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Abstract

We consider the problem of using a bilingual
dictionary to transfer lexico-syntactic infor-
mation from a resource-rich source language
to a resource-poor target language. In con-
trast to past work that used bitexts to trans-
fer analyses of specific sentences at the token
level, we instead use features to transfer the
behavior of words at a type level. In a dis-
criminative dependency parsing framework,
our approach produces gains across a range
of target languages, using two different low-
resource training methodologies (one weakly
supervised and one indirectly supervised) and
two different dictionary sources (one manu-
ally constructed and one automatically con-
structed).

1 Introduction

Building a high-performing parser for a language
with no existing treebank is still an open problem.
Methods that use no supervision at all (Klein and
Manning, 2004) or small amounts of manual su-
pervision (Haghighi and Klein, 2006; Cohen and
Smith, 2009; Naseem et al., 2010; Berg-Kirkpatrick
and Klein, 2010) have been extensively studied, but
still do not perform well enough to be deployed
in practice. Projection of dependency links across
aligned bitexts (Hwa et al., 2005; Ganchev et al.,
2009; Smith and Eisner, 2009) gives better perfor-
mance, but crucially depends on the existence of
large, in-domain bitexts. A more generally appli-
cable class of methods exploits the notion of univer-
sal part of speech tags (Petrov et al., 2011; Das and

...   the    senators    demand    strict   new    ethics    rules   ...
      DT      NNS          VBP          JJ       JJ       NNS     NNS   

Gewerkschaften     verlangen       Verzicht         auf       die     Reform
          NN                  VVFIN             NN          APPR    ART       NN
       Unions               demand     abandonment     on       the      reform

Figure 1: Sentences in English and German both contain-
ing words that mean “demand.” The fact that the English
demand takes nouns on its left and right indicates that the
German verlangen should do the same, correctly suggest-
ing attachments to Verzicht and Gewerkschaften.

Petrov, 2011) to train parsers that can run on any lan-
guage with no adaptation (McDonald et al., 2011)
or unsupervised adaptation (Cohen et al., 2011).
While these universal parsers currently constitute
the highest-performing methods for languages with-
out treebanks, they are inherently limited by operat-
ing at the coarse POS level, as lexical features are
vital to supervised parsing models.

In this work, we consider augmenting delexical-
ized parsers by transferring syntactic information
through a bilingual lexicon at the word type level.
These parsers are delexicalized in the sense that, al-
though they receive target language words as input,
their feature sets do not include indicators on those
words. This setting is appropriate when there is too
little target language data to learn lexical features di-
rectly. Our main approach is to add features which
are lexical in the sense that they compute a function
of specific target language words, but are still un-
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lexical in the sense that all lexical knowledge comes
from the bilingual lexicon and training data in the
source language.

Consider the example English and German sen-
tences shown in Figure 1, and suppose that we wish
to parse the German side without access to a Ger-
man treebank. A delexicalized parser operating at
the part of speech level does not have sufficient in-
formation to make the correct decision about, for ex-
ample, the choice of subcategorization frame for the
verb verlangen. However, demand, a possible En-
glish translation of verlangen, takes a noun on its
left and a noun on its right, an observation that in this
case gives us the information we need. We can fire
features in our German parser on the attachments
of Gewerkschaften and Verzicht to verlangen indi-
cating that similar-looking attachments are attested
in English for an English translation of verlangen.
This allows us to exploit fine-grained lexical cues to
make German parsing decisions even when we have
little or no supervised German data; moreover, this
syntactic transfer is possible even in spite of the fact
that demand and verlangen are not observed in par-
allel context.

Using type-level transfer through a dictionary in
this way allows us to decouple the lexico-syntactic
projection from the data conditions under which we
are learning the parser. After computing feature val-
ues using source language resources and a bilingual
lexicon, our model can be trained very simply us-
ing any appropriate training method for a supervised
parser. Furthermore, because the transfer mecha-
nism is just a set of features over word types, we are
free to derive our bilingual lexicon either from bitext
or from a manually-constructed dictionary, making
our method strictly more general than those of Mc-
Donald et al. (2011) or Täckström et al. (2012), who
rely centrally on bitext. This flexibility is potentially
useful for resource-poor languages, where a human-
curated bilingual lexicon may be broader in cover-
age or more robust to noise than a small, domain-
limited bitext. Of course, it is an empirical question
whether transferring type level information about
word behavior is effective; we show that, indeed,
this method compares favorably with other transfer
mechanisms used in past work.

