

The MIT-LL/AFRL IWSLT-2008 MT System

Wade Shen, Brian Delaney, Tim Anderson and Ray Slyh

23 October 2008

This work is sponsored by the United States Air Force Research Laboratory under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

Air Force Research Laboratory

999999-XYZ 09/08/08

System Overview

What's New in 2008?

- Segmentation Models
- System Combination
- Improved Arabic Morphological Processing
- Added Data
- Additional Improvements

Summary

MIT Lincoln Laboratory

999999-TRA 09/08/08

- Standard Statistical Architecture
- Developed in-house to support SMT experiments
 - Framework for experiments with lowresource languages
 - Test-bed for S2S MT system
- Custom Components
 - FST-based Decoder
 - Segment EM Aligner/Decoder
 - MBR Rescoring
 - System Combination
 - Phrase Training/Minimum Error Rate Training
- Use Moses decoder for baseline systems

- Based on MIT FST toolkit: <u>http://people.csail.mit.edu/ilh/fst/</u>
- The target language hypothesis is the best path through the following transducer:

$E = I \circ P \circ D \circ T \circ L$

- where,
 - I = source language input acceptor
 - P = phrase segmentation transducer
 - D = weighted phrase swapping transducer
 - T = weighted phrase translation transducer (source phrases to target words)
 - L = weighted target language model acceptor
- Apply phrase swapping twice for long distance reordering
- OOV words are inserted during decoding as parallel links to P, D, T, and L models.
- Allows for direct decoding on pruned ASR lattices

MIT Lincoln Laboratory

Air Force Research Laboratory

System Overview

What's New in 2008?

- Segmentation Models
- System Combination
- Improved Arabic Morphological Processing
- Added Data
- Additional Improvements

MIT Lincoln Laboratory

Air Force Research Laboratory

Introduction

MIT Lincoln Laboratory

999999-TRA 09/08/08

Introduction

• Scoring the Phrase-based Models

$$P(\mathbf{E}|\mathbf{F}) \propto P(\mathbf{E})P(\mathbf{F}|\mathbf{E})$$

$$\approx P(\mathbf{E}) \max_{(\mathbf{f},\mathbf{e})_1^k \in seg(\mathbf{F},\mathbf{E})} p((\mathbf{f},\mathbf{e})_1^k) * \prod_{i=1}^k p(\mathbf{f}_i|\mathbf{e}_i)$$

MIT Lincoln Laboratory

Air Force Research Laboratory

Segmentation Models

Introduction

MIT Lincoln Laboratory

Air Force Research Laboratory

Segmentation Models

Introduction

MIT Lincoln Laboratory

Air Force Research Laboratory

Segmentation Models

Introduction

• constant phrase penalty (bonus) $P(\mathbf{E}|\mathbf{F}) \approx P(\mathbf{E}) \max_{(\mathbf{f},\mathbf{e})_1^k \in seg(\mathbf{F},\mathbf{E})} e^{-\rho k} * \prod_{i=1}^k p(\mathbf{f_i}|\mathbf{e_i})$

MIT Lincoln Laboratory

999999-TRA 09/08/08

Segment EM Models

Framework

MIT Lincoln Laboratory

999999-TRA 09/08/08

• Explicit Segmentation Model

$$P(\mathbf{E}|\mathbf{F}) \approx P(\mathbf{E}) \max_{(\mathbf{f}, \mathbf{e})_1^k \in seg(\mathbf{F}, \mathbf{E})} p((\mathbf{f}, \mathbf{e})_1^k) * \prod_{i=1}^k p(\mathbf{f}_i | \mathbf{e}_i)$$

Air Force Research Laboratory

• Explicit Segmentation Model

 $P(\mathbf{E}|\mathbf{F}) \approx P(\mathbf{E}) \max_{(\mathbf{f},\mathbf{e})_1^k \in seg(\mathbf{F},\mathbf{E})} p((\mathbf{f},\mathbf{e})_1^k) * \prod_{i=1}^k p(\mathbf{f}_i|\mathbf{e}_i)$

• Segment EM models add non-uniform segmentation prob: $\frac{1}{2}$

$$P((\mathbf{f}, \mathbf{e})_1^k) \approx \prod_{i=1}^n p(\mathbf{f}_i | \mathbf{F}) * p(\mathbf{e}_i | \mathbf{E})$$

MIT Lincoln Laboratory

Air Force Research Laboratory

• Explicit Segmentation Model

 $P(\mathbf{E}|\mathbf{F}) \approx P(\mathbf{E}) \max_{(\mathbf{f},\mathbf{e})_1^k \in seg(\mathbf{F},\mathbf{E})} p((\mathbf{f},\mathbf{e})_1^k) * \prod_{i=1}^k p(\mathbf{f}_i|\mathbf{e}_i)$

