

The CMU-UKA Statistical Machine Translation Systems for IWSLT 2007

Ian Lane, Andreas Zollmann, Thuy Linh Nguyen, Nguyen Bach, Ashish Venugopal, Stephan Vogel, Kay Rottmann, Ying Zhang, Alex Waibel

Overview

- Overview of submission systems
- Research Topics Investigated
 - Topic-Aware Spoken Language Translation
 - Morphological-Decomposition for Arabic SMT
 - Comparison of Punctuation-Recovery Approaches

Submission Systems

Submission Systems ("diversity")

- Submissions made for three language pairs
- All systems based on phrase-based SMT
- Each language-pair focused on specific research area

Language Pair	System Description	Rank (1)
Japanese \rightarrow English	SMT with Punctuation Recovery	1
	/ Topic-based N-best-list rescoring	
Chinese \rightarrow English	Syntax Augmented SMT	3
Arabic \rightarrow English	SMT with Morphological Decomposition	7

(1) Spoken language translation task - ASR (BLEU)

Japanese Submission System

Training Corpora	IWSLT-training, IWSLT-dev1-3, Tanaka	
Corpora-size	200k sentence pairs, 2M words	
Phrase-Extraction	PESA [Vogel05]	
LMs	6-gram SA-LM	
	4-gram interpolated n-gram LM	
Reordering Window	6	
Decoder	STTK (phrase-based SMT) [Vogel03]	

- Punctuation estimated on source-side via HELM
- N-best candidates rescored: **Topic-Confidence Scores**

Chinese Submission System

Training Corpora	IWSLT-training, IWSLT-dev1-3,5
Corpora-size	67k sentence pairs
Rule-Extraction	Giza++, Pharaoh, Stanford-parser
Decoder	SAMT [www.cs.cmu.edu/~zollmann/samt]

- Identical to IWSLT 2006 submission system
 - Improved efficiency and robustness decoder "to handle GALE size data"
 - Slight increase in training data
- See IWSLT 2006 paper for detailed system description

Arabic Submission System

Training Corpora	IWSLT-training
Corpora-size	20k sentence pairs
Phrase-Extraction	Giza++, Pharoah
Decoder	STTK (phrase-based SMT) [Vogel03]

Morphological decomposition performed using [Smith05]
<u>30% of morphemes discarded</u> to obtain source/target ratio close to 1

Research Topics

• Topic-aware SLT

Apply utterance-level topic constraints for SLT

Morphological-Decomposition for Arabic SMT

- Decompose Arabic words into morphemes
- Discard "un-necessary" morphemes before translation
- Comparison of Punctuation Recovery Techniques (described in paper)

- Previous work have focused on document level adaptation for translation of monologue data
 - Bi-LSA: Adaptation of Target-LM [Tam07]
 - Adaptation of IBM-1 Lexicon [Tam07]
 - Bi-TAM: Incorporate topic during alignment [Zhao06]
- Investigate approach, appropriate for spoken dialogue (applicable to small training corpora)
- Apply independently to each utterance

- Apply topic-constraints within SLT
 - → Detect topic of discourse and apply topicconstraints during translation
- Investigate two additional feature-functions
 - Topic-Dependent LM Score
 - Topic-Confidence Scores
- Rescore N-best trans. candidates incorporating above scores

Description of Scores

Topic-Dependent LM Score

- Topic-specific LM should better discriminate between acceptable and bad translations
- Add additional Topic-Dependent LM score

Topic Confidence Score

- No constraint to maintain topic consistency within translation hypothesis
- Visual inspecting identified the following:
 - "Good" translation hypotheses typically obtained high topicconfidence score (for a single topic)
 - "Bad" translations typically obtained low-confidence scores for all topics

Topic-Dependent LM Scores

1. Select topic of utterance by 1-best hypo.

Carnegie Mellon

- 2. Generate additional score by applying TD-LM to each hypothesis
- 3. Re-rank N-best hypotheses based on log-lin. Σ model scores

Topic-Confidence Scores

1. Calculate topic confidence score [0,1] for each topic class

Carnegie Mellon

 Re-rank N-best hypotheses based on log-lin. Σ model scores (features used during decoding (10) + M topic confidence scores)

Experimental Evaluation

Topic Class Definition

- Training corpora split into eight classes
 - Hierarchical clustering, minimize global perplexity