The actual syntactic information that we transfer
consists of purely monolingual lexical attachment

statistics computed on an annotated source language
resource.1 While the idea of using large-scale sum-
mary statistics as parser features has been consid-
ered previously (Koo et al., 2008; Bansal and Klein,
2011; Zhou et al., 2011), doing so in a projection set-
ting is novel and forces us to design features suitable
for projection through a bilingual lexicon. Our fea-
tures must also be flexible enough to provide benefit
even in the presence of cross-lingual syntactic dif-
ferences and noise introduced by the bilingual dic-
tionary.

Under two different training conditions and with
two different varieties of bilingual lexicons, we
show that our method of lexico-syntactic projection
does indeed improve the performance of parsers that
would otherwise be agnostic to lexical information.
In all settings, we see statistically significant gains
for a range of languages, with our method providing
up to 3% absolute improvement in unlabeled attach-
ment score (UAS) and 11% relative error reduction.

2 Model

The projected lexical features that we propose in this
work are based on lexicalized versions of features
found in MSTParser (McDonald et al., 2005), an
edge-factored discriminative parser. We take MST-
Parser to be our underlying parsing model and use it
as a testbed on which to evaluate the effectiveness of
our method for various data conditions.2 By instanti-
ating the basic MSTParser features over coarse parts
of speech, we construct a state-of-the-art delexical-
ized parser in the style of McDonald et al. (2011),
where feature weights can be directly transferred
from a source language or languages to a desired
target language. When we add projected lexical fea-
tures on top of this baseline parser, we do so in a
way that does not sacrifice this generality: while
our new features take on values that are language-
specific, they interact with the model at a language-
independent level. We therefore have the best of

1Throughout this work, we will use English as the source
language, but it is possible to use any language for which the
appropriate bilingual lexicons and treebanks exist. One might
expect to find the best performance from using a source lan-
guage closely related to the target.

2We train MSTParser using the included implementation of
MIRA (Crammer and Singer, 2001) and use projective decoding
for all experiments described in this paper.
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DELEX

Feature Value

VERB→NOUN 1
VERB→NOUN, L 1

··· ···

PROJ

Query Feature (signature) Value

verlangen→NOUN [VERB]→CHILD 0.723
verlangen→NOUN, L [VERB]→CHILD, DIR 0.711
VERB→Gewerkschaften PARENT→ [NOUN] 0.822

··· ··· ···
Gewerkschaften     verlangen       Verzicht         auf       die     Reform
        NOUN               VERB           NOUN        ADP    DET     NOUN
        Unions              demand     abandonment     on       the      reform

DELEX

Feature Value

VERB→NOUN 1
VERB→NOUN, R 1

··· ···

PROJ

Query Feature (signature) Value
verlangen→NOUN [VERB]→CHILD 0.723
verlangen→NOUN, R [VERB]→CHILD, DIR 0.521
VERB→Verzicht PARENT→[NOUN] 0.623

··· ··· ···

Figure 2: Computation of features on a dependency arc. DELEX features are indicators over characteristics of depen-
dency links that do not involve the words in the sentence. PROJ features are real-valued analogues of DELEX features
that do contain words. We form a query from each stipulated set of characteristics, compute the values of these queries
heuristically, and then fire a feature based on each query’s signature. Signatures indicate which attachment properties
were considered, which part of the query was lexicalized (shown by brackets here), and the POS of the query word.
This procedure yields a small number of real-valued features that still capture rich lexico-syntactic information.

two worlds in that our features can be learned on
any treebank or treebanks that are available to us,
but still exploit highly specific lexical information
to achieve performance gains over using coarse POS
features alone.

2.1 DELEX Features

Our DELEX feature set consists of all of the unlexi-
calized features in MSTParser, only lightly modified
to improve performance for our setting. McDonald
et al. (2005) present three basic types of such fea-
tures, ATTACH, INBETWEEN, and SURROUNDING,
which we apply at the coarse POS level. The AT-
TACH features for a given dependency link consist of
indicators of the tags of the head and modifier, sep-
arately as well as together. The INBETWEEN and
SURROUNDING features are indicators on the tags
of the head and modifier in addition to each inter-
vening tag in turn (INBETWEEN) or various com-
binations of tags adjacent to the head or modifier
(SURROUNDING).3

MSTParser by default also includes a copy of
each of these indicator features conjoined with
the direction and distance of the attachment it de-
notes. These extra features are important to getting

3As in Koo et al. (2008), our feature set contains more
backed-off versions of the SURROUNDING features than are de-
scribed in McDonald et al. (2005).

good performance out of the baseline model. We
slightly modify the conjunction scheme and expand
it with additional backed-off conjunctions, since
these changes lead to features that empirically trans-
fer better than the MSTParser defaults. Specifically,
we use conjunctions with attachment direction (left
or right), coarsened distance,4 and attachment direc-
tion and coarsened distance combined.

