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ABSTRACT 

In this paper, we describe the IBM MASTOR, a speech-to-speech 
translation system that can translate spontaneous free-form 
speech in real-time on both laptop and hand-held PDAs. Chal-
lenges include speech recognition and machine translation in 
adverse environments, lack of training data and linguistic re-
sources for under-studied languages, and the need to rapidly de-
velop capabilities for new languages. Another challenge is de-
signing algorithms and building models in a scalable manner to 
perform well even on memory and CPU deficient hand-held com-
puters. We describe our approaches, experience, and success in 
building working free-form S2S systems that can handle two 
language pairs (including a low-resource language). 

 

1. INTRODUCTION 

Automatic speech-to-speech (S2S) translation breaks down com-
munication barriers between people who do not share a common 
language and hence enable instant oral cross-lingual communica-
tion for many critical applications such as emergency medical 
care. The development of an accurate, efficient and robust S2S 
translation system poses a lot of challenges. This is especially 
true for colloquial speech and resource deficient languages. 

The IBM MASTOR speech-to-speech translation system has been 
developed for the DARPA CAST and Transtac programs whose 
mission is to develop technologies that enable rapid deployment 
of real-time S2S translation of low-resource languages on port-
able devices. It originated from the IBM MARS S2S system 
handling the air travel reservation domain described in [1], which 
was later significantly improved in all components, including 
ASR, MT and TTS, and later evolved into the MASTOR multi-
lingual S2S system that covers much broader domains such as 
medical treatment and force protection [2,3]. More recently, we 
have further broadened our experience and efforts to very rapidly 
develop systems for under-studied languages, such as regional 
dialects of Arabic. The intent of this program is to provide lan-
guage support to military, medical and humanitarian personnel 
during operations in foreign territories, by deciphering possibly 
critical language communications with a two-way real-time 
speech-to-speech translation system designed for specific tasks 
such as medical triage and force protection.  

The initial data collection effort for the project has shown that the 
domain of force protection and medical triage is, though limited, 
rather broad. In fact, the definition of domain coverage is tough 
when the speech from responding foreign language speakers are 
concerned, as their responses are less constrained and may in-
clude out-of-domain words and concepts. Moreover, flexible 
casual or colloquial speaking style inevitably appears in the hu-
man-to-human conversational communications. Therefore, the 
project is a great challenge that calls for major research efforts. 

Among all the challenges for speech recognition and translation 
for under-studied languages, there are two main issues: 1) Lack of 
appropriate amount of speech data that represent the domain of 
interest and the oral language spoken by the target speakers, re-
sulting in difficulties in accurate estimation of statistical models 
for speech recognition and translation. 2) Lack of linguistic 
knowledge realization in spelling standards, transcriptions, lexi-
cons and dictionaries, or annotated corpora. Therefore, various 
different approaches have to be explored.  

Another critical challenge is to embed complicated algorithms 
and programs into small devices for mobile users. A hand-held 
computing device may have a CPU of 256MHz and 64MB mem-
ory; to fit the programs, as well as the models and data files into 
this memory and operate the system in real-time are tremendous 
challenges [4]. 

In this paper, we will describe the overall framework of the 
MASTOR system and our approaches for each major component, 
i.e., speech recognition and translation. Various statistical ap-
proaches [5,6,7,8] are explored and used to solve different techni-
cal challenges. We will show how we addressed the challenges 
that arise when building automatic speech recognition (ASR) and 
machine translation (MT) for colloquial Arabic on both the laptop 
and handheld PDA platforms. 

 

2. SYSTEM OVERVIEW 

The general framework of our speech translation system is illus-
trated in Figure 1. The general framework of our MASTOR sys-
tem has components of ASR, MT and TTS. The cascaded ap-
proach allows us to deploy the power of the existing advanced 
speech and language processing techniques, while concentrating 
on the unique problems in speech-to-speech translation. Figure 2 
illustrates the MASTOR GUI (Graphic User Interface) on laptop 
and PDA, respectively. 