• Topic Models

- SVM classification models trained for each class
 - Features: word, word-pairs and 3-grams
- TD-LMs trained for each topic class
- Tuning / Evaluation Sets
 - MERT Set: IWSLT06-dev.
 - Eval. Set: IWSLT06-eval, IWSLT07-eval

Effectiveness on '06 Eval. Set

• **Baseline:** JE phrase-based SMT system (described earlier)

TDLM: Topic-Dependent LMs

TC: Topic Confidence Scores

 Both TDLM and TC feature sets improve translation performance (0.0022 and 0.0027 BLEU-points respectively)

\rightarrow Use Topic-Confidence scores in submission system

Effectiveness on '07 Eval. Set

TDLM: Topic-Dependent LMs

TC: Topic Confidence Scores

■ Slight degradation in BLEU-score on 2007 Evaluation-Set (0.4990 \rightarrow 0.4828)

- `06 Eval.-set typically contained multiple sentences per utterance
- \rightarrow Maintains topic-consistency between sentences (mismatch with '07 Eval.

Morphological-Decomposition for Arabic SMT

Morphological-Decomposition for Arabic SMT

- Traditional word-alignment models assume similar number of source/target tokens
- For diverse language-pairs significant mismatch
 - Highly agglomerative language (Arabic)
 - Non-agglomerative language (English)

 \rightarrow Also improve translation coverage

Carnegie Mellon

Able to translate unseen Arabic words at Morpheme-level

Morphological-Decomposition for Arabic SMT

 Prefix / stem / suffix of an Arabic word often corresponds to individual English word

<u>Prefix:</u>	conjunction:	wa \rightarrow and
	article:	Al \rightarrow the
	preposition:	li \rightarrow to/for
<u>Suffix:</u>	Pronoun:	hm \rightarrow their/them

Some specific morphemes are redundant in A→E trans.
→ can be discarded during translation
Suffix: Gender: f → female singular

Proposed Approach

 Previous works [Habash06] used manually defined rules to remove inflectional features before translation

- Data driven approach to discard non-informative morphemes
- 6. Perform full morphological decomposition on Arabic-side
- 7. Align training corpora: Arabic morpheme-level / English word-level
- 8. Discard morphemes with zero-fertility > θ_{th} Morphemes not aligned to any English word \rightarrow high zero-fertility Morphemes typically aligned to a English word \rightarrow low zero-fertility

Experimental Evaluation

Topic Class Definition

- Training corpora split into eight classes
 - Hierarchical clustering, minimize global perplexity []

• Topic Models

- SVM classification models trained for each class
 - Features: word, word-pairs and 3-grams
- TD-LMs trained for each topic class
- Tuning / Evaluation Sets
 - MERT Set: IWSLT06-dev.
 - Eval. Set: IWSLT06-eval, IWSLT07-eval

Morpheme Removal (fertility)

- From 158k Arabic wrds obtain 294k morph. (190k English wrds)
- Manually set θ_{th} to discard 40% of morphemes

Discarding morphemes with high zero-fertility normalizes source/target ratio
Shifts fortility peak > 1.0

Shifts fertility peak > 1.0

Morpheme Removal (Trans. Quality)

• Manually set θ_{th} to discard ?% of morphemes

Discarding 30-40% of morphemes obtains highest BLEU score
Improved BLEU 0.5573 → 0.5631 (IWSLT05 held-out eval.-set)

Conclusions

Conclusions

- Developed evaluation systems for 3 language-pairs
 - Each language-pair focused on specific research topic

Punctuation Recovery

• Best performance obtained with source-side HELM estimation

Topic-aware SLT

- Significant improvement in performance obtained for multisentence utterances (IWSLT 2006 evaluation set)
- Topic-Classification Scores more effective than TD-LM
- Morphological-Decomposition for Arabic SMT
 - Improved BLEU by applying morphological decomposition and discarding 30% morphemes with highest zero-fertility

Thank you

Other Slides

Punctuation Recovery for SLT

Punctuation Recovery for SLT

	Precision	Recall	F-score	
	97.8%	96.8%	97.3%	
	82.1%	44.2%	57.5%	
	96.4%	95.9%	96.2%	
	71.8%	43.6%	54.3%	
	100%	63.9%	77.9%	