We emphasize again that these baseline features
are entirely standard, and all the DELEX feature set
does is recreate an MSTParser-based analogue of the
direct transfer parser described by McDonald et al.
(2011).

2.2 PROJ Features

We will now describe how to compute our projected
lexical features, the PROJ feature set, which con-
stitutes the main contribution of this work. Recall
that we wish our method to be as general as possible
and work under many different training conditions;
in particular, we wish to be able to train our model
on only existing treebanks in other languages when
no target language trees are available (discussed in
Section 3.3), or on only a very small target language
treebank (Section 3.4). It would greatly increase
the power of our model if we were able to include
target-language-lexicalized versions of the ATTACH

4Our five distance buckets are {1, 2, 3−5, 6−10, 11+}.

3



features, but these are not learnable without a large
target language treebank. We instead must augment
our baseline model with a relatively small number of
features that are nonetheless rich enough to transfer
the necessary lexical information.

Our overall approach is sketched in Figure 2,
where we show the features that fire on two pro-
posed edges in a German dependency parse. Fea-
tures on an edge in MSTParser incorporate a sub-
set of observable properties about that edge’s head,
modifier, and context in the sentence. For sets of
properties that do not include a lexical item, such
as VERB→NOUN, we fire an indicator feature from
the DELEX feature set. For those that do include a
lexical item, such as verlangen→NOUN, we form a
query, which resembles a lexicalized indicator fea-
ture. Rather than firing the query as an indicator
feature directly, which would result in a model pa-
rameter for each target word, we fire a broad feature
called an signature whose value reflects the specifics
of the query (computation of these values is dis-
cussed in Section 2.2.2). For example, we abstract
verlangen→NOUN to [VERB]→CHILD, with square
brackets indicating the element that was lexicalized.
Section 2.2.1 discusses this coarsening in more de-
tail. The signatures are agnostic to individual words
and even the language being parsed, so they can be
learned on small amounts of data or data from other
languages.

Our signatures allow us to instantiate features at
different levels of granularity corresponding to the
levels of granularity in the DELEX feature set. When
a small amount of target language data is present,
the variety of signatures available to us means that
we can learn language-specific transfer characteris-
tics: for example, nouns tend to follow prepositions
in both French and English, but the ordering of ad-
jectives with respect to nouns is different. We also
have the capability to train on languages other than
our target language, and while this is expected to be
less effective, it can still teach us to exploit some
syntactic properties, such as similar verb attachment
configurations if we train on a group of SVO lan-
guages distinct from a target SVO language. There-
fore, our feature set manages to provide the training
procedure with choices about how much syntactic
information to transfer at the same time as it prevents
overfitting and provides language independence.

2.2.1 Query and Signature Types
A query is a subset of the following pieces of in-

formation about an edge: parent word, parent POS,
child word, child POS, attachment direction, and
binned attachment distance. It must contain exactly
one word.5 We experimented with properties from
INBETWEEN and SURROUNDING features as well,
but found that these only helped under some circum-
stances and could lead to overfitting.6

A signature contains the following three pieces of
information:

1. The non-empty subset of attachment properties
included in the query

2. Whether we have lexicalized on the parent or
child of the attachment, indicated by brackets

3. The part of speech of the included word

Because either the parent or child POS is included
in the signature, there are three meaningful proper-
ties to potentially condition on, of which we must se-
lect a nonempty subset. Some multiplication shows
that we have 7× 2× 13 = 182 total PROJ features.

As an example, the queries

verlangen→ NOUN

verlangen→ ADP

sprechen→ NOUN

all share the signature [VERB]→CHILD, but

verlangen→ NOUN,RIGHT

Verzicht→ ADP

VERB → Verzicht

have [VERB]→CHILD,DIR, [ADP]→CHILD, and
PARENT→[NOUN] as their signatures, respectively.

The level of granularity for signatures is a param-
eter that simply must be engineered. We found some
benefit in actually instantiating two signatures for
every query, one as described above and one that

5Bilexical features are possible in our framework, but we do
not use them here, so for clarity we assume that each query has
one associated word.