Acoustic models for English and Mandarin baseline are devel-
oped for large-vocabulary continuous speech and trained on over 
200 hours of speech collected from about 2000 speakers for each 
language. However, the Arabic dialect speech recognizer was 
only trained using about 50 hours of dialectal speech.  The train-
ing data for Arabic consists of about 200K short utterances. Large 
efforts were invested in initial cleaning and normalization of the 
training data because of large number of irregular dialectal words 
and variations in spellings. We experimented with three ap-
proaches for pronunciation and acoustic modeling: i.e. grapheme, 
phonetic, and context-sensitive grapheme as will be described in 

ASR TTS 

Statistical NLU/NLG 
based MT 

Figure 1 IBM MASTOR Speech-to-Speech Translation System 

Statistical MT using 
WFST/SIPL  
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section 3.A. We found that using context-sensitive pronunciation 
rules reduces the WER of the grapheme based acoustic model by 
about 3% (from 36.7% to 35.8%). Based on these results, we 
decided to use context-sensitive grapheme models in our system.  

The Arabic language model (LM) is an interpolated model con-
sisting of a trigram LM, a class-based LM and a morphologically 
processed LM, all trained from a corpus of a few hundred thou-
sand words. We also built a compact language model for the 
hand-held system, where singletons are eliminated and bigram 
and trigram counts are pruned with increased thresholds. The LM 
footprint size is 10MB. 

There are two approaches for translation. The concept based ap-
proach uses natural language understanding (NLU) and natural 
language generation models trained from an annotated corpus. 
Another approach is the phrase-based finite state transducer 
which is trained using an un-annotated parallel corpus. 

A trainable, phrase-splicing and variable substitution TTS system 
is adopted to synthesize speech from translated sentences, which 
has a special ability to generate speech of mixed languages seam-
lessly [9]. In addition, a small footprint TTS is developed for the 
handheld devices using embedded concatenative TTS technolo-
gies.[10] 

Next, we will describe our approaches in automatic speech recog-
nition and machine translation in greater detail. 

 

3. AUTOMATIC SPEECH RECOGNITION 

A. Acoustic Models 
Acoustic models and the pronunciation dictionary greatly influ-
ence the ASR performance. In particular, creating an accurate 
pronunciation dictionary poses a major challenge when changing 
the language. Deriving pronunciations for resource rich languages 
like English or Mandarin is relatively straight forward using ex-
isting dictionaries or letter to sound models. In certain languages 
such as Arabic and Hebrew, the written form does not typically 
contain short vowels which a native speaker can infer from con-
text. Deriving automatic phonetic transcription for speech corpora 
is thus difficult. This problem is even more apparent when con-
sidering colloquial Arabic, mainly due to the large number of 
irregular dialectal words. 

One approach to overcome the absence of short vowels is to use 
grapheme based acoustic models. This leads to straightforward 
construction of pronunciation lexicons and hence facilitates 
model training and decoding. However, the same grapheme may 
lead to different phonetic sounds depending on its context. This 
results in less accurate acoustic models. For this reason we ex-
perimented with two other different approaches. The first is a full 
phonetic approach which uses short vowels, and the second uses 
context-sensitive graphemes for the letter "A" (Alif) where two 
different phonemes are used for "A" depending on its position in 
the word. 

Using phoneme based pronunciations would require vowelization 
of every word. To perform vowelization, we used a mix of dic-
tionary search and a statistical approach. The word is first 
searched in an existing vowelized dictionary, and if not found it is 
passed to the statistical vowelizer [11].  Due to the difficulties in 
accurately vowelizing dialectal words, our experiments have not 
shown any improvements using phoneme based ASR compared 
to grapheme based.  

Speech recognition for both the laptop and hand-held systems is 
based on the IBM ViaVoice engine. This highly robust and effi-
cient framework uses rank based acoustic scores [12] which are 
derived from tree-clustered context dependent Gaussian models. 
These acoustic scores together with n-gram LM probabilities are 
incorporated into a stack based search algorithm to yield the most 
probable word sequence given the input speech. 

