

ICON - 2008

6th International Conference on Natural Language Processing

Details Of The Selected Paper

Title Sequence labeling approach for English to Tamil Transliteration using Memory-
based Learning

Topic Machine Translation

Abstract

Machine transliteration is an automatic method that converts words/characters in
one alphabetical system to corresponding phonetically equivalent words/characters
in another alphabetical system. Machine Transliteration has been used extensively
to assist machine translation, data mining, cross language information retrieval and
more recently in popular web portals, SMS and chat systems. In this paper, we
propose a method where transliteration problem is modeled as a sequence labeling
problem and proceed to solve this using Memory-based learning. We have applied
this technique for transliterating English to Tamil and achieved exact Tamil
transliterations for 84.16% of English names. We get an accuracy of 93.33% when
we choose from the first five ranked transliterations.

Authors

Vijaya MS
Amrita Vishwa Vidyapeetham

Shivapratap G
Amrita Vishwa Vidyapeetham

Dhanalakshmi V
Amrita Vishwa Vidyapeetham

Ajith VP
Amrita Vishwa Vidyapeetham

Soman KP
Amrita Vishwa Vidyapeetham

Contact g_shivapratap@ettimadai.amrita.edu
Download

Close

Page 1 of 1Details of Paper : IIIT - Hyderabad

20/10/2009http://ltrc.iiit.ac.in/icon_archives/view_details.php?pid=98

Sequence labeling approach for English to Tamil Transliteration using
Memory-based Learning

Abstract

Machine transliteration is an automatic
method that converts words/characters in
one alphabetical system to corresponding
phonetically equivalent words/characters
in another alphabetical system. Machine
Transliteration has been used extensively
to assist machine translation, data min-
ing, cross language information retrieval
and more recently in popular web portals,
SMS and chat systems. In this paper, we
propose a method where transliteration
problem is modeled as a sequence labe-
ling problem and proceed to solve this
using Memory-based learning. We have
applied this technique for transliterating
English to Tamil and achieved exact Ta-
mil transliterations for 84.16% of English
names. We get an accuracy of 93.33%
when we choose from the first five
ranked transliterations.

1 Introduction

As multilingual documents increase rapidly on
the Internet, there is an increasing need to bridge
the language barrier. One of the most frequent
problems dealt by translators is translating
named entities (proper nouns) such as person,
location, organization names and technical terms.
Translation of proper nouns and technical terms
is generally recognized as a significant problem
in many multi-lingual text and speech processing
applications. Hence the transliteration model
must aim to preserve the phonetic structure of
words as closely as possible. Proper noun
processing plays an important role in query
translation during Cross-language Information
Retrieval, where the query is specified in a lan-

guage different from that of the retrieved docu-
ments.
Machine transliteration is the process of mapping
source language phonemes or graphemes into
target language approximations. The reverse
process is called back transliteration. A source
language word can have more than one valid
transliteration in the target language. For
example, the name “Rama” in English can have
the following transliterations in Tamil as ராமா

or ரமா. Therefore it becomes necessary to
generate all possible transliterations in target
language for a given source language name or
word.

Various methodologies have been developed
for machine transliteration. Arababi (1994) de-
veloped a hybrid neural network and knowledge-
based system to generate multiple English spel-
lings for Arabic person names. Knight and
Graehl (1998) developed a statistical model for
back transliteration to transliterate Japanese ka-
takana into English. Al-Onaizan and Knight
(2002), Virga and Khudanpur (2003) and Oh and
Choi(2000) adopted a source-channel approach
incorporating phonetics as an intermediate repre-
sentation. Li (et al. 2004) introduced direct or-
thographic mapping through joint source channel
for English – Chinese transliteration. Gao (et al.
2004) used Maximum Entropy to English-
Chinese transliteration. Kang and Choi (2000)
used decision trees model for English-Korean
transliteration.

The recent work for sequence alignment on
both local classifier-based modeling of complex
learning problems (McCallum et al. 2000; Pu-
nyakanok and Roth, 2001), as well as global dis-
criminative approaches based on CRFs (Lafferty
et al. 2001), SVM (Taskar et al. 2005), and the
Perceptron algorithm (Collins 2002) are being
adopted for transliteration.

In this paper we present a transliteration model
using sequence labeling approach and memory

based learning for English to Tamil translitera-
tion.

2 Transliteration as sequence labeling

Transliteration is a process that takes a character
string in source language as input and generates a
character string in the target language as output.
The process can be seen conceptually as two le-
vels of decoding: segmentation of the source
string into transliteration units and relating the
source language transliteration units with units in
the target language by resolving different combi-
nations of alignments and unit mappings. Thus
the transliteration problem can be reformulated
as a sequence labeling problem from one lan-
guage alphabet to another.

