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Abstract. The Cambridge University Engineering Department phrase-
based statistical machine translation system follows a generative model
of translation and is implemented by the composition of component mod-
els of translation and movement realised as Weighted Finite State Trans-
ducers. Our flexible architecture requires no special purpose decoder and
readily handles the large-scale natural language processing demands of
state-of-the-art machine translation systems. In this paper we describe
the CUED system’s participation in the NIST 2008 Arabic-English ma-
chine translation evaluation task.
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1 Introduction

In the source-channel model of statistical machine translation [1], target sen-
tences are viewed as source sentences that have passed through a noisy com-
munication channel corrupting their surface form. The task of translation is to
recover the source sentence that generated the observed target. The search for
the best source sentence S = s1, s2, . . . , sI for a given target T = t1, t2, . . . , tJ is
typically inverted and decomposed as

Ŝ = argmax
S

P (S|T ) = argmax
S

P (T |S)P (S) , (1)

where P (T |S) is the translation probability, P (S) is the language model prob-
ability, and the argmax denotes the search for the best translation S.

The Cambridge University Engineering Department statistical machine trans-
lation system follows the Transducer Translation Model (TTM) [2, 3], a phrase-
based generative model of translation that applies a series of transformations
specified by conditional probability distributions and encoded as Weighted Fi-
nite State Transducers [4]. The main advantages are modularity, which facilitates
the development and evaluation of individual components, and implementation
simplicity, which allows us to focus on modelling issues rather than complex
decoding and search algorithms. The TTM scales naturally to very large data
sets and no special-purpose decoder is required; by this we mean that standard



WFST operations such as weighted composition can be used to obtain the 1-best
translation or a lattice of alternative hypotheses. Finally, our system architec-
ture readily supports speech translation, in which input ASR lattices can be
translated in the same way as text [5].

2 The Transducer Translation Model

Under the Transducer Translation Model, the generation of target language sen-
tence T = tJ1 starts with the generation of a source language sentence S = sI

1

by the source language model PG(sI
1). Next, the source language sentence is seg-

mented into phrases according to the unweighted uniform source phrasal segmen-
tation model PW (uK

1 ,K|sI
1). This source phrase sequence generates a reordered

target language phrase sequence according to the phrase translation and re-
ordering model PR(xK

1 |uK
1 ). Next, target language phrases are inserted into this

sequence according to the insertion model PΦ(vR
1 |xK

1 , uK
1 ). Finally, the sequence

of reordered and inserted target language phrases are transformed to word se-
quences tJ1 under the unweighted target phrasal segmentation model PΩ(tJ1 |vR

1 ).
These component distributions together form a joint distribution over the source
and target language sentences and their possible intermediate phrase sequences
as P (tJ1 , vR

1 , xK
1 , uK

1 , sI
1).

In translation under the generative model, we start with the target sentence T
in the foreign language and then search for the best source sentence Ŝ. Encoding
each distribution as a WFST leads to a model of translation as the series of
compositions

L = G ◦W ◦R ◦ Φ ◦Ω ◦ T , (2)

in which T is an acceptor for the target language word sequence and L is the
word lattice of source language translations obtained during decoding. There is a
direct correspondence between each distribution and the transducer in which it
is realized (denoted by the distribution subscripts). The most likely translation
Ŝ is then the path in L with least cost (i.e. the minimum negative log-likelihood
in the tropical semiring).

2.1 Phrase Reordering Transducers

The TTM reordering model is implemented by means of a phrase jump trans-
ducer, typically combined through composition with the one-state phrase trans-
lation WFST. In qualitative terms, this reordering model describes a jump se-
quence associated with each admissible permutation of the phrases [2]. In prac-
tice, it takes input source phrase sequences and outputs their translations in
both monotonic and non-monotonic order.

