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Abstract 

Machine transliteration is an automatic 
method that converts words/characters in 
one alphabetical system to corresponding 
phonetically equivalent words/characters 
in another alphabetical system. Machine 
Transliteration has been used extensively 
to assist machine translation, data min-
ing, cross language information retrieval 
and more recently in popular web portals, 
SMS and chat systems. In this paper, we 
propose a method where transliteration 
problem is modeled as a sequence labe-
ling problem and proceed to solve this 
using Memory-based learning. We have 
applied this technique for transliterating 
English to Tamil and achieved exact Ta-
mil transliterations for 84.16% of English 
names. We get an accuracy of 93.33% 
when we choose from the first five 
ranked transliterations.    

 

1 Introduction 

As multilingual documents increase rapidly on 
the Internet, there is an increasing need to bridge 
the language barrier. One of the most frequent 
problems dealt by translators is translating 
named entities (proper nouns) such as person, 
location, organization names and technical terms. 
Translation of proper nouns and technical terms 
is generally recognized as a significant problem 
in many multi-lingual text and speech processing 
applications. Hence the transliteration model 
must aim to preserve the phonetic structure of 
words as closely as possible. Proper noun 
processing plays an important role in query 
translation during Cross-language Information 
Retrieval, where the query is specified in a lan-

guage different from that of the retrieved docu-
ments. 
Machine transliteration is the process of mapping 
source language phonemes or graphemes into 
target language approximations. The reverse 
process is called back transliteration. A source 
language word can have more than one valid 
transliteration in the target language. For 
example, the name “Rama” in English can have 
the following transliterations in Tamil as ராமா 

or ரமா. Therefore it becomes necessary to 
generate all possible transliterations in target 
language for a given source language name or 
word.  

Various methodologies have been developed 
for machine transliteration. Arababi (1994) de-
veloped a hybrid neural network and knowledge-
based system to generate multiple English spel-
lings for Arabic person names. Knight and 
Graehl (1998) developed a statistical model for 
back transliteration to transliterate Japanese ka-
takana into English. Al-Onaizan and Knight 
(2002), Virga and Khudanpur (2003) and Oh and 
Choi(2000)  adopted a source-channel approach 
incorporating phonetics as an intermediate repre-
sentation. Li (et al. 2004) introduced direct or-
thographic mapping through joint source channel 
for English – Chinese transliteration. Gao (et al. 
2004) used Maximum Entropy to English-
Chinese transliteration. Kang and Choi (2000) 
used decision trees model for English-Korean 
transliteration. 

The recent work for sequence alignment on 
both local classifier-based modeling of complex 
learning problems (McCallum et al. 2000; Pu-
nyakanok and Roth, 2001), as well as global dis-
criminative approaches based on CRFs (Lafferty 
et al. 2001), SVM (Taskar et al. 2005), and the 
Perceptron algorithm (Collins 2002) are being 
adopted for transliteration. 

In this paper we present a transliteration model 
using sequence labeling approach and memory 



based learning for English to Tamil translitera-
tion.  

2 Transliteration as sequence labeling 

Transliteration is a process that takes a character 
string in source language as input and generates a 
character string in the target language as output.  
The process can be seen conceptually as two le-
vels of decoding: segmentation of the source 
string into transliteration units and relating the 
source language transliteration units with units in 
the target language by resolving different combi-
nations of alignments and unit mappings. Thus 
the transliteration problem can be reformulated 
as a sequence labeling problem from one lan-
guage alphabet to another. 

Consider an English (source language) name 
X which can be segmented as x1x2..xi..xn where 
each xi is treated as an alphabet in the observa-
tion sequence. Let the equivalent Tamil (target 
language) name be Y. Let Y be segmented as 
y1y2..yi..yn where each yi is treated as a label in 
the label sequence. Each xi is now aligned with 
its phonetically equivalent yi.  

x1 —————– y1 
x2 —————– y2 
. ——————- . 
xn ——————yn 

This is a very important step in our translitera-
tion process. Proper alignment of phonetically 
equivalent segments is required to generate an 
efficient transliteration model. 