- Segment EM models add non-uniform segmentation prob: $P((\mathbf{f}, \mathbf{e})_1^k) \approx \prod_{i=1}^k p(\mathbf{f_i}|\mathbf{F}) * p(\mathbf{e_i}|\mathbf{E})$
- Approx. monolingual segmentation probs:

$$p(\mathbf{f_i}|F) \approx p(\mathbf{f_i}|\lambda) \approx \frac{E_{\mathcal{F}}(\mathbf{f_i}|\lambda)}{N_{\mathcal{F}}(\mathbf{f_i})}$$
$$p(\mathbf{e_i}|E) \approx p(\mathbf{e_i}|\lambda) \approx \frac{E_{\mathcal{E}}(\mathbf{e_i}|\lambda)}{N_{\mathcal{E}}(\mathbf{e_i})}$$

MIT Lincoln Laboratory

Air Force Research Laboratory

• Explicit Segmentation Model

 $P(\mathbf{E}|\mathbf{F}) \approx P(\mathbf{E}) \max_{(\mathbf{f},\mathbf{e})_1^k \in seg(\mathbf{F},\mathbf{E})} p((\mathbf{f},\mathbf{e})_1^k) * \prod_{i=1}^k p(\mathbf{f}_i|\mathbf{e}_i)$

• Segment EM models add non-uniform segmentation prob: k

$$P((\mathbf{f}, \mathbf{e})_1^k) \approx \prod_{i=1}^k p(\mathbf{f}_i | \mathbf{F}) * p(\mathbf{e}_i | \mathbf{E})$$

• Approx. monolingual segmentation probs:

Expected number of f_i from forced alignment

$$p(\mathbf{f_i}|F) \approx p(\mathbf{f_i}|\lambda) \approx -\frac{I}{2}$$
$$p(\mathbf{e_i}|E) \approx p(\mathbf{e_i}|\lambda) \approx -\frac{I}{2}$$

$$\frac{E_{\mathcal{F}}(\mathbf{f_i}|\lambda)}{N_{\mathcal{F}}(\mathbf{f_i})} \bigstar$$

 $N_{\mathcal{E}}(\mathbf{e_i})$

Number of possible occurrences of f_i

Segment EM Models

Training Procedure

MIT Lincoln Laboratory

999999-TRA 09/08/08

Training Procedure

1. Train standard phrase-based model

Air Force Research Laboratory

Training Procedure

- **1.** Train standard phrase-based model
- 2. Augment phrase model probabilities with initial segmentation probabilities

- **1.** Train standard phrase-based model
- 2. Augment phrase model probabilities with initial segmentation probabilities
- **3.** Force align training bitexts and dump lattices

- **1.** Train standard phrase-based model
- 2. Augment phrase model probabilities with initial segmentation probabilities
- **3.** Force align training bitexts and dump lattices
- 4. Compute phrase-pair expected values using fixed $\lambda {\rm s}$ from lattices (E-step)

- **1.** Train standard phrase-based model
- 2. Augment phrase model probabilities with initial segmentation probabilities
- **3.** Force align training bitexts and dump lattices
- 4. Compute phrase-pair expected values using fixed $\lambda {\rm s}$ from lattices (E-step)
- 5. Reestimate segmentation probabilities using equations (M-step)

- **1.** Train standard phrase-based model
- 2. Augment phrase model probabilities with initial segmentation probabilities
- **3.** Force align training bitexts and dump lattices
- 4. Compute phrase-pair expected values using fixed $\lambda {\rm s}$ from lattices (E-step)
- 5. Reestimate segmentation probabilities using equations (M-step)
- 6. MER training to optimize model exponents (λ s)

- **1.** Train standard phrase-based model
- 2. Augment phrase model probabilities with initial segmentation probabilities
- **3.** Force align training bitexts and dump lattices
- 4. Compute phrase-pair expected values using fixed $\lambda {\rm s}$ from lattices (E-step)
- 5. Reestimate segmentation probabilities using equations (M-step)
- 6. MER training to optimize model exponents (λ s)
- 7. Repeat 2-6

System	dev7	dev3
Baseline (no rescoring)	39.6	52.9
+ phrase segmentation models	40.3	53.6
Baseline (with rescoring)	42.1	53.8
+ phrase segmentation models (iter=3)	42.8	54.1

- Segmentation Models improve overall on dev experiments
 - Even with one iteration of training only
- Multiple iterations + rescoring (post-eval) showed improvements
 - Submitted results had no rescoring, one iter only

System Combination

- Generate consensus networks using round-robin TER alignment, where each system gets to be the skeleton alignment
- Take union of all consensus networks and apply a language model
- Weight optimization via Nelder-Meade simplex on a development set using n-best lists
 - Individual system weights, language model, word penalty, system priors
- Final combination on unseen data using optimized weights

