The TALP Ngram-based SMT System for IWSLT 2007

Patrik Lambert, **Marta R. Costa-jussà**, Josep M. Crego, Maxim Khalilov, José B. Mariño, Rafael Banchs, José A.R. Fonollosa and Holger Schwenk¹

> UPC-TALP Research Center Jordi Girona Salgado, 1-3 08034 Barcelona, Spain

¹ LIMSI-CNRS, BP 133 91403 Orsay Cedex schwenk@limsi.fr

IWSLT 2007, Trento

TALP (UPC)

The TALP Ngram-based SMT System for IWSLT 2007

IWSLT 2007 1 / 27

- 1 TALP Ngram-based Translation System
- 2 Alignment Minimum Translation-Error Training
- Simultaneous Perturbation Stochastic Approximation method
- 4 Word ordering strategies
- 5 Neural Network Language Model
- 6 Experiments

1 TALP Ngram-based Translation System

- Translation Model
- Additional Feature Functions

2 Alignment Minimum Translation-Error Training

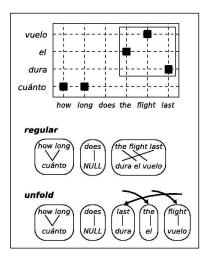
- 3 Simultaneous Perturbation Stochastic Approximation method
- 4 Word ordering strategies
- 5 Neural Network Language Model

6 Experiments

Translation Model

The best translation hypothesis \mathbf{T} , for a given source sentence \mathbf{S} , is that which maximizes a log-linear combination of feature functions:

$$\hat{\mathbf{T}} = \operatorname*{arg\,max}_{\mathbf{T}} \sum_{m} \lambda_{m} h_{m}(\mathbf{T}, \mathbf{S})$$


• Translation Model: N-gram language model of bilingual units (tuples)

$$p(\mathbf{T},\mathbf{S})\approx\prod_{n}p((t,s)_{n}|(t,s)_{n-N+1},\ldots,(t,s)_{n-1})$$

Tuples are extracted from word alignment

- A unique and monotonic segmentation of each sentence is produced.
- No word in a tuple is aligned to words outside of it
- No smaller tuples can be extracted without violating the previous constraints

Tuple extraction example

Unfolding produces a different bilingual n-gram model with reordered source words.

TALP (UPC)

The TALP Ngram-based SMT System for IWSLT 2007

IWSLT 2007 6 / 27

Additional feature functions

Additional feature functions:

- Target language model
- POS target language model
- Word bonus model, giving a bonus proportional to the number of target words.
- Source-to-target and target-to-source lexicon models, which compute a lexical weight for each tuple, using IBM model 1 translation probabilities

TALP Ngram-based Translation System

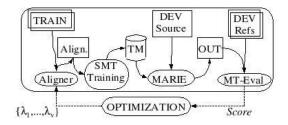
2 Alignment Minimum Translation-Error Training

- Simultaneous Perturbation Stochastic Approximation method
- 4 Word ordering strategies
- 5 Neural Network Language Model
- 6 Experiments
- Conclusions and Further Work

Alignment Minimum Translation-Error Training

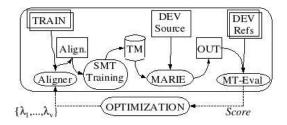
Our Method

Tuning alignment parameters directly in a Minimum translation Error Training scheme: use automated translation metrics as minimization criterion.


Alignment optimization parameters chosen for GIZA++:

- Smoothing factors for models HMM, IBM3 and IBM4
- The probability for the empty word
- Deficient distorsion for the empty word

Procedure


TALP (UPC)

 Optimal coefficients were estimated with the following procedure:

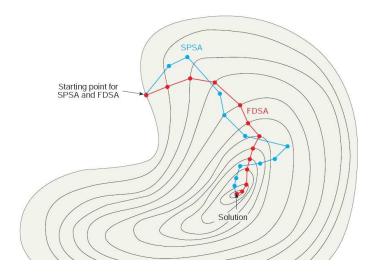
Procedure

 Optimal coefficients were estimated with the following procedure:

• SMT system with TM model (bilingual language model)

2 Alignment Minimum Translation-Error Training

Simultaneous Perturbation Stochastic Approximation method


- 4 Word ordering strategies
- 5 Neural Network Language Model
- 6 Experiments
- Conclusions and Further Work

Simultaneous Perturbation Stochastic Approximation

- The SPSA method [J. Spall, 1992] is based on a gradient approximation which requires only two evaluations of the objective function, regardless of the dimension of the optimisation problem.
- SPSA procedure is in the general recursive stochastic approximation form:

$$\hat{\lambda}_{k+1} = \hat{\lambda}_k - \mathbf{a}_k \hat{\mathbf{g}}_k(\hat{\lambda}_k)$$

 $\hat{\mathbf{g}}_k(\hat{\lambda}_k)$: estimate of the gradient $\mathbf{g}(\lambda) \equiv \partial E/\partial \lambda$ at iterate k

The simultaneous approximation causes deviations of the search path.

These deviations are averaged out in reaching a solution.

