

Analysing Soft Syntax Features and Heuristics for Hierarchical Phrase Based Machine Translation

David Vilar, Daniel Stein, Hermann Ney

IWSLT 2008, Honolulu, Hawaii 20. October 2008

Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University, Germany

1 Introduction

- Allow for "gaps" in the phrases
- Integration of reordering in the translation model
- Study the effect of extraction heuristics
- Extension with inclusion of (soft) syntactic features

Outline

- **1** Introduction
- 2 Hierarchical Phrases
- **3 Heuristic Features**
- **4** Syntactical Features
- **5** Experimental Results
- 6 Conclusions

2 Hierarchical Phrases

Formalization as a synchronous CFG

▶ Rules of the form $X \to \langle \gamma, \alpha, \sim \rangle$, where:

 $\triangleright X$ is a non-terminal

 $\triangleright \gamma$ and α are strings of terminals and non-terminals

 $ho\sim$ is a one-to-one correspondence between the non-terminals of lpha and γ

Example:

$$X \to \langle \Phi X^{\sim 0}$$
那个 $X^{\sim 1}$, It's the $X^{\sim 1}$ in the $X^{\sim 0}
angle$
 $X \to \langle \oplus X^{\sim 0} - \oplus X^{\sim 1}$, like to $X^{\sim 0}$ some $X^{\sim 1}$ too \rangle

Additionally: Glue rules

$$egin{aligned} S &
ightarrow \langle S^{\sim 0} X^{\sim 1}, S^{\sim 0} X^{\sim 1}
angle \ S &
ightarrow \langle X^{\sim 0}, X^{\sim 0}
angle \end{aligned}$$

RWTH

Illustration

RWTH

Illustration

RWTH

Illustration

3 Heuristic Features

► Following features were tested:

Paste rule Binary feature for rules of the form

$$X o \langle X^{\sim 0}lpha, X^{\sim 0}eta
angle$$
 or $X o \langle lpha X^{\sim 0}, eta X^{\sim 0}
angle$

Hierarchical penalty Binary feature for hierarchical rules
 Number of non-terminals Two binary features indicating if the rule has one or two non-terminals.

Extended glue rule added rule of the form

$$X
ightarrow \langle X^{\sim 0} X^{\sim 1}, X^{\sim 0} X^{\sim 1}
angle$$

4 Syntactical Features

- ► Goal: include linguistic information from a deep syntactic parser
- Idea: introduce additional soft syntactic features
- This can be done during the extraction of the phrases
 - No additional computational costs during decoding
 - Can be done both on source and target side
 - Rules are not filtered out

"Valid" syntactical phrases

- ► A phrase is valid when a node exists that completely covers all positions
- In order to obtain a normalized score, we add up all the counts and divide by the number of occurrences of the phrase pair

Scoring variants

m(i, j) = minimum number of words to be deleted or added to a phrase, so that it fits the yield of a node

Source Phrases:

- public toilet
- ► is the

Scoring variants

m(i, j) = minimum number of words to be deleted or added to a phrase, so that it fits the yield of a node

Source Phrases:

▶ public toilet
$$m(i, j) = 1$$

▶ is the

Scoring variants

m(i, j) = minimum number of words to be deleted or added to a phrase, so that it fits the yield of a node

Source Phrases:

▶ public toilet
$$m(i, j) = 1$$

▶ is the
$$m(i,j) = 1$$

► Four count ("smoothing") variants:

$$c(i,j|t) := egin{cases} \delta \left(m(i,j),0
ight) & ext{binary} \ rac{1}{m(i,j)+1} & ext{linear} \ rac{1}{m(i,j)+1} & ext{linear} \ rac{1}{\exp \left(m(i,j)
ight)} & ext{exponentional} \ rac{j-i}{(j-i)+m(i,j)} & ext{relative} \end{cases}$$

5 Experimental Results

► IWSLT BTEC Data (Tourist and Travel domain)

		Chinese	English
Training data	Sentences	23 940	
	Running words	181 486	232746
	Vocabulary	9041	10 350
Test 2004 Data	Sentences	500	
	Running words	7 543	10718
	OOVs	96	154
Test 2005 Data	Sentences	506	
	Running words	8 0 5 2	10828
	OOVs	101	164
Test 2008 Data	Sentences	507	
	Running words	6325	
	OOVs	87	

Results

	test04		test05		test08
	BLEU	TER	BLEU	TER	BLEU
baseline	47.3	42.6	50.9	37.6	39.6
non-syntactic information					
hierarch	48.4	41.9	51.4	38.1	39.6
paste	49.1	41.6	51.1	38.0	40.8
glue2	48.2	41.8	51.2	37.6	39.7
1NT2NT	48.4	42.2	51.8	37.2	39.8
syntactic information					
binary	47.8	41.7	51.7	37.5	40.3
linear	47.6	41.9	51.2	37.6	40.6
exponential	47.9	41.7	51.6	37.4	40.3
relative	47.3	42.4	51.5	37.3	40.2

Results

	test04		test05		test08
	BLEU	TER	BLEU	TER	BLEU
baseline	47.3	42.6	50.9	37.6	39.6
non-syntactic information					
hierarch + paste	48.5	42.0	51.9	37.6	39.6
hierarch + paste + glue2	49.2	42.5	50.8	37.5	39.5
hierarch + paste + glue2 + 1NT2NT	48.6	41.6	51.0	37.9	40.0
combination of both syntactic and non-syntactic information (all feature			(all features)		
binary	46.9	42.5	50.6	38.4	39.9
linear	48.0	42.3	51.2	38.0	40.5
exponential	47.7	42.3	51.0	38.4	40.0
relative	47.8	42.3	51.0	38.0	40.3

Example Translations

reference	Where is the exchange counter ?
baseline	The currency exchange office is
syntactical	Where is the currency exchange office ?

reference	Could you exchange it for a new one ?
baseline	You can buy a new one ?
syntactical	Could you change it for a new one ?

reference	You can take our airport shuttle bus to pick up the car.
baseline	You can take our airport shuttle bus with me .
syntactical	You can take our the airport shuttle bus come to pick it up.

6 Conclusions

- Analyzed heuristics for phrase extraction
- Introduced soft syntactic constraints
 - > Use of source- and target-side information
 - No additional search effort
- High variability of results
 - Test on bigger corpora
- Bigger improvements when dealing with speech input (system talk tomorrow!)
- Applicable also to phrase-based systems

Analysing Soft Syntax Features and Heuristics for Hierarchical Phrase Based Machine Translation

David Vilar, Daniel Stein, Hermann Ney

IWSLT 2008, Honolulu, Hawaii 20. October 2008

Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University, Germany