In the simplest reordering model, known as MJ1-Flat, two adjacent phrases
are allowed to swap positions with a fixed jump probability β1 that is determined
empirically. Figure 1 shows the WFST reordering transducer for the two phrases
x1 and x2. This simple model is effective since it significantly broadens the search
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x1 : x1/1− β1

x2 : x2/1− β1

x1 : x2/β1

x2 : x1/1

Fig. 1. The MJ1-Flat reordering transducer for a sequence of two phrases “x1 x2” with
a fixed jump probability of β1.

space and, as source phrases can be arbitrarily long, individual words may move
quite far in translation. However, it makes no distinction as to which phrases
are more likely to be reordered in translation. This problem can be addressed
by defining a separate jump probability β1(vk, uk) for each phrase pair. The
probabilities can be estimated from word alignments by examining adjacent
phrase pairs and their orientation with respect to (vk, uk) and computing relative
frequency estimates, in a similar fashion to Tillmann [6]. The actual WFST
implementation is analogous to MJ1-Flat, but a new state is required for each
phrase bigram, since the jump probability differs in each case.

2.2 Phrase Segmentation Transducers

In first-pass TTM translation all phrasal segmentations of a sentence are consid-
ered equally likely. The segmentation transducers are therefore unweighted and
simply provide a mapping between the words and phrases of source and target
language sentences. On the source side, the source language segmentation trans-
ducer W maps a source language word string to a lattice of all possible phrasal
segmentations using the phrases of the phrase pair inventory. For example, if an
acceptor for the source string “exhibition of students returning from abroad” is
composed with the source language segmentation transducer, the result is the
lattice of phrases shown in Figure 2. A similar segmentation process is applied
to the target language sentence using the target language segmentation trans-
ducer Ω. The resulting lattice of phrases is the input to the decoding process in
the TTM. Our flexible model architecture is such that additional inputs can be
easily incorporated. For example, it may be useful to include alternative Arabic
morphological analyses, variant Chinese character segmentations, or a lattice of
recognition hypotheses output by an ASR system.

2.3 Language Model Acceptor

The language model PG(sI
1) is encoded as weighted finite state acceptor G. The

topology of this acceptor is such that states encode histories and arcs specify
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Fig. 2. Phrase lattice encoding all possible segmentations of the source language string
“exhibition of students returning from abroad” using only the phrases of the phrase pair
inventory. The phrase label on each arc shows the constituent words of the phrase.

the n-gram conditional probability of the labelled word given the history, or
the context-specific backoff weight when there is no matching word. In first-pass
translation we use the offline approximation in which backoff is implemented via
epsilon transitions [7]. Prior to decoding, a filtering procedure is used to generate
individual sentence-specific WFST language model acceptors for each sentence
to be translated. This significantly improves decoding efficiency and is possible
because the words which might be postulated in translation are determined by
the target language input sentence and the contents of the phrase pair inventory.

2.4 Finite State Grammars for Source Language Subsequences

It often happens that the system is presented with mixed text to translate,
for example ASCII characters appearing in Chinese or Arabic text, as in the
following example taken from a Chinese-to-English translation task consisting
of mixed text extracted from web pages:

The source text in such sentences should be ‘translated’ without change, i.e. it
should pass through the translation system intact. One solution is to segment the
target sentences, translate only the target language portions, and then to form a
complete translation by concatenation. However, segmentation is not ideal since
it prevents long-span translation and language models from looking across seg-
mentation boundaries. To avoid this problem, a source language acceptor can be
included which ensures that the desired segments appear correctly in the transla-
tion. For example, suppose two source phrases u1 and u2 are found in the target
sentence. The acceptor would then accept sequences V ∗ · u1 · V ∗ · u2 · V ∗, where
V is the source language vocabulary. If degenerate translations for the source
phrases are added to the translation and reordering transducer, this acceptor can
be included in the translation pipeline as the last step before composition with
the English language model. In this way all translations produced (including
lattices) have the desired subsequences in the correct order, and all translation



scores are based on long-span translation and language model likelihoods. This is
a straightforward method to impose many useful constraints in translation, such
as ensuring parentheses and quotes are correctly matched, names are correctly
transliterated, etc.

