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Abstract 

We begin by exploring theoretical and 
practical issues with phrasal SMT, several 
of which are addressed by syntax-based 
SMT. Next, to address problems not 
handled by syntax, we propose the 
concept of a Minimal Translation Unit 
(MTU) and develop MTU sequence 
models. Finally we incorporate these 
models into a syntax-based SMT system 
and demonstrate that it improves on the 
state of the art translation quality within a 
theoretically more desirable framework. 

1. Introduction 

The last several years have seen phrasal statistical 
machine translation (SMT) systems outperform 
word-based approaches by a wide margin (Koehn 
2003). Unfortunately the use of phrases in SMT is 
beset by a number of difficult theoretical and 
practical problems, which we attempt to 
characterize below. Recent research into syntax-
based SMT (Quirk and Menezes 2005; Chiang 
2005) has produced promising results in 
addressing some of the problems; research 
motivated by other statistical models has helped 
to address others (Banchs et al. 2005). We refine 
and unify two threads of research in an attempt to 
address all of these problems simultaneously. 
Such an approach proves both theoretically more 
desirable and empirically superior. 

In brief, Phrasal SMT systems employ phrase 
pairs automatically extracted from parallel 
corpora. To translate, a source sentence is first 
partitioned into a sequence of phrases I = s1…sI. 
Each source phrase si is then translated into a 
target phrase ti. Finally the target phrases are 
permuted, and the translation is read off in order. 

Beam search is used to approximate the optimal 
translation. We refer the reader to Keohn et al. 
(2003) for a detailed description. Unless 
otherwise noted, the following discussion is 
generally applicable to Alignment Template 
systems (Och and Ney 2004) as well. 

1.1. Advantages of phrasal SMT 

Non-compositionality 
Phrases capture the translations of idiomatic and 
other non-compositional fixed phrases as a unit, 
side-stepping the need to awkwardly reconstruct 
them word by word. While many words can be 
translated into a single target word, common 
everyday phrases such as the English password 
translating as the French mot de passe cannot be 
easily subdivided. Allowing such translations to 
be first class entities simplifies translation 
implementation and improves translation quality. 

Local re-ordering 
Phrases provide memorized re-ordering decisions. 
As previously noted, translation can be 
conceptually divided into two steps: first, finding 
a set of phrase pairs that simultaneously covers 
the source side and provides a bag of translated 
target phrases; and second, picking an order for 
those target phrases. Since phrase pairs consist of 
memorized substrings of the training data, they 
are very likely to produce correct local re-
orderings. 

Contextual information 
Many phrasal translations may be easily 
subdivided into word-for-word translation, for 
instance the English phrase the cabbage may be 
translated word-for-word as le chou. However we 
note that la is also a perfectly reasonable word-
for-word translation of the, yet la chou is not a 
grammatical French string. Even when a phrase 
appears compositional, the incorporation of 
contextual information often improves translation 
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quality. Phrases are a straightforward means of 
capturing local context.  

1.2. Theoretical problems with phrasal SMT 

Exact substring match; no discontiguity 
Large fixed phrase pairs are effective when an 
exact match can be found, but are useless 
otherwise. The alignment template approach 
(where phrases are modeled in terms of word 
classes instead of specific words) provides a 
solution at the expense of truly fixed phrases. 
Neither phrasal SMT nor alignment templates 
allow discontiguous translation pairs. 

Global re-ordering 
Phrases do capture local reordering, but provide 
no global re-ordering strategy, and the number of 
possible orderings to be considered is not 
lessened significantly. Given a sentence of n 
words, if the average target phrase length is 4 
words (which is unusually high), then the re-
ordering space is reduced from n! to only (n/4)!: 
still impractical for exact search in most 
sentences. Systems must therefore impose some 
limits on phrasal reordering, often hard limits 
based on distance as in Koehn et al. (2003) or 
some linguistically motivated constraint, such as 
ITG (Zens and Ney, 2004). Since these phrases 
are not bound by or even related to syntactic 
constituents, linguistic generalizations (such as 
SVO becoming SOV, or prepositions becoming 
postpositions) are not easily incorporated into the 
movement models. 

Probability estimation 
To estimate the translation probability of a phrase 
pair, several approaches are used, often 
concurrently as features in a log-linear model. 
Conditional probabilities can be estimated by 
maximum likelihood estimation. Yet the phrases 
most likely to contribute important translational 
and ordering information—the longest ones—are 
the ones most subject to sparse data issues. 