Consider an English (source language) name
X which can be segmented as x1x2..xi..xn where
each xi is treated as an alphabet in the observa-
tion sequence. Let the equivalent Tamil (target
language) name be Y. Let Y be segmented as
y1y2..yi..yn where each yi is treated as a label in
the label sequence. Each xi is now aligned with
its phonetically equivalent yi.

x1 —————– y1
x2 —————– y2
. ——————- .
xn ——————yn

This is a very important step in our translitera-
tion process. Proper alignment of phonetically
equivalent segments is required to generate an
efficient transliteration model.

The valid target language alphabet (yi) for a
source language alphabet (xi) in the given source
language input word depends on the following
factors
• source language alphabet (xi)
• context alphabets (xi-2, xi-1, xi+1, xi+2) sur-

rounding source language alphabet (xi)
• target language alphabet (yi)
• context alphabets (yi-2, yi-1, yi+1, yi+2) sur-

rounding target language alphabet (yi)
This context information is used to train the
model using memory based learning. The trained
transliteration model then predicts a valid target
language word (label sequence) for new source
language word (observation sequence). Thus the
transliteration problem in this context becomes a
multi-class classification problem.

2.1 Challenges in English-Tamil Translite-
ration

Following are the challenges in English to Tamil
transliteration:

• Complexity arises while transliterating
vowels in English, since these vowels
may correspond to long vowels or short
vowels in Tamil. For example, the name
“Rama” in English can have Tamil trans-
literations as both ராமா (rAmA) and

ரமா (ramA).
• Some consonants like ‘r’, ‘l’, and ‘n’,

has multiple transliterations in Tamil,
namely - ‘r’ (ர, ற), ‘l’ (ல , ள , ழ) , ‘n’

(ண, ன , ந).
• Consonants like‘d’ ‘t’ may sound in Ta-

mil as ‘த’ and ‘ட’. For example in “Na-

darajan” – ‘da’ is transliterated as ‘ட’ and
in “Dasarathan” – da is transliterated as
‘த’ .

We have designed our transliteration system by
taking these factors into account.

3 Memory-based learning

Memory-based learning is a form of supervised
learning based on similarity-based reasoning.
Examples are represented as a vector of feature
values with an associated class label. During
training, a set of examples (the training set) is
presented in an incremental fashion to the clas-
sifier, and added to memory. During testing, a set
of previously unseen feature-value patterns (the
test set) is presented to the system. For each test
pattern, its distance to all examples in memory is
computed, and the class label of the least distant
instance(s) is used as the predicted class label for
the test pattern. Performance of a memory-based
system is measured as classification accuracy on
the test set. It depends on the distance metric (or
similarity metric) used. The most straightforward
distance metric is

),(),(
1

ii

n

i
i yxdYX ∑

=

=Δ

where X and Y are the patterns to be compared,
and di(xi , yi) is the distance between the values
of the i-th feature in a pattern with n features.
Distance between two values is measured using

an overlap metric, for symbolic features as di (xi,
yi) = 0 if xi = yi else di (xi , yi) = 1

If the pattern is ambiguous, the distribution of
pattern over the different labels is kept, and the
most frequently occurring label is selected.
When this distance metric is used, all features
describing an example are interpreted as being
equally important in solving the classification
problem. During transliteration, the source lan-
guage word/alphabet to be assigned a label (tar-
get language alphabet) is obviously more rele-
vant than any of the source language alphabets in
its context. Therefore a weight is associated to
each feature. Here the information gain, a num-
ber expressing the average amount of reduction
of training set information entropy is used as
weights and the distance measure is

),()(),(
1

ii

n

i
ii yxdfGYX ∑

=

=Δ

This is referred as IB1-IG algorithm.

3.1 Memory-based learning using IGTree

In typical NLP learning tasks where the focus is
on discrete data, large number of examples and
many attributes of differing relevance, the classi-
fication speed is a critical issue. Memory-based
learning is an expensive algorithm in terms of
memory and retrieval speed since for each test
case, all feature values must be compared to the
corresponding feature values of all training in-
stances. Without optimization, it has an asymp-
totic retrieval complexity of O(NF),where N is
the number of items in memory, and F the num-
ber of features. These constraints demand non
trivial data structures and speedup optimization
for the core k-NN classifier. This resulted in
IGTree decision tree. IGTree (Walter Daele-
mans, Jakub Zavrel, 1996) compresses the typi-
cal flat file organization found in k-NN imple-
mentations into a decision tree structure. IGTree
combines two algorithms: one for compressing a
case base into a tree, and one for retrieving clas-
sification information from these trees.