2.5 Minimum Error Rate Training

Minimum error rate training under BLEU [8, 9] can be used to adjust multiplica-
tive scale factors applied to the component transducers which together make up
the TTM. Although only a small number of parameters are adjusted - typically
one parameter per component model or distribution - MET can be very effective
in tuning systems to domain-specific development sets.

In the systems described here, MET is applied to adjust the lexical language
model scale factor, word and phrase insertion penalties, phrase reordering scale
factor, phrase insertion scale factor, u-to-v translation model scale factor, v-to-u
translation model scale factor, and three phrase pair count features. The phrase-
pair count features track whether each phrase-pair occurred once, twice, or more
than twice in the parallel text [10].

MET parameter search procedures as described by Och [9] are now widely
used; the only difficulty in apply them to WFSTs is to extract the contribution of
each component transducer to the overall translation log likelihood. For this, we
use encoded transducers as described by Roark et al. [11, 2, 12] and implemented
in the OpenFST libraries [13].

3 Lattice Rescoring

This section describes lattice rescoring techniques applied to the translation
output produced by the first-pass MET baseline system. Apart from MBR (sec-
tion 3.4) which requires n-best lists, these operations could be applied in first-
pass translation; however, we apply these techniques in rescoring subsequent to
pruning of the first-pass lattices.

3.1 Large Language Model Rescoring

We apply a second-pass language model that is able to effectively utilise very
large quantities of monolingual training text. Large memory and considerable
time is required for the estimation of zero cutoff higher-order n-gram language
models, typically necessitating partitioning of data and multiple rounds of paired
interpolation to produce the final model. An alternative is to build sentence-
specific language models. Firstly, counts are gathered for each training text and
merged to form a single large counts file. The vocabulary used during the count-
ing process is determined by the set of English words covering the phrases found
in the parallel text. There are no cut-offs, so all observed n-grams are included
in the model. Sentence-specific counts are obtained by filtering according to the
vocabulary of English n-grams in each lattice. The resulting filtered counts are



then used to generate sentence-specific language models with “stupid backoff”
smoothing [14] in which n-gram scores are defined as

S(si|si−1
i−n+1) =

{
f(si

i−n+1)

f(si−1
i−n+1)

if f(si
i−n+1) > 0

αS(si|si−1
i−n+2) otherwise

(3)

The backoff weight α is the same for each order and the recursion ends with the
unigram maximum likelihood estimate.

3.2 Phrasal Segmentation Model Rescoring

Phrasal segmentation models define a mapping from the words of a sentence sI
1 to

sequences of translatable phrases uK
1 . Sentences cannot be segmented arbitrarily:

the space of possible segmentations is constrained by the contents of the phrase
table and contains only those translatable phrases found in the parallel text. We
define a probability distribution over phrase sequences and estimate the model
parameters from naturally occurring sequences of phrases in a large monolingual
source-language training corpus. An order-n phrasal segmentation model assigns
a probability to a phrase sequence uK

1 according to

P (uK
1 |K, sI

1) =
K∏

k=1

P (uk|uk−1
1 ,K, sI

1) (4)

≈
{

C(K, sI
1)

∏K
k=1 P (uk|uk−1

k−n+1) if uK
1 = sI

1

0 otherwise
(5)

with the additional constraint that each uk must be a phrase with a known
translation. For a fixed sI

1, the normalisation term C(K, sI
1) can be calculated.

In translation, however, the sI
1 are not fixed so we use the unnormalised likeli-

hoods as scores. The phrase n-gram parameters of equation (5) are estimated
from the frequencies of occurrence of phrase sequences in the training text. Stan-
dard discounting and context-dependent backoff [15] are applied to smooth the
maximum likelihood estimates.