6One hypothesis is that features looking at the sentence con-
text are more highly specialized to a given language, since they
examine the parent, the child, and one or more other parts of
speech or words.
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→demand, DIR PARENT→demand

demand
Word POS Dir Dist

that ADP R 3

said VERB L 7

<root> ROOT L 6

senators NOUN L 1

rules NOUN R 4

We NOUN L 1

that ADP R 1

They NOUN L 1

concessions NOUN R 1

from ADP R 2

Pa
re

nt
s

Ch
ild

re
n

DIR Value
L 0.66
R 0.33

PARENT Value
ADP 0.33

VERB 0.33
ROOT 0.33

  He   reports that   the   senators demand strict new ethics rules [...]
PRON     VERB     ADP     DET       NOUN          VERB        ADJ     ADJ      NOUN  NOUN

   “      We   demand that these hostilities cease    ,        ”      said [...]
PUNC   PRON       VERB      ADP     DET        NOUN        VERB   PUNC  PUNC   VERB

 They  demand concessions  from   the  Israeli authorities    <root>
  PRON        VERB              NOUN            ADP      DET      ADJ           NOUN               ROOT

···

Figure 3: Computation of query values. For each occurrence of a given source word, we tabulate the attachments it
takes part in (parents and children) and record their properties. We then compute relative frequency counts for each
possible query type to get source language scores, which will later be projected through the dictionary to obtain target
language feature values. Only two query types are shown here, but values are computed for many others as well.

does not condition on the part of speech of the word
in the signature. One can also imagine using more
refined signatures, but we found that this led to over-
fitting in the small training scenarios under consid-
eration.

2.2.2 Query Value Estimation
Each query is given a value according to a gener-

ative heuristic that involves the source training data
and the probabilistic bilingual lexicon.7 For a par-
ticular signature, a query can be written as a tu-
ple (x1, x2, . . . , wt) where wt is the target language
query word and the xi are the values of the included
language-independent attachment properties. The
value this feature takes is given by a simple gener-
ative model: we imagine generating the attachment
properties xi given wt by first generating a source

7Lexicons such as those produced by automatic aligners in-
clude probabilities natively, but obviously human-created lexi-
cons do not. For these dictionaries, we simply assume that each
word translates with uniform probability into each of its pos-
sible translations. Tweaking this method did not substantially
change performance.

word ws from wt based on the bilingual lexicon,
then jointly generating the xi conditioned on ws.
Treating the choice of source translation as a latent
variable to be marginalized out, we have

value = p(x1, x2, . . . |wt)

=
∑
ws

p(ws|wt)p(x1, x2, . . . |ws)

The first term of the sum comes directly from our
probabilistic lexicon, and the second we can esti-
mate using the maximum likelihood estimator over
our source language training data:

p(x1, x2, . . . |ws) =
c(x1, x2, . . . , ws)

c(ws)
(1)

where c(·) denotes the count of an event in the
source language data.

The final feature value is actually the logarithm
of this computed value, with a small constant added
before the logarithm is taken to avoid zeroes.
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3 Experiments

3.1 Data Conditions
Before we describe the details of our experiments,
we sketch the data conditions under which we eval-
uate our method. As described in Section 1, there is
a continuum of lightly supervised parsing methods
from those that make no assumptions (beyond what
is directly encoded in the model), to those that use
a small set of syntactic universals, to those that use
treebanks from resource-rich languages, and finally
to those that use both existing treebanks and bitexts.

Our focus is on parsing when one does not have
access to a full-scale target language treebank, but
one does have access to realistic auxiliary resources.
The first variable we consider is whether we have
access to a small number of target language trees or
only pre-existing treebanks in a number of other lan-
guages; while not our actual target language, these
other treebanks can still serve as a kind of proxy for
learning which features generally transfer useful in-
formation (McDonald et al., 2011). We notate these
conditions with the following shorthand:

BANKS: Large treebanks in other target languages

SEED: Small treebank in the right target language

Previous work on essentially unsupervised meth-
ods has investigated using a small number of target
language trees (Smith and Eisner, 2009), but the be-
havior of supervised models under these conditions
has not been extensively studied. We will see in
Section 3.4 that with only 100 labeled trees, even
our baseline model can achieve performance equal
to or better than that of the model of McDonald et
al. (2011). A single linguist could plausibly anno-
tate such a number of trees in a short amount of time
for a language of interest, so we believe that this is
an important setting in which to show improvement,
even for a method primarily intended to augment un-
supervised parsing.