Alternately, conditional phrasal models can be 
constructed from word translation probabilities; 
this approach is often called lexical weighting 
(Vogel et al. 2003). This avoids sparse data 
issues, but tends to prefer literal translations 
where the word-for-word probabilities are high 
Furthermore most approaches model phrases as 
bags of words, and fail to distinguish between 
local re-ordering possibilities. 

Partitioning limitation 
A phrasal approach partitions the sentence into 
strings of words, making several questionable 
assumptions along the way. First, the probability 
of the partitioning is never considered. Long 
phrases tend to be rare and therefore have sharp 
probability distributions. This adds an inherent 
bias toward long phrases with questionable MLE 
probabilities (e.g. 1/1 or 2/2). 1 

Second, the translation probability of each 
phrase pair is modeled independently. Such an 
approach fails to model any phenomena that reach 
across boundaries; only the target language model 
and perhaps whole-sentence bag of words models 
cross phrase boundaries. This is especially 
important when translating into languages with 
agreement phenomena. Often a single phrase does 
not cover all agreeing modifiers of a headword; 
the uncovered modifiers are biased toward the 
most common variant rather than the one agreeing 
with its head. Ideally a system would consider 
overlapping phrases rather than a single 
partitioning, but this poses a problem for 
generative models: when words are generated 
multiple times by different phrases, they are 
effectively penalized. 

1.3. Practical problem with phrases: size 

In addition to the theoretical problems with 
phrases, there are also practical issues. While 
phrasal systems achieve diminishing returns due 

                                                           
1 The Alignment Template approach differs slightly here. 
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Note that these counts could differ significantly. Picture a 
source phrase that almost always translates into a 
discontiguous phrase (e.g. English not becoming French ne 
… pas), except for the rare occasion where, due to an 
alignment error or odd training data, it translates into a 
contiguous phrase (e.g. French ne parle pas). Then the first 
probability formulation of ne parle pas given not would be 
unreasonably high. However, this is a partial fix since it 
again suffers from data sparsity problems, especially on 
longer templates where systems hope to achieve the best 
benefits from phrases. 
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to sparse data, one does see a small incremental 
benefit with increasing phrase lengths. Given that 
storing all of these phrases leads to very large 
phrase tables, many research systems simply limit 
the phrases gathered to those that could possibly 
influence some test set. However, this is not 
feasible for true production MT systems, since the 
data to be translated is unknown. 

2. Previous work 

2.1. Delayed phrase construction 

To avoid the major practical problem of phrasal 
SMT—namely large phrase tables, most of which 
are not useful to any one sentence—one can 
instead construct phrase tables on the fly using an 
indexed form of the training data (Zhang and 
Vogel 2005; Callison-Burch et al. 2005). 
However, this does not relieve any of the 
theoretical problems with phrase-based SMT. 

2.2. Syntax-based SMT 

Two recent systems have attempted to address the 
contiguity limitation and global re-ordering 
problem using syntax-based approaches. 

Hierarchical phrases 
Recent work in the use of hierarchical phrases 
(Chiang 2005) improves the ability to capture 
linguistic generalizations, and also removes the 
limitation to contiguous phrases. Hierarchical 
phrases differ from standard phrases in one 
important way: in addition to lexical items, a 
phrase pair may contain indexed placeholders, 
where each index must occur exactly once on 
each side. Such a formulation leads to a formally 
syntax-based translation approach, where 
translation is viewed as a parallel parsing problem 
over a grammar with one non-terminal symbol. 
This approach significantly outperforms a phrasal 
SMT baseline in controlled experimentation. 

Hierarchical phrases do address the need for 
non-contiguous phrases and suggest a powerful 
ordering story in the absence of linguistic 
information, although this reordering information 
is bound in a deeply lexicalized form. Yet they do 
not address the phrase probability estimation 
problem; nor do they provide a means of 
modeling phenomena across phrase boundaries. 
The practical problems with phrase-based 
translation systems are further exacerbated, since 

the number of translation rules with up to two 
non-adjacent non-terminals in a 1-1 monotone 
sentence pair of n source and target words is 
O(n6), as compared to O(n2) phrases. 

Treelet Translation 
Another means of extending phrase-based 
translation is to incorporate source language 
syntactic information. In Quirk and Menezes 
(2005) we presented an approach to phrasal SMT 
based on a parsed dependency tree representation 
of the source language. We use a source 
dependency parser and project a target 
dependency tree using a word-based alignment, 
after which we extract tree-based phrases 
(‘treelets’) and train a tree-based ordering model. 
We showed that using treelets and a tree-based 
ordering model results in significantly better 
translations than a leading phrase-based system 
(Pharaoh, Koehn 2004), keeping all other models 
identical. 