The English acoustic models use an alphabet of 52 phones. Each 
phone is modeled with a 3-state left-to-right hidden Markov 
model (HMM). The system has approximately 3,500 context-
dependent states modeled using 42K Gaussian distributions and 
trained using 40 dimensional features. The context-dependent 
states are generated using a decision-tree classifier. The collo-
quial Arabic acoustic models use about 30 phones that essentially 
correspond to graphemes in the Arabic alphabet. The colloquial 
Arabic HMM structure is the same as that of the English model. 
The Arabic acoustic models are also built using 40 dimensional 
features. The compact model for the PDA has about 2K leaves 
and 28K Gaussian distributions.  The laptop version has over 3K 
leaves and 60K Gaussians. All acoustic models are trained using 
discriminative training [13]. 

B. Language Modeling   
Language modeling (LM) of the probability of various word se-
quences is crucial for high-performance ASR of free-style open-

 
   

 
 
Figure 2  IBM MASTOR system in Windows XP and Win-
dows CE 
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ended coversational systems. Our approaches to build statistical 
tri-gram LMs fall into three categories: 1) obtaining additional 
training material automatically; 2) interpolating domain-specific 
LMs with other LMs; 3) improving distribution estimation ro-
bustness and accuracy with limited in-domain resources. Auto-
matic data collection and expansion is the most straight-forward 
way to achieve efficient LM, especially when little in-domain 
data is available. For resource-rich languages such as English and 
Chinese, we retrieve additional data from the World Wide Web 
(WWW) to enhance our limited domain specific data, which 
shows significant improvement [6]. 

In Arabic, words can take prefixes and suffixes to generate new 
words which are semantically related to the root form of the word 
(stem). As a result, the vocabulary size in Arabic can become 
very large even for specific domains. To alleviate this problem, 
we built a language model on morphologically tokenized data by 
applying morphological analysis and hence splitting some of the 
words into prefix+stem+suffix, prefix+stem or stem+suffix forms. 
We refer the reader to [14] to learn more about the morphological 
tokenization algorithm. Morphological analysis reduced the vo-
cabulary size by about 30% without sacrificing the coverage. 

More specifically, in our MASTOR system, the English language 
model has two components that are linearly interpolated. The first 
one is built using in-domain data. The second component acts as a 
background model and is built using a very large generic text 
inventory that is domain independent. The language model counts 
are also pruned to control the size of this background model. The 
colloquial Arabic language model for our laptop system is com-
posed of three components that are linearly interpolated. The first 
one is the basic word tri-gram model. The second one is a class 
based language model with 13 classes that covers names for Eng-
lish and Arabic, numbers, months, days, etc. The third one is the 
morphological language model described above. 

4. SPEECH TRANSLATION 
A. NLU/NLG-based Speech Translation 

One of the translation algorithms we proposed and applied in 
MASTOR is the statistical translation method based on natural 
language understanding (NLU) and natural language generation 
(NLG). Statistical machine translation methods translate a sen-
tence W in the source language into a sentence A in the target 
language by using a statistical model that estimates the probabil-
ity of A given W, i.e. ( )WAp . Conventionally, ( )WAp  is opti-

mized on a set of pairs of sentences that are translations of one 
another. To alleviate this data sparseness problem and, hence, 
enhance both the accuracy and robustness of estimating ( )WAp , 

we proposed a statistical concept-based machine translation para-
digm that predicts A with not only W but also the underlying con-
cepts embedded in W and/or A. As a result, the optimal sentence 
A is picked by first understanding the meaning of the source sen-
tence W.  