In addition, we consider two different sources for
our bilingual lexicon:

AUTOMATIC: Extracted from bitext

MANUAL: Constructed from human annotations

Both bitexts and human-curated bilingual dictionar-
ies are more widely available than complete tree-
banks. Bitexts can provide rich information about

lexical correspondences in terms of how words are
used in practice, but for resource-poor languages,
parallel text may only be available in small quan-
tities, or be domain-limited. We show results of our
method on bilingual dictionaries derived from both
sources, in order to show that it is applicable under a
variety of data conditions and can successfully take
advantage of such resources as are available.

3.2 Datasets
We evaluate our method on a range of languages
taken from the CoNLL shared tasks on multilingual
dependency parsing (Buchholz and Marsi, 2006;
Nivre et al., 2007). We make use of dependency
treebanks for Danish, German, Greek, Spanish, Ital-
ian, Dutch, Portuguese, and Swedish, all from the
2006 shared task.

For our English resource, we use 500,000 En-
glish newswire sentences from English Gigaword
version 3 (Graff et al., 2007), parsed with the Berke-
ley Parser (Petrov et al., 2006) and converted to a
dependency treebank using the head rules of Collins
(1999).8 Our English test set (used in Section 3.4)
consists of the first 300 sentences of section 23 of the
Penn treebank (Marcus et al., 1993), preprocessed
in the same way. Our model does not use gold fine-
grained POS tags, but we do use coarse POS tags
deterministically generated from the provided gold
fine-grained tags in the style of Berg-Kirkpatrick
and Klein (2010) using the mappings of Petrov et
al. (2011).9 Following McDonald et al. (2011), we
strip punctuation from all treebanks for the results of
Section 3.3. All results are given in terms of unla-
beled attachment score (UAS), ignoring punctuation
even when it is present.

We use the Europarl parallel corpus (Koehn,
2005) as the bitext from which to extract the AUTO-
MATIC bilingual lexicons. For each target language,
we produce one-to-one alignments on the English-
target bitext by running the Berkeley Aligner (Liang
et al., 2006) with five iterations of IBM Model 1 and

8Results do not degrade much if one simply uses Sections 2-
21 of the Penn treebank instead. Coverage of rare words in the
treebank is less important when a given word must also appear
in the bilingual lexicon as the translation of an observed German
word in order to be useful.

9Note that even in the absence of gold annotation, such tags
could be produced from bitext using the method of (Das and
Petrov, 2011) or could be read off from a bilingual lexicon.
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This work Past work
MANUAL AUTOMATIC MPH11* TMU12**

DELEX DELEX+PROJ ∆ DELEX+PROJ ∆ Multi-dir Multi-proj ∆ No clusters X-lingual ∆

DA 41.3 43.0 1.67 ‡ 43.6 2.30 ‡ 48.9* 0.6* 36.7** 2.0**
DE 58.5 58.7 0.20 59.5 0.94 † 56.7* -0.1* 48.9** 1.8**
EL 57.9 59.9 1.99 ‡ 60.5 2.55 ‡ 60.1* 5.0* 59.5** 3.5**
ES 64.2 65.4 1.20 ‡ 65.7 1.52 ‡ 64.2* 0.3* 60.2** 2.7**
IT 65.9 66.5 0.58 67.4 1.54 ‡ 64.1* 0.9* 64.6** 4.2**
NL 57.0 57.5 0.52 58.8 1.88 ‡ 55.8* 9.9* 52.8** 1.5**
PT 75.4 77.2 1.83 ‡ 78.7 3.29 ‡ 74.0* 1.6* 66.8** 4.2**
SV 64.5 66.1 1.61 ‡ 66.9 2.34 ‡ 65.3* 2.7* 55.4** 1.5**

AVG 60.6 61.8 1.20 62.6 2.05 61.1* 2.7* 55.6** 2.7**

Table 1: Evaluation of features derived from AUTOMATIC and MANUAL bilingual lexicons when trained on a con-
catenation of non-target-language treebanks (the BANKS setting). Values reported are UAS for sentences of all lengths
in the standard CoNLL test sets, with punctuation removed from training and test sets. Daggers indicate statistical
significance computed using bootstrap resampling; a single dagger indicates p < 0.1 and a double dagger indicates
p < 0.05. We also include the baseline results of McDonald et al. (2011) and Täckström et al. (2012) and improve-
ments from their best methods of using bitext and lexical information. These results are not directly comparable to
ours, as indicated by * and **. However, we still see that the performance of our type-level transfer method approaches
that of bitext-based methods, which require complex bilingual training for each new language.

five iterations of the HMM aligner with agreement
training. Our lexicon is then read off based on rel-
ative frequency counts of aligned instances of each
word in the bitext.