The word lattice L produced during first-pass translation is composed with
unweighted transducer W to obtain a lattice of phrases (L ◦ W ); this lattice
contains phrase sequences and translation scores consistent with the first-pass
translation. We now wish to apply the phrase segmentation model distribution
of equation (5) to this phrase lattice. The conditional probabilities and backoff
structure are encoded as weighted finite state acceptor Ψ in the same way as for
a regular word language model [7]. The phrasal segmentation model acceptor is
then composed with the phrase lattice and projected on the input to obtain the
rescored word lattice:

L′ = (L ◦W ) ◦ Ψ . (6)

The most likely translation after phrasal segmentation model rescoring is given
by the path in L′ with least cost.



3.3 Model-1 Lattice-to-String Alignment Scores

IBM Model-1 is a simple model of word alignment used in parallel text alignment.
Model-1 is not powerful enough to be used alone for translation, but can be used
to rank competing translation hypotheses produced by more powerful systems.
Introducing a variable aj which denotes the alignment of tj in tJ1 to saj in sI

1,
the Model-1 alignment distribution is

PM1(tJ1 , aJ
1 , J |sI

1) = PL(J |I)
1
IJ

J∏
j=1

pT (tj |saj
) . (7)

The model is such that the maximum likelihood alignment

max
aJ
1

PM1(tJ1 , aJ
1 , J |sI

1) , (8)

is readily found via dynamic programming. It is also straightforward to find,
for a fixed target sentence tJ1 , the most likely alignment of every translation
hypothesis sI

1 in a lattice L, i.e. to simultaneously find the best alignment of
every lattice path to the target string. We refer to this as Model-1 lattice-to-
string alignment. Of course this could be done by expanding the lattice into a
list of distinct hypotheses and aligning each to the target string; however lattice-
to-string alignment is faster and retains the compact lattice representation of
hypotheses. However, as discussed by Knight and Al-Onaizan [16], this process
cannot be implemented easily with WFSTs. In adding Model-1 alignment scores
to the TTM translation lattices, we therefore depart from the WFST formalism
and add the Model-1 likelihoods to the TTM lattice scores with non-WFST
based lattice-to-string alignment procedures.

3.4 Minimum Bayes Risk Decoding

The final step in translation is Minimum Bayes Risk decoding (MBR) which
searches for a hypothesis to minimise the expected loss of translation errors
under loss functions that measure translation performance. The rationale is to
reconcile estimation criteria (e.g. maximum likelihood) with translation criteria
(e.g. BLEU). Since the goal is to maximise the BLEU score, the loss is the
negative sentence level BLEU score [17]. Exact computation of statistics needed
for BLEU cannot easily be done over lattices, or with finite state approaches, so
each translation lattice is expanded into a list of translation hypotheses N with
posterior scores, and the hypothesis is selected which has the least risk relative
to the collection of other hypotheses:

Ŝ = argmin
S∈N

∑
S′∈N

−BLEU(S′,S)P (S′|T ) . (9)



4 System Development

We describe experiments on the NIST Arabic-English translation task. The de-
velopment set mt02-05-tune is formed from the odd numbered sentences of the
NIST MT02 through MT05 evaluation sets; the even numbered sentences form
the validation set mt02-05-test. Test performance is evaluated using the NIST
subsets from the MT06 evaluation: mt06-nist-nw for newswire data and mt06-
nist-ng for newsgroup data. We also report results for the NIST MT08 evaluation.
Each set contains four references and BLEU scores are computed for lower-case
translations.

The TTM baseline system is trained using all of the available Arabic-English
data for the NIST MT08 evaluation. In first-pass translation, decoding proceeds
with a 4-gram language model estimated over the parallel text and a 965 million
word subset of monolingual data from the English Gigaword Third Edition.
Minimum error rate training under BLEU optimises the decoder feature weights
using the development set mt02-05-tune. In the second pass, a 5-gram zero-cutoff
stupid-backoff language model estimated using approximately 4.7 billion words
of English newswire text is used to rescore the first-pass lattices. The phrasal
segmentation model parameters are trained using a 1.8 billion word subset of
the same monolingual training data used to build the second-pass word language
model. Further post-processing steps incorporate the Model-1 lattice-to-string
alignment scores and MBR.