During the construction of IGTree decision
trees, cases (instances) are stored as paths of
connected nodes. All nodes contain a test and a
class label. Nodes are connected via arcs denot-
ing the outcomes for the test. Information gain is
used to determine the order in which features are
used as tests in the tree. The tree is constructed
such a way that the maximal depth of the tree is
equal to the number of features. At each level of
the tree, all nodes have the same test feature. The
reasoning behind this compression is due to the

fact that the computation of feature relevance
points to one feature is the most important in
classification. Search can be restricted to match-
ing a test case to those stored cases that have the
same feature value at that feature. Besides re-
stricting search to those memory cases that
match only on this feature, the case memory can
be optimized by further restricting search to the
second most important feature, followed by the
third most important feature, etc. A considerable
compression is obtained as similar cases share
partial paths.

The tree is compressed even more by restrict-
ing the paths to those input feature values that
disambiguate the classification from all other
cases in the training set. The feature values that
do not contribute to the disambiguation of the
case classification are not stored in the tree. Fi-
nally, the leaf nodes contain the unique class la-
bel corresponding to a path in the tree. Given the
path, non-terminal nodes contain information
about the most probable or default classification.
A final compression is obtained by pruning the
derived tree.

The classification of a new instance involves
traversing the tree by matching all feature values
of the test case with arcs in the order of the over-
all feature information gain. In case of a match,
the leaf node at the end of the traversal provides
the class label. If no match is found, the last
matching non terminal node provides the default
class label.

4 Transliteration using Memory-based
learning

The transliteration model based on Memory-
based learning builds three data structures, a lex-
icon, a case base for known source language al-
phabets and a case base for unknown alphabets.
These are automatically extracted from the given
aligned corpus. Case bases are indexed using
IGTree.

Lexicon: A lexicon is built by computing the
number of times each source language alphabet
occurs with each class label. The lexicon is re-
ferred during prediction of target language al-
phabets for a given source language alphabet.
Depending on whether or not they can be found
in the lexicon, a case representation is con-
structed for the source language alphabets and
they are retrieved either from known case base or
the unknown case base.

Case base (known): A windowing approach is
used to represent the transliteration task as a

classification problem. For each alphabet, the
context information is stored in the case base. A
case consists of information about the focus
source and target language alphabets, and their
left and right contexts.

Case base (unknown): If a source language al-
phabet is not present in the lexicon, its ambi-
guous target language alphabet cannot be re-
trieved. In such case, a class label can be guessed
only on the basis of the form or the context of the
alphabet.

During transliteration, each alphabet in the
novel source language word is looked up in the
lexicon. If it is found, its lexical representation is
retrieved and its context is determined. The re-
sulting pattern is looked up in the known alpha-
bet case base. If a source language alphabet is
not present in the lexicon, its lexical representa-
tion is computed on the basis of its form, its con-
text is determined, and the resulting pattern is
looked up in the unknown alphabet case base. In
each case, output is a best guess of the target
language alphabet (class label) for the source
language alphabet in its current context.

The transliteration process consists of three

phases: preprocessing phase, training phase using
MBT 1 and transliteration phase. The names in
source language and target language are aligned
and converted into the format required by MBT
during preprocessing stage. MBT is a memory-
based tagger-generator and tagger. It is used for
training and transliteration.

1 http://ilk.uvt.nl/mbt/

4.1 Preprocessing Phase

During the preprocessing phase, the source lan-
guage names are segmented and aligned with the
corresponding segmented target language names.
We have created a parallel corpus consisting of
30,000 Indian person names and 30,000 Indian
place names. This corpus is used in training the
model. Preprocessing involves the following
steps:

1. Romanization: Tamil names are roma-
nized using mapping rules and English
names are converted into lower case.

English Tamil Romanized Ta-

mil
shiva ஷிவா shivA

Priya பிாியா Piriya

karthik கார்த்திக் kArTTik

n e h r u </s>
w E ^ r u </s>

ெகௗாி Kauri

2. Segmentation: English Names are seg-

mented based on vowels, consonents, di-
graphs and trigraphs like sh, bh, ksh, th,
ch, ng, nj etc. Similarly romanized Tamil
names are segmented based on vowels,
consonents digraphs and trigraphs like
sh, TT, kk, ss, pp, ngk, njs etc. into trans-
literation units.

English Romanized Tamil
sh i v a sh i v A
p r i y a p i r i y a
k a r th i k

k A r TT i k

n e h r u

w E ^ r u

3. Alignment: The corresponding translite-

ration units in English and Tamil words
are aligned if the number of units in both
English and Tamil words are equal. For
example:
 sh i v a (4 units)
 sh i v A (4 units)

A mismatch in the number of transli-
teration units in English and Tamil will
result in misalignment. This is resolved
by combining two or three adjacent
transliteration units at the required posi-
tion in Tamil names or by inserting emp-

Alignment

MBT

Transliteration
System

Aligned Corpus

Trained Model

Words in
Source language

Transliterated
words in
Target language

Parallel Corpus

ty symbol ε or ^ using rules without los-
ing their phonetic structure. For exam-
ple:

 p r i y a (5 units)
 p i r i y a (6 units)

is aligned as

 p | r | i | y | a (5 units)
 pi | r | i | y | a (5 units)

Similar alignment is to be done for plo-
sives க, ச, ட, த, ப, ற.
An example of using the empty symbol
for resolving misalignment is:

 n e h r u (5 units)
 n e r u (4 units)

 is aligned as
 n | e | h | r | u (5 units)

 n | e | ^ | r | u (5 units)

Thus in our model, we consider English
unigrams, n-grams, empty alphabet, Tamil
roman characters and Tamil n-grams. Here
the target language n-grams are considered
as labels in sequence labeling and multi
classification.