Like the hierarchical phrase approach, treelet 
translation succeeds in improving the global re-
ordering search and allowing discontiguous 
phrases, but does not solve the partitioning or 
estimation problems. While we found our treelet 
system more resistant to degradation at smaller 
phrase sizes than the phrase-based system, it 
nevertheless suffered significantly at very small 
phrase sizes. Thus it is also subject to practical 
problems of size, and again these problems are 
exacerbated since there are potentially an 
exponential number of treelets. 

2.3. Bilingual n-gram channel models 

To address on the problems of estimation and 
partitioning, one recent approach transforms 
channel modeling into a standard sequence 
modeling problem (Banchs et al. 2005). Consider 
the following aligned sentence pair in Figure 1a. 
In such a well-behaved example, it is natural to 
consider the problem in terms of sequence 
models. Picture a generative process that 
produces a sentence pair in left to right, emitting a 
pair of words in lock step. Let M = ‹ m1, …, mn › 
be a sequence of word pairs mi = ‹ s, t ›. Then one 
can generatively model the probability of an 
aligned sentence pair using techniques from n-
gram language modeling: 
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 When an alignment is one-to-one and 
monotone, this definition is sufficient. However 
alignments are seldom purely one-to-one and 
monotone in practice; Figure 1b displays common 
behavior such as one-to-many alignments, 
inserted words, and non-monotone translation. To 
address these problems, Banchs et al. (2005) 
suggest defining tuples such that: 

(1) the tuple sequence is monotone, 
(2) there are no word alignment links between 

two distinct tuples, 
(3) each tuple has a non-NULL source side, 

which may require that target words 
aligned to NULL are joined with their 
following word, and 

(4) no smaller tuples can be extracted without 
violating these constraints. 

Note that M is now a sequence of phrase pairs 
instead of word pairs. With this adjusted 
definition, even Figure 1b can be generated using 
the same process using the following tuples: 

m1 = ‹ the, l’ › 
m2 = ‹ following example, exemple suivant › 
m3 = ‹ renames, change le nom › 
m4 = ‹ the, de la › 
m5 = ‹ table, table › 

There are several advantages to such an 
approach. First, it largely avoids the partitioning 
problem; instead of segmenting into potentially 
large phrases, the sentence is segmented into 
much smaller tuples, most often pairs of single 
words. Furthermore the failure to model a 
partitioning probability is much more defensible 

when the partitions are much smaller. Secondly, 
n-gram language model probabilities provide a 
robust means of estimating phrasal translation 
probabilities in context that models interactions 
between all adjacent tuples, obviating the need for 
overlapping mappings. 

These tuple channel models still must address 
practical issues such as model size, though much 
work has been done to shrink language models 
with minimal impact to perplexity (e.g. Stolcke 
1998), which these models could immediately 
leverage. Furthermore, these models do not 
address the contiguity problem or the global 
reordering problem. 

3. Translation by MTUs 

In this paper, we address all four theoretical 
problems using a novel combination of our 
syntactically-informed treelet approach (Quirk 
and Menezes 2005) and a modified version of 
bilingual n-gram channel models (Banchs et al. 
2005). As in our previous work, we first parse the 
sentence into a dependency tree. After this initial 
parse, we use a global search to find a candidate 
that maximizes a log-linear model, where these 
candidates consist of a target word sequence 
annotated with a dependency structure, a word 
alignment, and a treelet decomposition.  

We begin by exploring minimal translation 
units and the models that concern them. 

3.1. Minimal Translation Units 

Minimal Translation Units (MTUs) are related to 
the tuples of Banchs et al. (2005), but differ in 
several important respects. First, we relieve the 
restriction that the MTU sequence be monotone. 
This prevents spurious expansion of MTUs to 
incorporate adjacent context only to satisfy 
monotonicity. In the example, note that the 
previous algorithm would extract the tuple 
‹following example, exemple suivant› even though 
the translations are mostly independent. Their 
partitioning is also context dependent: if the 
sentence did not contain the words following or 
suivant, then ‹ example, exemple › would be a 
single MTU. Secondly we drop the requirement 
that no MTU have a NULL source side. While 
some insertions can be modeled in terms of 
adjacent words, we believe more robust models 
can be obtained if we consider insertions as 

 
(a) Monotone aligned sentence pair 
 

 
(b) More common non-monotone aligned sentence pair 
 

Figure 1. Example aligned sentence pairs. 
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independent units. In the end our MTUs are 
defined quite simply as pairs of source and target 
word sets that follow the given constraints: 

(1) there are no word alignment links between 
distinct MTUs, and 

(2) no smaller MTUs can be extracted without 
violating the previous constraint. 