We also use our method on bilingual dictionar-
ies constructed in a more conventional way. For
this purpose, we scrape our MANUAL bilingual lex-
icons from English Wiktionary (Wikimedia Founda-
tion, 2012). We mine entries for English words that
explicitly have foreign translations listed as well as
words in each target language that have English def-
initions. We discard all translation entries where
the English side is longer than one word, except
for constructions of the form “to VERB”, where we
manually remove the “to” and allow the word to be
defined as the English infinitive. Finally, because
our method requires a dictionary with probability
weights, we assume that each target language word
translates with uniform probability into any of the
candidates that we scrape.

3.3 BANKS

We first evaluate our model under the BANKS data
condition. Following the procedure from McDonald
et al. (2011), for each language, we train both our
DELEX and DELEX+PROJ features on a concate-
nation of 2000 sentences from each other CoNLL
training set, plus 2000 sentences from the Penn

Treebank. Again, despite the values of our PROJ

queries being sensitive to which language we are
currently parsing, the signatures are language in-
dependent, so discriminative training still makes
sense over such a combined treebank. Training our
PROJ features on the non-English treebanks in this
concatenation can be understood as trying to learn
which lexico-syntactic properties transfer “univer-
sally,” or at least transfer broadly within the families
of languages we are considering.

Table 1 shows the performance of the DELEX fea-
ture set and the DELEX+PROJ feature set using both
AUTOMATIC and MANUAL bilingual lexicons. Both
methods provide positive gains across the board that
are statistically significant in the vast majority of
cases, though MANUAL is slightly less effective;
we postpone until Section 4.1 the discussion of the
shortcomings of the MANUAL lexicon.

We include for reference the baseline results of
McDonald et al. (2011) and Täckström et al. (2012)
(multi-direct transfer and no clusters) and the im-
provements from their best methods using lexi-
cal information (multi-projected transfer and cross-
lingual clusters). We emphasize that these results
are not directly comparable to our own, as we
have different training data (and even different train-
ing languages) and use a different underlying pars-
ing model (MSTParser instead of a transition-based
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AUTOMATIC

100 train trees 200 train trees 400 train trees
DELEX DELEX+PROJ ∆ DELEX DELEX+PROJ ∆ DELEX DELEX+PROJ ∆

DA 67.2 69.5 2.32 ‡ 69.5 72.3 2.77 ‡ 71.4 74.6 3.16 ‡
DE 72.9 73.9 0.97 75.4 76.5 1.09 † 77.3 78.5 1.25 ‡
EL 70.8 72.9 2.07 ‡ 72.6 74.9 2.30 ‡ 74.3 76.7 2.41 ‡
ES 72.5 73.0 0.46 74.1 75.4 1.29 ‡ 75.3 77.2 1.81 ‡
IT 73.3 75.4 2.13 ‡ 74.7 77.3 2.54 ‡ 76.0 78.7 2.74 ‡
NL 63.0 65.8 2.82 ‡ 64.7 67.6 2.86 ‡ 66.1 69.2 3.06 ‡
PT 78.1 79.5 1.45 ‡ 79.5 81.1 1.66 ‡ 80.7 82.4 1.63 ‡
SV 76.4 78.1 1.69 ‡ 78.1 80.2 2.02 ‡ 79.6 81.7 2.07 ‡

AVG 71.8 73.5 1.74 73.6 75.7 2.07 75.1 77.4 2.27
EN 74.4 81.5 7.06 ‡ 76.6 83.0 6.35 ‡ 78.3 84.1 5.80 ‡

MANUAL

DA 67.2 68.1 0.88 69.5 70.9 1.44 ‡ 71.4 73.3 1.92 ‡
DE 72.9 73.4 0.44 75.4 76.2 0.77 77.3 78.4 1.12 ‡
EL 70.8 71.9 1.06 † 72.6 74.1 1.48 ‡ 74.3 75.8 1.56 ‡
ES 72.5 71.9 -0.64 74.1 74.3 0.23 75.3 76.4 1.04 ‡
IT 73.3 74.3 1.01 † 74.7 76.4 1.66 ‡ 76.0 78.0 2.01 ‡
NL 63.0 65.4 2.43 ‡ 64.7 67.5 2.76 ‡ 66.1 69.0 2.91 ‡
PT 78.1 78.2 0.13 79.5 80.1 0.62 80.7 81.5 0.82 ‡
SV 76.4 76.6 0.25 78.1 79.1 1.01 † 79.6 81.0 1.40 ‡

