best

Combining phrasal rule and abstract rule with 2 non-terminals.

_	

$$X \triangleq \langle \text{diese } X_1, \text{ the } X_1 \rangle$$

+ $X \triangleq \langle X_1 \text{ zu } X_2, \text{ to } X_2 X_1 \rangle$
= $X \triangleq \langle \text{diese } X_1 \text{ zu } X_2, \text{ to } X_2 \text{ the } X_1 \rangle$

Combining 2 abstract rules

Note that the span X₁ of the second rule was shortened

IBM

Experiment

Experiment

- Presenting 3 sets of results (BLEU)
 - 11 Iterations of EM training
 - Proposing new rules after the 1st iteration (adding new rules to the baseline)
 - filtering (using only rules proposed at least from 2 sentence pairs)
 - + 1 iteration of EM with new rules

 	_
_	

Results (BLEU)

German-English data from the Europarl

- 297k sentence pairs, lowercase, punctuation removed
- 1k dev set, 1 reference
- 1k test set, 1 reference
- 13M baseline rules
- 100k proposed rules

Farsi-English conversational data

- 1.4k dev set, 1 reference
- 417 test set, 4 references
- 11.3M baseline rules
- 120k proposed rules

	Ger-En dev	Ger-En test	Farsi-En dev	Farsi-En test
baseline	23.852	25.447	41.095	38.248
EM i0	24.394	26.122	40.764	39.114
i1	24.365	25.826	41.295	38.509
i2	24.433	25.936	41.424	38.238
i3	24.375	26.047	41.339	39.339
i4	24.409	25.936	41.563	39.594
i5	24.300	26.259	41.557	39.242
i6	24.339	26.197	41.726	39.209
i7	23.985	25.827	41.542	39.445
i8	24.129	26.305	41.634	39.326
i9	23.988	25.940	41.422	39.583
i10	24.079	26.226	41.287	39.650
proposed i0	24.418	26.122	40.729	38.382
proposed i0 + EM	24.837	26.408	41.836	40.246

Conclusion

- Introduced algorithms for bilingual parsing, and estimation of rule probabilities
- Presented a new method for synthesizing new rules from the most confident rules within the parse forest
- The method is independent of bilingual word alignments and complementary to heuristic alignment-based approaches
- Presented results on conversational data from two different language pairs: +1 BLEU on German-English translations of Europarl data, +2.00 BLEU on Farsi.

-		_	 	
	-		_	_
	-			
	_		 _	
	_			-
		_		
		100		

Thank you

Example of rules proposed by rule arithmetic

1	
$\operatorname{um} X_1$	in order X_1
natuerlich X_1	of course X_1
deshalb X ₁	this is why X_1
X_1 zu koennen	to X_1
X_1 ist	it is X_1
nach der tagesordnung folgt die X_1	the next item is the X_1
herr X_1 herr kommissar X_2	mr X_1 commissioner X_2
die X_1 der X_2	X_1 the X_2
im gegenteil X_1	on the contrary X_1
nach der tagesordnung folgt X_1	the next item is X_1
X_1 die X_2	the X_1 the X_2
die X_1 die	the X_1
ausserdem X ₁	in addition X_1
daher X ₁	that is why X_1
wir X_1 nicht X_2	we X_1 not X_2
die X_1 der X_2	the $X_2 X_1$
deshalb X ₁	for this reason X_1
$\operatorname{um} X_1 \operatorname{zu} X_2$	to $X_2 X_1$
X_1 nicht X_2 werden	X_1 not be X_2

Enriching SCFG Rules Directly from Efficient Bilingual Chart Parsing

... Example of rules proposed by rule arithmetic

... 50001 nach der tagesordnung folgt die X_1 ueber the next item is X_1 on das X_1 X_1 that for wird X_1 zur X_2 X_1 to X_2 das parlament nimmt den entwurf einer legislativen parliament adopted the draft legislative sehr it is very X_1 und herren abgeordneten $X_2 = X_1$ and gentlemen X_2 ich habe nicht X_1 i do not have X_1 es X_1 there X_1 the die X_1 von lissabon the lisbon X_1 X_1 dabei in this X_1 frau kommissarin X_1 moechte X_2 commissioner X_1 would like to X_2 ... 99991 X_1 genehmigt X_1 approved the X_1 koennen nicht X_1 cannot have for them diese auch also needs dass sich believe vorgeschlagen have proposed sie X_1 ein you X_1 es ist they are diese vorschlaege gestimmt voted in favour of these proposals X_1 rechnungshof X_1 auditors

	_	_	
_	-		
	- N		
		_	
	_		
_	 		_

Results – German 2 English

Data

- German-English data from the Europarl corpus.
 - 297k sentence pairs,
 - 1k dev set, 1 reference
 - 1k test set, 1 reference
 - 13M baseline rules
 - 100k proposed rules

	Ger-En dev	Ger-En test
baseline	23.852	25.447
iO	24.394	26.122
i1	24.365	25.826
i2	24.433	25.936
i3	24.375	26.047
i4	24.409	25.936
i5	24.300	26.259
i6	24.339	26.197
i7	23.985	25.827
i8	24.129	26.305
i9	23.988	25.940
i10	24.079	26.226
proposed i0	24.418	26.122
proposed i0 + EM	24.837	26.408

	the second second second
	and a second second second
_	

Results - Farsi

Data

- Farsi-English conversational data
 - 1439 dev set, 1 reference
 - 417 test set, 4 references

	Farsi-En dev	Farsi-En test
baseline	41.095	38.248
iO	40.764	39.114
i1	41.295	38.509
i2	41.424	38.238
i3	41.339	39.339
i4	41.563	39.594
i5	41.557	39.242
i6	41.726	39.209
i7	41.542	39.445
i8	41.634	39.326
i9	41.422	39.583
i10	41.287	39.650
proposed i0	40.729	38.382
proposed i0 + EM	41.836	40.246

Parsing efficiency

- The efficient implementation of RSpans(i,j,k,l) is very important.
- Create 2 prefix trees to encode all rule sides relevant to the sentence pair. And to store their spans, and spans of their non-terminals.

[1,2,1,3] X Δ <wiederaufnahme X₁, resumption X₁>[2,2,2,3]

[1,3,1,4] X Δ <wiederaufnahme X₁, resumption X₁>[2,3,2,4]

The most time consuming is the glue rule, since there is no non-terminal between X₁ and X₂

_	_			_
	_	_	_	_
				_
_	G	_		
		100	_	

Discussion, future directions

Speed

- ~5s/sentence
- Pruning?
- In literature, usually, parsing is done once, then 50 100 EM iterations, remembering the parse forest. Can we update the forest just for proposed rules?
- Additional features, more linguistic information
- In monolingual parsing, rules are extracted from a treebank, then EM runs on a different data...
- Operation of subtraction?

_	_			_
	_	_	_	_
				_
_	G	_		
		100	_	

Acknowledgements

Bowen Zhu

- discussions of the BCP and rule arithmetics, ForSyn decoder

Bing Xiang

- discussions over the BCP
- Songfang Huang
 - initial EM implementation
- and to the whole S2S team!