Optimization schemes

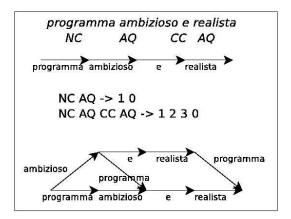
Concept	Procedure	Optimized	
		parameters	
Dev translated	Alignment Minimum	Align. smoothing	

Optimization schemes

Concept	Procedure	Optimized	
		parameters	
Dev translated	Alignment Minimum	Align. smoothing	
in each iteration	Translation-Error Training	factors	
Nbest-list produced	(Double-loop) Minimum	Translation	
by the decoder	Error Training	feature functions	

- 1 TALP Ngram-based Translation System
- 2 Alignment Minimum Translation-Error Training
- 3 Simultaneous Perturbation Stochastic Approximation method

Word ordering strategies


5 Neural Network Language Model

6 Experiments

Conclusions and Further Work

Reordering patterns

Use a set of rewrite rules for Part-Of-Speech sequences to extend the monotonic search graph with reordering hypotheses

- 1 TALP Ngram-based Translation System
- 2 Alignment Minimum Translation-Error Training
- Simultaneous Perturbation Stochastic Approximation method
- 4 Word ordering strategies
- 5 Neural Network Language Model
- 6 Experiments
- Conclusions and Further Work

Neural Network Language Model

The basic idea of the neural network LM is to project the word indexes onto a continuous space and to use a probability estimator operating on this space.

- The resulting probability functions are smooth functions of the word representation → better generalization to unknown *n*-grams can be expected.
- A neural network → simultaneously learns the projection of the words onto the continuous space and estimates the *n*-gram probabilities.

Neural Network Language Model

The basic idea of the neural network LM is to project the word indexes onto a continuous space and to use a probability estimator operating on this space.

- The resulting probability functions are smooth functions of the word representation → better generalization to unknown *n*-grams can be expected.
- A neural network → simultaneously learns the projection of the words onto the continuous space and estimates the *n*-gram probabilities.

The LM posterior probabilities are "interpolated" for any possible context of length n-1 instead of backing-off to shorter contexts.

- 2 Alignment Minimum Translation-Error Training
- 3 Simultaneous Perturbation Stochastic Approximation method
- 4 Word ordering strategies
- 5) Neural Network Language Model
- 6 Experiments
 - Description
 - Results

• Training sentences were split by using final dots on the bilingual text

- Training sentences were split by using final dots on the bilingual text
- Arabic

 \rightarrow MADA+TOKAN system for disambiguation and tokenization.

 \rightarrow This tool produces POS tags on all taggable tokens.

- Training sentences were split by using final dots on the bilingual text
- Arabic

 \rightarrow MADA+TOKAN system for disambiguation and tokenization.

 \rightarrow This tool produces POS tags on all taggable tokens.

Chinese

- \rightarrow Resegmentation using ICTCLAS
- \rightarrow POS tagging using the freely available Stanford Parser

- Training sentences were split by using final dots on the bilingual text
- Arabic

 \rightarrow MADA+TOKAN system for disambiguation and tokenization.

 \rightarrow This tool produces POS tags on all taggable tokens.

- Chinese
 - \rightarrow Resegmentation using ICTCLAS
 - \rightarrow POS tagging using the freely available Stanford Parser

English

 \rightarrow Part-Of-Speech tagging *TnT* tagger.

 \rightarrow For alignment purpose only (of the ZhEn system), the Snowball stemmer.

IWSLT 2007 21 / 27

Experimental Settings

Alignment parameters

- running 5, 5, 3 and 3 iterations of models 1, HMM, 3 and 4,
- using English stems and 50 classes,
- taking the union of source-target and target-source alignments.
- Decoding parameters
 - the beam search was set to 50,
 - no reordering limit in search (all paths present in the input reordering graph are considered).
- Rescoring
 - incorporation of the NNLM into the SMT system was done using 1000-best lists.

IWSLT 2007 22 / 27

Internal Experiments Summary

	dev (dev4)	test (dev5)			
	$\frac{1}{2}(BLEU+METEOR)$	BLEU	NIST	METEOR	
$Chinese \rightarrow English$					
baseline	0.340	0.186	5.84	0.487	
giza++MET	0.349	0.190	5.97	0.490	
giza++ MET+NNLM	0.350	0.205	6.06	0.496	

Table: Internal translation results for IWSLT 2007 Chinese-English task. MET refers to alignment tuning with Minimum (translation) Error Training. NNLM refers to rescoring a translation N-best list with a continuous space target language model.

Participation in the IWSLT 2007 Evaluation

	UPC	Best	Rank
AE ASR Primary	0.4445	0.4445	1/11
AE Clean Primary	0.4804	0.4923	3/11
CE Clean Primary	0.2991	0.4077	11/15
CE Clean Primary + NNLM	0.2920	0.4077	-

Table: Official translation results (BLEU scores) for IWSLT 2007 Chinese-English and Arabic-English tasks. Next to our system's score, we indicated the Best system's score. For the primary runs, we also indicated the rank of our system among all primary runs.

- 1 TALP Ngram-based Translation System
- 2 Alignment Minimum Translation-Error Training
- Simultaneous Perturbation Stochastic Approximation method
- 4 Word ordering strategies
- 5 Neural Network Language Model
- 6 Experiments

Conclusions and further work

The optimization of alignment parameters allows to improve translation when using the Alignment Minimum Translation-Error Training.

Conclusions and further work

- The optimization of alignment parameters allows to improve translation when using the Alignment Minimum Translation-Error Training.
- The NNLM obtained an improvement of 1.5 Bleu in the internal set.

Conclusions and further work

- The optimization of alignment parameters allows to improve translation when using the Alignment Minimum Translation-Error Training.
- The NNLM obtained an improvement of 1.5 Bleu in the internal set.
- Our system was ranked 1st in the Arabic-English task. It was not very competitive in the Chinese-English task.

Thanks

Grazie a tutti

{lambert, mruiz, jmcrego, khalilov, canton, rbanchs, adrian}@gps.tsc.upc.edu schwenk@limsi.fr