AVG 71.8 72.5 0.70 73.6 74.8 1.25 75.1 76.7 1.60
EN 74.4 81.5 7.06 ‡ 76.6 83.0 6.35 ‡ 78.3 84.1 5.80 ‡

Table 2: Evaluation of features derived from AUTOMATIC and MANUAL bilingual lexicons when trained on various
small numbers of target language trees (the SEED setting). Values reported are UAS for sentences of all lengths on
our enlarged CoNLL test sets (see text); each value is based on 50 sampled training sets of the given size. Daggers
indicate statistical significance as described in the text. Statistical significance is not reported for averages.

parser (Nivre, 2008)). However, our baseline is com-
petitive with theirs,10 demonstrating that we have
constructed a state-of-the-art delexicalized parser.
Furthermore, our method appears to approach the
performance of previous bitext-based methods, and
because of its flexibility and the freedom from com-
plex cross-lingual training for each new language, it
can be applied in the MANUAL case as well, a capa-
bility which neither of the other methods has.

3.4 SEED

We now turn our attention to the SEED scenario,
where a small number of target language trees are
available for each language we consider. While it
is imaginable to continue to exploit the other tree-
banks in the presence of target language trees, we
found that training our DELEX features on the seed
treebank alone gave higher performance than any

10The baseline of Täckström et al. (2012) is lower because it
is trained only on English rather than on many languages.

attempt to also use the concatenation of treebanks
from the previous section. This is not too surpris-
ing because, with this number of sentences, there is
already good monolingual coverage of coarse POS
features, and attempting to train features on other
languages can be expected to introduce noise into
otherwise accurate monolingual feature weights.

We train our DELEX+PROJ model with both AU-
TOMATIC and MANUAL lexicons on target language
training sets of size 100, 200, and 400, and give re-
sults for each language in Table 2. The performance
of parsers trained on small numbers of trees can
be highly variable, so we create multiple treebanks
of each size by repeatedly sampling from each lan-
guage’s train treebank, and report averaged results.
Furthermore, this evaluation is not on the standard
CoNLL test sets, but is instead on those test sets with
a few hundred unused training sentences added, the
reason being that some of the CoNLL test sets are
very small (fewer than 200 sentences) and appeared
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to give highly variable results. To compute statistical
significance, we draw a large number of bootstrap
samples for each training set used, then aggregate all
of their sufficient statistics in order to compute the fi-
nal p-value. We see that our DELEX+PROJ method
gives statistically significant gains at the 95% level
over DELEX for nearly all language and training set
size pairs, giving on average a 9% relative error re-
duction in the 400-tree case.

Because our features are relatively few in number
and capture heuristic information, one question we
might ask is how well they can perform in a non-
projection context. In the last line of the table, we
report gains that are achieved when PROJ features
computed from parsed Gigaword are used directly
on English, with no intermediate dictionary. These
are not comparable to the other values in the table
because we are using our projection strategy mono-
lingually, which removes the barriers of imperfect
lexical correspondence (from using the lexicon) and
imperfect syntactic correspondence (from project-
ing). As one might expect, the gains on English are
far higher than the gains on other languages. This
indicates that performance is chiefly limited by the
need to do cross-lingual feature adaptation, not in-
herently low feature capacity. We delay further dis-
cussion to Section 4.2.

One surprising thing to note is that the gains given
by our PROJ features are in some cases larger here
than in the BANKS setting. This result is slightly
counterintuitive, as our baseline parsers are much
better in this case and so we would expect dimin-
ished returns from our method. We conclude that ac-
curately learning which signatures transfer between
languages is important, and it is easier to learn good
feature weights when some target language data is
available. Further evidence supporting this hypothe-
sis is the fact that the gains are larger and more sig-
nificant on larger training set sizes.