Let C denote the concepts in the source language and S denote the 
concepts in the target language, our proposed statistical concept-

based algorithm should select a word sequence Â as 

( ) ( ) ( ) ( )








== ∑ WCpWCSpWCSApWApA
CSAA

,,,maxargmaxargˆ
,

 , 

where the conditional probabilities ( )WCp , ( )WCSp ,  and 

( )WCSAp ,,  are estimated by the Natural Language Understand-

ing (NLU), Natural Concept Generation (NCG) and Natural 
Word Generation (NWG) procedures, respectively. The probabil-
ity distributions are estimated and optimized upon a pre-annotated 
bilingual corpus. In our MASTOR system, ( )WCp  is estimated 

by a decision-tree based statistical semantic parser, and 
( )WCSp ,  and ( )WCSAp ,,  are estimated by maximizing the 

conditional entropy as depicted in [2] and [7], respectively. 

We are currently developing a new translation method that unifies 
statistical phrase-based translation models and the above 
NLU/NLG based approach. We will discuss this work in future 
publications. 

 

B. Fast and Memory Efficient Machine Translation Using SIPL 
Another translation method we proposed in MASTOR is based on 
the Weighted Finite-State Transducer (WFST). In particular, we 
developed a novel phrase-based translation framework using 
WFSTs that achieves both memory efficiency and fast speed, 
which is suitable for real time speech-to-speech translation on 
scalable computational platforms. In the proposed framework [15] 
which we refer to as Statistical Integrated Phrase Lattices (SIPLs), 
we statically construct a single optimized WFST encoding the 
entire translation model. In addition, we introduce a Viterbi de-
coder that can combine the translation model and language model 
FSTs with the input lattice efficiently, resulting in translation 
speeds of up to thousands of words per second on a PC and hun-
dred words per second on a PDA device. This WFST-based ap-
proach is well-suited to devices with limited computation and 
memory. We achieve this efficiency by using methods that allow 
us to perform more composition and graph optimization offline 
(such as, the determinization of the phrase segmentation trans-
ducer P) than in previous work, and by utilizing a specialized 
decoder involving multilayer search.  

During the offline training, we separate the entire translation lat-
tice H into two pieces: the language model L and the translation 
model M: 

( )( )( )WTPDetMinMinM ��=  

where �  is the composition operator, Min  denotes the 
minimization operation, and Det  denotes the determinization 
operation; T is the phrase translation transducer, and W is the 
phrase-to-word transducer. Due to the determinizability of P, M 
can be computed offline using a moderate amount of memory. 

The translation problem can be framed as finding the best path in 
the full search lattice given an input sentence/automaton I. To 
address the problem of efficiently computing LMI �� , we have 
developed a multilayer search algorithm. 

Specifically, we have one layer for each of the input FSM's: I, L, 
and M. At each layer, the search process is performed via a state 

traversal procedure starting from the start state 0s� , and consum-

ing an input word in each step in a left-to-right manner.  
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We represent each state s in the search space using the following 

7-tuple: Is , Ms , Ls , Mc , Lc , h
�

, prevs , where Is , Ms , and 

Ls record the current state in each input FSM; Mc and Lc  record 
the accumulated cost in L and M in the best path up to this point; 
h

�

 records the target word sequence labeling the best path up to 
this point; and prevs  records the best previous state. 

To reduce the search space, two active search states are merged 

whenever they have identical Is , Ms , and Ls values; the re-
maining state components are inherited from the state with lower 
cost.  In addition, two pruning methods, histogram pruning and 
threshold or beam pruning, are used to achieve the desired bal-
ance between translation accuracy and speed. 

To provide the decoder for the PDA devices as well that lacks a 
floating-point processor, the search algorithm is implemented 
using fixed-point arithmetic. 

 
 

5. CONCLUSION 
We described the framework of the IBM MASTOR system, the 
various technologies used in building major components for lan-
guages with different levels of data resources. The technologies 
have shown successes in building real-time S2S systems on both 
laptop and small computation resource platforms for two lan-
guage pairs, English-Mandarin Chinese, and English-Arabic dia-
lect. In the latter case, we also developed approaches which lead 
to very rapid (in the matter of 3-4 months) development of sys-
tems using very limited language and domain resources. We are 
working on improving spontaneous speech recognition accuracy 
and more naturally integrating two translation approaches.  
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