The valid target language alphabet (yi) for a 
source language alphabet (xi) in the given source 
language input word depends on the following 
factors  
• source language alphabet (xi) 
• context alphabets (xi-2, xi-1, xi+1, xi+2 ) sur-

rounding source language alphabet (xi) 
• target language alphabet (yi) 
• context alphabets (yi-2, yi-1, yi+1, yi+2) sur-

rounding target language alphabet (yi) 
This context information is used to train the 
model using memory based learning. The trained 
transliteration model then predicts a valid target 
language word (label sequence) for new source 
language word (observation sequence). Thus the 
transliteration problem in this context becomes a 
multi-class classification problem. 

 

2.1 Challenges in English-Tamil Translite-
ration 

Following are the challenges in English to Tamil 
transliteration: 

• Complexity arises while transliterating 
vowels in English, since these vowels 
may correspond to long vowels or short 
vowels in Tamil. For example, the name 
“Rama” in English can have Tamil trans-
literations as both ராமா (rAmA) and 

ரமா (ramA). 
• Some consonants like ‘r’, ‘l’, and ‘n’, 

has multiple transliterations in Tamil, 
namely - ‘r’ ( ர, ற ), ‘l’ ( ல ,  ள ,  ழ ) , ‘n’ 

( ண, ன , ந). 
• Consonants like‘d’ ‘t’ may sound in Ta-

mil as ‘த’ and ‘ட’.  For example in “Na-

darajan” – ‘da’ is transliterated as ‘ட’  and  
in “Dasarathan” – da is transliterated as 
‘த’ . 

 
We have designed our transliteration system by 
taking these factors into account.  

3 Memory-based learning 

Memory-based learning is a form of supervised 
learning based on similarity-based reasoning. 
Examples are represented as a vector of feature 
values with an associated class label. During 
training, a set of examples (the training set) is 
presented in an incremental fashion to the clas-
sifier, and added to memory. During testing, a set 
of previously unseen feature-value patterns (the 
test set) is presented to the system. For each test 
pattern, its distance to all examples in memory is 
computed, and the class label of the least distant 
instance(s) is used as the predicted class label for 
the test pattern. Performance of a memory-based 
system is measured as classification accuracy on 
the test set. It depends on the distance metric (or 
similarity metric) used. The most straightforward 
distance metric is 
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where X and Y are the patterns to be compared, 
and di(xi , yi) is the distance between the values 
of the i-th feature in a pattern with n features. 
Distance between two values is measured using 



an overlap metric, for symbolic features as di (xi, 
yi) = 0 if xi = yi else di (xi , yi) = 1 

If the pattern is ambiguous, the distribution of 
pattern over the different labels is kept, and the 
most frequently occurring label is selected. 
When this distance metric is used, all features 
describing an example are interpreted as being 
equally important in solving the classification 
problem. During transliteration, the source lan-
guage word/alphabet to be assigned a label (tar-
get language alphabet) is obviously more rele-
vant than any of the source language alphabets in 
its context. Therefore a weight is associated to 
each feature. Here the information gain, a num-
ber expressing the average amount of reduction 
of training set information entropy is used as 
weights and the distance measure is 
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This is referred as IB1-IG algorithm. 

3.1 Memory-based learning using IGTree 

In typical NLP learning tasks where the focus is 
on discrete data, large number of examples and 
many attributes of differing relevance, the classi-
fication speed is a critical issue. Memory-based 
learning is an expensive algorithm in terms of 
memory and retrieval speed since for each test 
case, all feature values must be compared to the 
corresponding feature values of all training in-
stances. Without optimization, it has an asymp-
totic retrieval complexity of O(NF),where N is 
the number of items in memory, and F the num-
ber of features. These constraints demand non 
trivial data structures and speedup optimization 
for the core k-NN classifier. This resulted in 
IGTree decision tree. IGTree (Walter Daele-
mans, Jakub Zavrel, 1996) compresses the typi-
cal flat file organization found in k-NN imple-
mentations into a decision tree structure. IGTree 
combines two algorithms: one for compressing a 
case base into a tree, and one for retrieving clas-
sification information from these trees. 