4.1 Results and Discussion

Table 1 shows translation performance for each of the various development and
evaluation sets as measured by BLEU and TER1. All of the results in the ta-
ble were obtained using the MJ1 reordering model with orientation probabilities
estimated from alignments. The 1-best output obtained from the lattices after
minimum error rate training results in the scores shown in the row labelled
‘TTM+MET’. These lattices are then rescored by each of the post-processing
techniques described in section 3, resulting in significant improvements across all
sets. While large gains of between 1.5 and 2.7 BLEU points are observed after
5-gram rescoring (row labelled ‘+5g’), phrase segmentation model rescoring re-
sults in more modest improvements (row labelled ‘+PSM’). However, these gains
are interesting since the models are trained on a subset of the same monolingual
data used to train the 5-gram word language model, suggesting that some degree
of useful complementary information has been captured by the phrasal segmen-
tation models. The final post-processing step (row labelled ‘+MBR’) shows the
results obtained after rescoring the 1000-best list for each sentence using mini-
mum Bayes risk decoding.

In order to demonstrate the advantage of estimating the phrase-specific β1

reordering probabilities, Table 2 shows translation scores when a flat distribution
1 Full MT08 results are available at http://www.nist.gov/speech/tests/mt/2008/. It

is worth noting that many of the top entries make use of system combination; the
results reported here are for single system translations.



Table 1. Arabic-English translation results (lower-cased BLEU / TER) for best per-
forming system configuration using phrase pair count features and β1 probabilities
estimated from the alignments.

Method mt02-05-tune mt02-05-test mt06-nist-nw mt06-nist-ng mt08-nist

TTM+MET 50.9 / 42.8 50.3 / 43.3 48.1 / 44.3 37.5 / 53.5 43.1 / 49.5
+5g 53.5 / 41.8 52.4 / 42.4 49.6 / 43.9 39.0 / 54.0 43.7 / 49.3

+PSM 53.9 / 42.1 53.3 / 42.7 50.1 / 44.3 39.0 / 54.7 44.3 / 49.3
+MBR 54.0 / 41.7 53.7 / 42.2 51.0 / 43.9 39.4 / 54.1 45.0 / 48.9

over all phrase pairs is applied, i.e. the MJ1-Flat reordering model described in
section 2.1. These results show that there is a degradation of around 0.4 BLEU
points in the MET results, and this degradation is seen throughout the sub-
sequent rescoring steps. A more informed phrase reordering model produces a
higher quality MET lattice for rescoring. Therefore, we expect that further im-
provements in the reordering model will be complementary and benefit even
more from our large language model rescoring techniques. However, preliminary
experiments with a simplified MJ2 reordering did not yield significant improve-
ments for this Arabic-English translation task and so are not reported here.

Table 2. Arabic-English translation results (lower-cased BLEU / TER) without esti-
mation of the β1 orientation probabilities for the MJ1 reordering model (MJ1-Flat).

Method mt02-05-tune mt02-05-test

TTM+MET 50.4 / 43.3 50.0 / 43.8
+5g 53.0 / 42.2 52.2 / 42.8

+PSM 53.4 / 42.5 53.1 / 43.1

To conclude our analysis of the contribution of each system component, Ta-
ble 3 shows results obtained when the phrase pair count features are not included
in MET. The phrase pair count features clearly contribute significantly to the
generation of higher quality first-pass lattices since there is a degradation of
between 1.7 and 2.0 BLEU points with respect to the baseline system.