Since our word alignment algorithm is able to 
produce one-to-one, one-to-many, many-to-one, 
one-to-zero, and zero-to-one translations, these 
act as our basic units. As an example, let us 
consider example (1) once again. Using this new 
algorithm, the MTUs would be: 

m1 = ‹ the, l’ › 
m2 = ‹ following, suivant › 
m3 = ‹ example, exemple › 
m4 = ‹ renames, change le nom › 
m5 = ‹ NULL, de › 
m6 = ‹ the, la › 
m7 = ‹ table, table › 

A finer grained partitioning into MTUs further 
reduces the data sparsity and partitioning issues 
associated with phrases. Yet it poses issues in 
modeling translation: given a sequence of MTUs 
that does not have a monotone segmentation, how 
do we model the probability of an aligned 
translation pair? We propose several solutions, 
and use each in a log-linear combination of 
models. 

First, one may walk the MTUs in source order, 
ignoring insertion MTUs altogether. Such a 
model is completely agnostic of the target word 
order; instead of generating an aligned source 
target pair, it generates a source sentence along 
with a bag of target phrases. This approach 
expends a great deal of modeling effort in 
regenerating the source sentence, which may not 
be altogether desirable, though it does condition 
on surrounding translations. Also, it can be 
evaluated on candidates before orderings are 
considered. This latter property may be useful in 

two-stage decoding strategies where translations 
are considered before orderings. 

Secondly, one may walk the MTUs in target 
order, ignoring deletion MTUs. Where the source-
order MTU channel model expends probability 
mass generating the source sentence, this model 
expends a probability mass generating the target 
sentence and therefore may be somewhat 
redundant with the target language model. 

Finally, one may walk the MTUs in 
dependency tree order. Let us assume that in 
addition to an aligned source-target candidate 
pair, we have a dependency parse of the source 
side. Where the past models conditioned on 
surface adjacent MTUs, this model conditions on 
tree adjacent MTUs. Currently we condition only 
on the ancestor chain, where parent1(m) is the 
parent MTU of m, parent2(m) is the grandparent 
of m, and so on: 

))(|()(),,( 1
1 mparentmPMPATSP n

Mm

−

∈
∏≈=  

This model hopes to capture information 
completely distinct from the other two models, 
such as translational preferences contingent on the 
head, even in the presence of long distance 
dependencies. Note that it generates unordered 
dependency tree pairs.  

All of these models can be trained from a 
parallel corpus that has been word aligned and the 
source side dependency parsed. We walk through 
each sentence extracting MTUs in source, target, 
and tree order. Standard n-gram language 
modeling tools can be used to train MTU 
language models. 

3.2. Decoding 

We employ a dependency tree-based beam search 
decoder to search the space of translations. First 
the input is parsed into a dependency tree 

  English French English Japanese 
Training Sentences 300,000 500,000 

 Words 4,441,465 5,198,932 7,909,198 9,379,240 
 Vocabulary 63,343 59,290 79,029 95,813 
 Singletons 35,328 29,448 44,111 52,911 

Development test Sentences 200 200 
 Words 3,045 3,456 3,436 4,095 

Test Sentences 2,000 2,000 
 Words 30,010 34,725 35,556 3,855 
 OOV rate 5.5% 4.6% 6.9% 6.8% 

Table 4.1 Data characteristics 
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structure. For each input node in the dependency 
tree, an n-best list of candidates is produced. 
Candidates consist of a target dependency tree 
along with a treelet and word alignment. The 
decoder generally assumes phrasal cohesion: 
candidates covering a substring (not subsequence) 
of the input sentence produce a potential substring 
(not subsequence) of the final translation. In 
addition to allowing a DP / beam decoder, this 
allows us to evaluate string-based models (such as 
the target language model and the source and 
target order MTU n-gram models) on partial 
candidates. This decoder is unchanged from our 
previous work: the MTU n-gram models are 
simply incorporated as feature functions in the 
log-linear combination. In the experiments section 
the MTU models are referred to as model set (1). 