4.2 Training Phase

The aligned source language (English) and target
language (Tamil) names are given as input se-
quence and label sequence respectively for train-
ing in the format as required by MBT. The con-
text information required for training is defined
with a window size of 5. The core alphabet is in
the third position. A lexicon and two case bases
are built by MBT in the training phase. MBT
uses two algorithms for Memory based learning.
The IGTree algorithm is used for known case
base and IB1-IG algorithm is used for the un-
known case base. The trained model is used for
transliterating English words into Tamil words.

4.3 Transliteration Phase

The list of English words which need to be trans-
literated are segmented and converted into the
MBT Tool format and transliterated using the
trained model. MBT uses IB1-IG and IGTree
decision tree for predicting class labels for each
alphabet in English word and the sequence of
predicted class labels form a transliterated Tamil
word.

5 Results

Our model produced the exact Tamil translitera-
tion for English words with an accuracy of
84.16%. We attribute the misclassifications to
the delicate characteristics of the Tamil language
while transliterating vowels and the consonants
‘r’,’l’,’n’,’d’,’t’ as discussed earlier. We then
made several possible transliterations based on
the output present in the ambiguity file for the
vowels and the above mentioned consonants.
The accuracy is increased when the number of
possible transliterations is increased. The transli-
teration accuracy of our model is shown in Table
1.

Output Accuracy
Top 1 84.16%
Top 2 85.96%
Top 3 88.07%
Top 4 90.05%
Top 5 93.33%

Table. 1: Transliteration Accuracy

6 Conclusion

We have demonstrated a transliteration model for
English to Tamil transliteration using Memory
based learning by reformulating the translitera-
tion problem as sequence labeling and multi
classification. We have prepared a parallel cor-
pus of 30,000 person names and 30,000 thousand
place names and used it to train our translitera-
tion model. We also tested the accuracy of our
model with 1000 English names that were out of
corpus. Our model produces an exact translitera-
tion in Tamil from English words with an accu-
racy of 84.16%. The accuracy can be increased
by generating possible transliterations using the
ambiguity file.

References
Al-Onaizan Y, Knight K, 2002. Machine translations

of names in Arabic Text Proceedings of the ACL
conference workshop on computational approaches
to Semitic languages.

Arababi Mansur, Scott M. Fischthal, Vincent C.
Cheng, and Elizabeth bar. 1994. Algorithms for
Arabic name transliteration. IBM Journal of Re-
search and Development.

Collins M, 2002, Discriminative Training for Hidden
Markov Models: theory and Experiments with per-
ceptron algorithms, In proceedings of EMNLP

Dmitry Zelenko, Chinatsu Aone, 2006, Discrimina-
tive methods for Transliteration, Proceedings of
the 2006 Conference on Empirical Methods in
Natural Language Processing(EMNLP2006), pag-
es612–617

Knight Kevin and Graehl Jonathan, 1997, Machine
transliteration. In proceedings of the 35th Annual
Meeting of the Association for Computational Lin-
guistics, pp 128-135

Punyakonak V, Roth D, 2001, The use of Classifiers
in Sequential Inference, Proceedings of the Confe-
rence on Advances in Neural Information
Processing Systems.

Surya Ganesh, Sree Harsha, Prasad Pingali, Vasudeva
Varma, 2008, Statistical transliteration for Cross
Langauge Information Retrieval using HMM
alignment and CRF, The Second International
Workshop on Cross Lingual Information Access-
Addressing the Informaion Need of Multilingual
Socoeties.

Sathiya Keerthi S, Sundararajan S, 2007, CRF versus
SVM-Struct for Sequence Labeling, Yahoo Re-
search technical report.

Taskar B, Lacoste-Julien S, and Klein D. 2005, A
Discriminative Matching Approach to Word
Alignment. Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.

Walter Daelemans, Jakub Zavrel, 1996, MBT: A
Memory-Based Part of Speech Tagger-Generator,
proceedings of WVLC

Zhang Min, LI Haizhou SU Jian, Direct Orthographi-
cal Mapping for Machine Transliteration, 2004,
Proceedings of the 20th international conference on
Computational Linguistics.