System Combination Results

Chinese-to-English

CRR Input

ASR Input

System	dev3	eval	System	Input	dev3	eval
CE-contrast4	53.75	36.91	CE-contrast4	Conf. Net	45.80	31.93
CE-contrast1	52.92	37.78	CE-contrast3	1-Best	41.70	31.13
CE contract2 52.76	25.25	CE-contrast2	1-Best	41.65	31.41	
	52.70	33.33	CE-contrast7	Lattice	39.70	30.66
CE-contrast2	52.45	36.51	CE-contrast6	Lattice	38.84	31.02
Combined		37.92	Combined			35.38

- Used dev3 to train system combination weights
- CRR input condition
 - +0.14 BLEU → combination weights prefer CE-contrast4 which outperforms CE-contrast1 on dev3 but not on eval
- ASR input condition
 - +3.45 BLEU → significant gain by combining systems with varying input sources (1-Best vs. lattice vs. confusion network)

System Combination Results

Arabic-to-English

CRR Input

ASR Input

System	dev5	eval	System Input dev5	eval
AE-contrast4	27.95	55.07	AE-contrast4 Conf. Net 25.69	45.31
AE-contrast3	27.91	54.91	AE-contrast3 1-Best 25.34	45.63
AE-contrast1	26.03	50.81	AE-contrast1 Lattice 24.53	44.49
AE-contrast2	28.25	51.79	AE-contrast2 1-Best 23.44	44.35
Combined		56.51	Combined	48.92

- Used dev5 to train system combination weights (different ASR systems?)
- CRR input condition
 - +1.44 BLEU → decent gain despite change in system ranking between dev5 & eval sets
- ASR input condition
 - +3.29 BLEU → significant gain by combining systems with varying input sources (1-Best vs. lattice vs. confusion network)

Preprocessing Method	Dev6
Baseline (No normalization or AP5)	42.06
Remove all diacritics except tanween, no AP5	49.40
Remove all diacritics, no AP5	50.39
Remove all diacritics, apply AP5	53.55

- Diacritics removed:
 - Short vowels
 - Sukuun: Marks absence of sort vowel
 - **Shadda:** Marks consonant gemination (i.e., doubling)
 - Tanween: Case markers for indefinite forms & other uses
 - Tatweel: Stretches letters in Arabic typography (not a true diacritic)
- AP5 segments the following from stems:
 - Prefixes: al-, bi-, fa-, ka-, li-, wa-
 - Suffixes: Attached pronouns

- Chinese ↔ English Tasks
- Additional parallel data (out of domain) improves system
 - Added ISI Chinese-English parallel corpus to training
- Additional English data also helps: Added Gigaword LMs
- ISI data not used for evaluation systems

- Additional parallel data (out of domain) improves system
 - Added ISI Chinese-English parallel corpus to training
- Additional English data also helps: Added Gigaword LMs
- ISI data not used for evaluation systems

	Configurations	Lan	Eval Set			
Chinese to English		Decode	Rescore	Class	MAP	MBR
	Baseline System	4g,5g		7g	53.32	53.50
	+ ISI -corpus	4g	4g ISI	7g	55.30	54.28
	+ English Gigaword	4g	6g GIGA	7g	54.60	54.10

English to Chinese	Configurations	Lar	Eval Set			
		Decode	Rescore	Class	MAP	MBR
	Baseline System	4g,5g		7g	29.75	29.88
	+ ISI -corpus	4g	5g ISI	7g	30.76	31.60

Air Force Research Laboratory

- Minimum Bayes Risk Rescoring
 - Results mixed: Improve E->C task (eval), C->E (dev only)
- Added Phrases from Berkeley Aligner
 - Consistent +0.5 point gain
- Additional Lexicon Data (C->E) from CEDICT
 - 0.5-1.0 improvement depending on DEV set
- Improved Confusion Network decoding
 - Language model/acoustic model optimization separated
 - Better word splitting from LIG [Besacier 07]
 - Improvement: ~0.5-1.0 points
- Lexical Approximation [Mermer 07]: +0.5 points

System Overview

What's New in 2008?

- Segmentation Models
- System Combination
- Improved Arabic Morphological Processing
- Added Data
- Additional Improvements

Summary

MIT Lincoln Laboratory

999999-TRA 09/08/08

- Segment-EM Model
 - Preliminary results show modest improvement
- Improved System Combination
 - Results from ASR are especially promising for both Arabic and Chinese
- Better morphology for Arabic
 - Significant improvements from AP5 diacritic norm, and Lexical Approximation
 - More normalizations could further improve phrase estimation
- Make better use of out-of-domain data
 - Some improvements this year from ISI arabic data and GIGAWORD