3.3. Other translation models 

Phrasal channel models 
We can estimate traditional channel models using 
maximum likelihood or lexical weighting: 
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We use word probability tables p(t | s) and p(s | t) 
estimated by IBM Model 1 (Brown et al. 1993). 
Such models can be built over phrases if used in a 
phrasal decoder or over treelets if used in a treelet 
decoder. These models are referred to as set (2). 

Word-based models 
A target language model using modified Kneser-
Ney smoothing captures fluency; a word count 
feature offsets the target LM preference for 
shorter selections; and a treelet/phrase count helps 
bias toward translations using fewer phrases. 
These models are referred to as set (3). 
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Syntactic models 
As in Quirk and Menezes (2005), we include a 
linguistically-informed order model that predicts 
the head-relative position of each node 
independently, and a tree-based bigram target 
language model; these models are referred to as 
set (4). 
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4. Experimental setup 

We evaluate the translation quality of the system 
using the BLEU metric (Papineni et al., 02) under 
a variety of configurations. As an additional 
baseline, we compare against a phrasal SMT 
decoder, Pharaoh (Koehn et al. 2003).  

4.1. Data 

Two language pairs were used for this 
comparison: English to French, and English to 
Japanese. The data was selected from technical 
software documentation including software 
manuals and product support articles; Table 4.1 
presents the major characteristics of this data. 

4.2. Training 

We parsed the source (English) side of the 
corpora using NLPWIN, a broad-coverage rule-
based parser able to produce syntactic analyses at 
varying levels of depth (Heidorn 2002). For the 
purposes of these experiments we used a 
dependency tree output with part-of-speech tags 
and unstemmed surface words. Word alignments 
were produced by GIZA++ (Och and Ney 2003) 
with a standard training regimen of five iterations 
of Model 1, five iterations of the HMM Model, 
and five iterations of Model 4, in both directions. 
These alignments were combined heuristically as 
described in our previous work. 

We then projected the dependency trees and 
used the aligned dependency tree pairs to extract 
treelet translation pairs, train the order model, and 
train MTU models. The target language models 
were trained using only the target side of the 
corpus. Finally we trained model weights by 
maximizing BLEU (Och 2003) and set decoder 
optimization parameters (n-best list size, timeouts 
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etc) on a development test set of 200 held-out 
sentences each with a single reference translation. 
Parameters were individually estimated for each 
distinct configuration. 

Pharaoh 
The same GIZA++ alignments as above were 
used in the Pharaoh decoder (Koehn 2004). We 
used the heuristic combination described in (Och 
and Ney 2003) and extracted phrasal translation 
pairs from this combined alignment as described 
in (Koehn et al., 2003). Aside from MTU models 
and syntactic models (Pharaoh uses its own 
ordering approach), the same models were used: 
MLE and lexical weighting channel models, 
target LM, and phrase and word count. Model 
weights were also trained following Och (2003). 

5. Results 

We begin with a broad brush comparison of 
systems in Table 5.1. Throughout this section, 
treelet and phrase sizes are measured in terms of 
MTUs, not words. By default, all systems 
(including Pharaoh) use treelets or phrases of up 
to four MTUs, and MTU bigram models. The first 
results reiterate that the introduction of 
discontiguous mappings and especially a 
linguistically motivated order model (model set 
(4)) can improve translation quality. Replacing 
the standard channel models (model set (2)) with 
MTU bigram models (model set (1)) does not 

appear to degrade quality; it even seems to boost 
quality on EF. Furthermore, the information in the 
MTU models appears somewhat orthogonal to the 
phrasal models; a combination results in 
improvements for both language pairs. 

The experiments in Table 5.2 compare quality 
using different orders of MTU n-gram models. 
(Treelets containing up to four MTUs were still 
used as the basis for decoding; only the order of 
the MTU n-gram models was adjusted.) A 
unigram model performs surprisingly well. This 
supports our intuition that atomic handling of 
non-compositional multi-word translations is a 
major contribution of phrasal SMT. Furthermore 
bigram models increase translation quality 
supporting the claim that local context is another 
contribution. Models beyond bigrams had little 
impact presumably due to sparsity and smoothing. 

Table 5.3 explores the impact of using different 
phrase/treelet sizes in decoding. We see that 
adding MTU models makes translation more 
resilient given smaller phrases. The poor 
performance at size 1 is not particularly 
surprising: both systems require insertions to be 
lexically anchored: the only decoding operation 
allowed is translation of some visible source 
phrase, and insertions have no visible trace. 