Table 3. Translation results (lower-cased BLEU / TER) without phrase pair count
features. Two different lattice rescoring orders are compared. On the left, Model-1
(MOD1) rescoring precedes 5-gram and PSM rescoring. On the right, Model-1 rescoring
is performed as the final step.

Method mt02-05-tune mt02-05-test Method mt02-05-tune mt02-05-test

TTM+MET 48.9 / 43.8 48.6 / 44.1 TTM+MET 48.9 / 43.8 48.6 / 44.1
+MOD1 50.5 / 42.5 50.4 / 43.0 +5g 51.5 / 42.2 51.5 / 42.7

+5g 52.2 / 41.6 52.1 / 42.3 +PSM 52.6 / 42.3 52.6 / 42.7
+PSM 52.9 / 41.9 52.6 / 42.6 +MOD1 53.0 / 41.8 52.6 / 42.5



Table 3 also compares the application of Model-1 rescoring at two different
stages in the translation pipeline. Model-1 rescoring proves especially beneficial
when directly rescoring the MET lattice (with an improvement of up to 1.8
BLEU points). However, if Model-1 rescoring is applied after 5-gram and phrase
segmentation model rescoring there are no real improvements. Two conclusions
may be drawn from this. Firstly, that each of the rescoring techniques are a
useful source of information when rescoring lattices, and, secondly, applying
these techniques sequentially to the same MET lattice does not always provide
gains. This suggests it is important to integrate these information sources directly
in minimum error rate training prior to generating the lattice.

4.2 Efficiency Considerations

Large-scale statistical machine translation is computationally intensive and an
efficient implementation is crucial. To tackle this, we carefully build separate
WFSTs that only include the model parameters relevant to each input sentence
by prior inspection of input phrases and the general phrase inventory. Using the
MJ1 reordering model, the memory required during decoding is less than ∼4Gb
for most sentences in the reported tasks.

For the longest input sentences, which can exceed 100 words in length, mem-
ory requirements may grow beyond this limit and this necessitates pruning.
Several pruning strategies may be used, such as standard cost-based pruning for
the translation WFST prior to composition with the language model.

However, experience shows that better results are achieved by selecting, for
those sentences with a number of states in the translation WFST (prior to lan-
guage model composition) above a certain threshold, only those phrase segmen-
tations that match the number of phrases in the minimum-number-of-phrases
segmentation. This favours segmentations with longer phrases and limits mem-
ory requirements without any significant change in translation performance. For
mt02-05-tune only 39 of the 2075 sentences are affected.

Without further pruning, our system translates the mt02-05-tune set (2075
sentences, ∼60k words) in a total time of 420 minutes and this can be accom-
plished in very reasonable time by parallelisation. Figure 3 shows translation
time per input word as a function of the sentence length.

As the graph shows, the longer the input sentence, the longer it takes to
translate each word. By applying our pruning strategy, we ensure that translation
time does not exceed an average rate of 0.43 seconds per word even for the longest
sentences. However, around 80% of the sentences are of 40 words or less in length
and these are translated with a much quicker rate of 0.30 seconds per word.

5 Summary and Future Work

We have described the Cambridge University Engineering Department statistical
machine translation system that formulates translation as a series of transforma-
tions encoded in weighted finite state transducers and decodes using standard
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Fig. 3. Translation time per word as a function of sentence length for mt02-05-tune.

finite state operations and algorithms. The system is able to handle very large
quantities of data efficiently and effectively and achieves good performance on
the 2008 NIST Arabic-English machine translation task, even with the relatively
simple MJ1 reordering model.

Future work will investigate whether larger and more consistent gains are
possible by integrating the phrasal segmentation models and Model-1 rescoring
directly into the MET baseline system. It is also interesting to consider more
flexible phrase reordering models by allowing jumps of more than one phrase,
although this can lead to a very large search space with many unnecessary hy-
potheses [2]. One possible solution is to only allow such jumps for a particular
list of phrase pairs observed to occur with long-range reorderings in the parallel
text from which the phrases are extracted.
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