4 Discussion

4.1 AUTOMATIC versus MANUAL

Overall, we see that gains from using our MANUAL

lexicons are slightly lower than those from our AU-
TOMATIC lexicons. One might expect higher per-
formance because scraped bilingual lexicons are not
prone to some of the same noise that exists in auto-

AUTOMATIC MANUAL

Voc OCC Voc OCC
DA 324K 0.91 22K 0.64
DE 320K 0.89 58K 0.55
EL 196K 0.94 23K 0.43
ES 165K 0.89 206K 0.74
IT 158K 0.91 78K 0.65
NL 251K 0.87 50K 0.72
PT 165K 0.85 46K 0.53
SV 307K 0.93 28K 0.60

Table 3: Lexicon statistics for all languages for both
sources of bilingual lexicons. “Voc” indicates vocabulary
size and “OCC” indicates open-class coverage, the frac-
tion of open-class tokens in the test treebanks with entries
in our bilingual lexicon.

matic aligners, but this is empirically not the case.
Rather, as we see in Table 3, the low recall of our
MANUAL lexicons on open-class words appears to
be a possible culprit. The coverage gap between
these and the AUTOMATIC lexicons is partially due
to the inconsistent structure of Wiktionary: inflected
German and Greek words often do not have their
own pages, so we miss even common morphologi-
cal variants of verb forms in those languages. The
inflected forms that we do scrape are also mapped
to the English base form rather than the correspond-
ing inflected form in English, which introduces fur-
ther noise. Coverage is substantially higher if we
translate using stems only, but this did not empir-
ically lead to performance improvements, possibly
due to conflating different parts of speech with the
same base form.

One might hypothesize that our uniform weight-
ing scheme in the MANUAL lexicon is another
source of problems, and that bitext-derived weights
are necessary to get high performance. This is not
the case here. Truncating the AUTOMATIC dictio-
nary to at most 20 translations per word and setting
the weights uniformly causes a slight performance
drop, but is still better than our MANUAL lexicon.
This further demonstrates that these problems are
more a limitation of our dictionary than our method.
English Wiktionary is not designed to be a bilingual
dictionary, and while it conveniently provided an
easy way for us to produce lexicons for a wide array
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Frauen    wollen    weiter     für       die     Quote  kämpfen
   NN     VMFIN    ADV    APPR   ART      NN    VVINF
Women     want     further     for       the     quota     fight

Women    want    to   continue   to    fight   for   the   quota
   NNP      VBP   TO      VB      TO    VB    IN   DT    NN

Figure 4: Example of a German tree and a parallel En-
glish sentence with high levels of syntactic divergence.
The English verb want takes fundamentally different chil-
dren than wollen does, so properties of the sort we present
in Section 2.2 will not transfer effectively.

of languages, it is not the resource that one would
choose if designing a parser for a specific target lan-
guage. Bitext is not necessary for our approach to
work, and results on the AUTOMATIC lexicon sug-
gest that our type-level transfer method can in fact
do much better given a higher quality resource.

4.2 Limitations

While our method does provide consistent gains
across a range of languages, the injection of lexical
information is clearly not sufficient to bridge the gap
between unsupervised and supervised parsers. We
argued in Section 3.4 that the cross-lingual transfer
step of our method imposes a fundamental limitation
on how useful any such approach can be, which we
now investigate further.

In particular, any syntactic divergence, especially
inconsistent divergences like head switching, will
limit the utility of transferred structure. Consider
the German example in Figure 4, with a parallel En-
glish sentence provided. The English tree suggests
that want should attach to an infinitival to, which has
no correlate in German. Even disregarding this, its
grandchild is the verb continue, which is realized in
the German sentence as the adverb weiter. While
it is still broadly true that want and wollen both
have verbal elements located to their right, it is less
clear how to design features that can still take advan-
tage of this while working around the differences we
have described. Therefore, a gap between the per-

formance of our features on English and the perfor-
mance of our projected features, as is observed in
Table 2, is to be expected in the absence of a more
complete model of syntactic divergence.

5 Conclusion

In this work, we showed that lexical attachment pref-
erences can be projected to a target language at the
type level using only a bilingual lexicon, improving
over a delexicalized baseline parser. This method
is broadly applicable in the presence or absence
of target language training trees and with bilingual
lexicons derived from either manually-annotated re-
sources or bitexts. The greatest improvements arise
when the bilingual lexicon has high coverage and a
number of target language trees are available in or-
der to learn exactly what lexico-syntactic properties
transfer from the source language.

In addition, we showed that a well-tuned discrim-
inative model with the correct features can achieve
good performance even on very small training sets.
While unsupervised and existing projection meth-
ods do feature great versatility and may yet pro-
duce state-of-the-art parsers on resource-poor lan-
guages, spending time constructing small supervised
resources appears to be the fastest method to achieve
high performance in these settings.
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