6. Conclusions 

In this paper we have teased apart the role of 

 EF EJ 
Phrasal decoder (Pharaoh) 
  Model sets (2),(3) 45.8±2.0 32.9±0.9 
Treelet decoder, without discontiguous mappings 
  Model sets (2),(3) 45.1±2.1 33.2±0.9 
  Model sets (2),(3),(4) 48.4±2.0 34.8±0.9 
Treelet decoder, with discontiguous mappings 
  Model sets (2),(3) 46.4±2.1 34.3±0.9 
  Model sets (2),(3),(4) 48.7±2.1 34.9±0.9 
  Model sets (1),(3),(4) 49.6±2.1 33.9±0.8 
  Model sets (1)-(4) 50.5±2.1 36.2±0.9 
 

Table 5.1. Broad system comparison. 

 EF EJ 
Treelet decoder, model sets (1),(3),(4) 
  MTU unigram 47.8±2.1 33.2±0.9 
  MTU bigram 49.6±2.1 33.9±0.8 
  MTU trigram 49.9±2.0 34.0±0.9 
  MTU 4-gram 49.6±2.1 34.1±0.9 
Treelet decoder, model sets (1)-(4)  
  MTU unigram 48.6±2.1 34.3±1.0 
  MTU bigram 50.5±2.1 36.2±0.9 
  MTU trigram 48.9±2.0 36.1±0.9 
  MTU 4-gram 50.4±2.0 36.2±1.0 
 

Table 5.2. Varying MTU n-gram model order. 

Table 5.3. Varying phrase / treelet size. 
 

 Phrasal decoder 
model sets (2),(3) 

Treelet decoder: MTU bigram 
model sets (1),(3),(4) 

Treelet decoder: MTU bigram 
model sets (1)-(4) 

Size EF EJ EF EJ EF EJ 
1 32.6±1.8 20.5±0.7 26.3±1.3 15.4±0.7 29.8±1.4 16.7±0.7 
2 40.4±1.9 29.7±0.7 48.7±2.1 32.4±0.9 47.7±2.1 33.8±0.8 
3 44.3±2.1 30.7±0.9 48.5±2.0 34.6±0.9 48.5±2.0 35.1±0.9 
4 45.8±2.0 32.9±0.9 49.6±2.1 33.9±0.8 50.5±2.1 36.2±0.9 
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phrases and handled each contribution via a 
distinct model best suited to the task. Non-
compositional translations stay as MTU phrases. 
Context and robust estimation is provided by 
MTU-based n-gram models. Local and global 
ordering is handled by a tree-based model. 

The first interesting result is that at normal 
phrase sizes, augmenting an SMT system with 
MTU n-gram models improves quality; whereas 
replacing the standard phrasal channel models by 
the more theoretically sound MTU n-gram 
channel models leads to very similar 
performance. 

Even more interesting are the results on smaller 
phrases. A system using very small phrases (size 
2) and MTU bigram models matches (English-
French) or at least approaches (English-Japanese) 
the performance of the baseline system using 
large phrases (size 4). While this work does not 
yet obviate the need for phrases, we consider it a 
promising step in that direction. 

An immediate practical benefit is that it allows 
systems to use much smaller phrases (and hence 
smaller phrase tables) with little or no loss in 
quality. This result is particularly important for 
syntax-based systems, or any system that allows 
discontiguous phrases. Given a fixed length limit, 
the number of surface phrases extracted from any 
sentence pair of length n where all words are 
uniquely aligned is O(n), but the number of 
treelets is potentially exponential in the number of 
children; and the number of rules with two gaps 
extracted by Chiang (2005) is potentially O(n3). 
Our results using MTUs suggest that such 
systems can avoid unwieldy, poorly estimated 
long phrases and instead anchor decoding on 
shorter, more tractable knowledge units such as 
MTUs, incorporating channel model information 
and contextual knowledge with an MTU n-gram 
model. 

Much future work does remain. From 
inspecting the model weights of the best systems, 
we note that only the source order MTU n-gram 
model has a major contribution to the overall 
score of a given candidate. This suggests that the 
three distinct models, despite their different walk 
orders, are somewhat redundant. We plan to 
consider other approaches for conditioning on 
context. Furthermore phrasal channel models, in 
spite of the laundry list of problems presented 
here, have a significant impact on translation 

quality. We hope to replace them with effective 
models without the brittleness and sparsity issues 
of heavy lexicalization. 
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