During the construction of IGTree decision 
trees, cases (instances) are stored as paths of 
connected nodes. All nodes contain a test and a 
class label. Nodes are connected via arcs denot-
ing the outcomes for the test. Information gain is 
used to determine the order in which features are 
used as tests in the tree. The tree is constructed 
such a way that the maximal depth of the tree is 
equal to the number of features.  At each level of 
the tree, all nodes have the same test feature. The 
reasoning behind this compression is due to the 

fact that the computation of feature relevance 
points to one feature is the most important in 
classification. Search can be restricted to match-
ing a test case to those stored cases that have the 
same feature value at that feature. Besides re-
stricting search to those memory cases that 
match only on this feature, the case memory can 
be optimized by further restricting search to the 
second most important feature, followed by the 
third most important feature, etc. A considerable 
compression is obtained as similar cases share 
partial paths. 

The tree is compressed even more by restrict-
ing the paths to those input feature values that 
disambiguate the classification from all other 
cases in the training set. The feature values that 
do not contribute to the disambiguation of the 
case classification are not stored in the tree. Fi-
nally, the leaf nodes contain the unique class la-
bel corresponding to a path in the tree. Given the 
path, non-terminal nodes contain information 
about the most probable or default classification. 
A final compression is obtained by pruning the 
derived tree.  

The classification of a new instance involves 
traversing the tree by matching all feature values 
of the test case with arcs in the order of the over-
all feature information gain. In case of a match, 
the leaf node at the end of the traversal provides 
the class label. If no match is found, the last 
matching non terminal node provides the default 
class label. 

4 Transliteration using Memory-based 
learning 

The transliteration model based on Memory-
based learning builds three data structures, a lex-
icon, a case base for known source language al-
phabets and a case base for unknown alphabets. 
These are automatically extracted from the given 
aligned corpus. Case bases are indexed using 
IGTree. 

Lexicon: A lexicon is built by computing the 
number of times each source language alphabet 
occurs with each class label. The lexicon is re-
ferred during prediction of target language al-
phabets for a given source language alphabet. 
Depending on whether or not they can be found 
in the lexicon, a case representation is con-
structed for the source language alphabets and 
they are retrieved either from known case base or 
the unknown case base. 

Case base (known): A windowing approach is 
used to represent the transliteration task as a 



classification problem. For each alphabet, the 
context information is stored in the case base. A 
case consists of information about the focus 
source and target language alphabets, and their 
left and right contexts. 

Case base (unknown): If a source language al-
phabet is not present in the lexicon, its ambi-
guous target language alphabet cannot be re-
trieved. In such case, a class label can be guessed 
only on the basis of the form or the context of the 
alphabet. 

During transliteration, each alphabet in the 
novel source language word is looked up in the 
lexicon. If it is found, its lexical representation is 
retrieved and its context is determined. The re-
sulting pattern is looked up in the known alpha-
bet case base. If a source language alphabet is 
not present in the lexicon, its lexical representa-
tion is computed on the basis of its form, its con-
text is determined, and the resulting pattern is 
looked up in the unknown alphabet case base. In 
each case, output is a best guess of the target 
language alphabet (class label) for the source 
language alphabet in its current context.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The transliteration process consists of three 

phases: preprocessing phase, training phase using 
MBT 1 and transliteration phase. The names in 
source language and target language are aligned 
and converted into the format required by MBT 
during preprocessing stage. MBT is a memory-
based tagger-generator and tagger. It is used for 
training and transliteration.  
 

                                                 
1 http://ilk.uvt.nl/mbt/ 

4.1 Preprocessing Phase 

During the preprocessing phase, the source lan-
guage names are segmented and aligned with the 
corresponding segmented target language names. 
We have created a parallel corpus consisting of 
30,000 Indian person names and 30,000 Indian 
place names.  This corpus is used in training the 
model. Preprocessing involves the following 
steps: 

1. Romanization: Tamil names are roma-
nized using mapping rules and English 
names are converted into lower case. 

 
English Tamil Romanized Ta-

mil 
shiva ஷிவா shivA 

Priya பிாியா Piriya 

karthik கார்த்திக் kArTTik 

n e h r u </s> 
w E ^ r u </s> 
 

ெகௗாி Kauri 

 
2. Segmentation: English Names are seg-

mented based on vowels, consonents, di-
graphs and trigraphs like sh, bh, ksh, th, 
ch, ng, nj etc. Similarly romanized Tamil 
names are segmented based on vowels, 
consonents digraphs and trigraphs like 
sh, TT, kk, ss, pp, ngk, njs etc. into trans-
literation units. 

 
English Romanized Tamil 
sh     i     v     a   sh    i     v    A   
p    r    i    y    a p    i    r    i    y   a 
k a r th i k 
 

k   A   r   TT   i   k 

n   e    h    r    u 
 

w    E    ^    r    u 

 
3. Alignment: The corresponding translite-

ration units in English and Tamil words 
are aligned if the number of units in both 
English and Tamil words are equal. For 
example: 
       sh   i   v   a  ( 4 units ) 
       sh   i   v   A  ( 4 units ) 

A mismatch in the number of transli-
teration units in English and Tamil will 
result in misalignment. This is resolved 
by combining two or three adjacent 
transliteration units at the required posi-
tion in Tamil names or by inserting emp-

Alignment 

MBT 

Transliteration 
System 

Aligned Corpus 

Trained Model 

Words in  
Source language 

Transliterated 
words in  
Target language 

Parallel Corpus 



ty symbol ε or ^ using rules without los-
ing their phonetic structure.  For exam-
ple: 
 
       p    r     i    y   a          ( 5 units ) 
       p    i     r    i    y   a     ( 6 units ) 
 
is aligned as  
 
        p  |  r   |  i  |  y  |  a          ( 5 units ) 
       pi  |  r   |  i  | y   | a           ( 5 units ) 
 
Similar alignment is to be done for plo-
sives க, ச, ட, த, ப, ற.  
An example of using the empty symbol 
for resolving misalignment is: 

    n   e     h     r     u      ( 5 units ) 
    n    e    r     u         ( 4 units ) 

         is aligned as 
     n   | e    | h   | r   | u     ( 5 units ) 

                  n   | e    | ^   | r   | u    ( 5 units )     
 

Thus in our model, we consider English 
unigrams, n-grams, empty alphabet, Tamil 
roman characters and Tamil n-grams. Here 
the target language n-grams are considered 
as labels in sequence labeling and multi 
classification.  

4.2 Training Phase 

The aligned source language (English) and target 
language (Tamil) names are given as input se-
quence and label sequence respectively for train-
ing in the format as required by MBT. The con-
text information required for training is defined 
with a window size of 5. The core alphabet is in 
the third position. A lexicon and two case bases 
are built by MBT in the training phase. MBT 
uses two algorithms for Memory based learning.  
The IGTree algorithm is used for known case 
base and IB1-IG algorithm is used for the un-
known case base. The trained model is used for 
transliterating English words into Tamil words.  

4.3 Transliteration Phase 

The list of English words which need to be trans-
literated are segmented and converted into the 
MBT Tool format and transliterated using the 
trained model. MBT uses IB1-IG and IGTree 
decision tree for predicting class labels for each 
alphabet in English word and the sequence of 
predicted class labels form a transliterated Tamil 
word. 

 

5 Results 

Our model produced the exact Tamil translitera-
tion for English words with an accuracy of 
84.16%.  We attribute the misclassifications to 
the delicate characteristics of the Tamil language 
while transliterating vowels and the consonants 
‘r’,’l’,’n’,’d’,’t’ as discussed earlier. We then 
made several possible transliterations based on 
the output present in the ambiguity file for the 
vowels and the above mentioned consonants. 
The accuracy is increased when the number of 
possible transliterations is increased. The transli-
teration accuracy of our model is shown in Table 
1. 

Output Accuracy 
Top 1 84.16% 
Top 2 85.96% 
Top 3 88.07% 
Top 4 90.05% 
Top 5 93.33% 

Table. 1: Transliteration Accuracy 
 
 

6 Conclusion 

We have demonstrated a transliteration model for 
English to Tamil transliteration using Memory 
based learning by reformulating the translitera-
tion problem as sequence labeling and multi 
classification. We have prepared a parallel cor-
pus of 30,000 person names and 30,000 thousand 
place names and used it to train our translitera-
tion model. We also tested the accuracy of our 
model with 1000 English names that were out of 
corpus. Our model produces an exact translitera-
tion in Tamil from English words with an accu-
racy of 84.16%. The accuracy can be increased 
by generating possible transliterations using the 
ambiguity file.   
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