
Using Template-Grammars for Shake & Bake Paraphrasing

Michael Carl, Ecaterina Rascu and Paul Schmidt

Institut für Angewandte Informationsforschung
Saarbrücken, Germany

email:{carl,kati,paul}@iai.uni-sb.de

Abstract
In this paper we propose an approach to corpus-based generation in a machine translation framework that is similar to
shake & bake (Whitelock, 1992). A bag of words is mapped against an automatically induced TL template grammar
and a sentence is generated by recursively applying rules that are extracted from the template grammar. A test version
of the template grammar is enriched with further lexical and grammatical variation patterns. We show how we induce a
template grammar and how it is enriched with additional paraphrasing knowledge. We suggest a framework for weighing
and training the template grammars and show that the enriched template grammars produce better paraphrases.

1. Introduction

Paraphrasing is frequently used as an instrument
to improve the output of various NLP applications.
On the one hand, it is used to cope with the highly
variable character of natural language in applica-
tions like multi-document summarisation (Barzilay
et al., 1999) where phrases reporting on the same fact
have to be found in input documents. Moreover, in
controlled language machine translation (Mitamura
and Nyberg, 2001) replacing a source language (SL)
item with a paraphrase that is better suited to the
requirements of the MT engine boosts the perfor-
mance of the system, whereas in information retrieval
or question answering (Jacquemin et al., 1997; Ri-
naldi et al., 2003) query expansion by means of para-
phrases leads to increased retrieval efficiency. On the
other hand, paraphrasing is used to control the gen-
eration process within NLP applications. It may help
produce the best-suited utterance in a given situation
(Iordanskaja et al., 1991; Robin, 1994; Dras, 1999).

In this paper we describe an approach to corpus-
based generation within an MT framework in which
paraphrasing is used as a verifying instrument and a
means to improve the performance of the system.

The approach developed in this paper is a contri-
bution to METIS-II. In the EU-project METIS-II,
a follow-up to METIS-I1 (Dologlou et al., 2003),
the aim is to investigate the possibilities to develop
a data-driven MT system using a huge monolingual
target language (TL) corpus and a bilingual dictio-
nary. While the dictionary is used to map SL items
onto the TL, the corpus serves as a model to gener-
ate the TL sentences. This parallels with shake &
bake (S&B) (Whitelock, 1992). In S&B the bilin-

1http://www.ilsp.gr/metis2/

gual knowledge is exhausted by the equivalence of
basic expressions and TL generation is under direct
control of the TL grammar. This makes large scale
structural reorganisation of the TL possible and over-
comes the inherent problems in conventional third-
generation transfer-based MT. In these latter systems,
TL generation is merely a matter of traversing and
printing out intermediate representations which are
defined by the structure of the SL text (Whitelock,
1991).

The S&B approach also entails that the transfer
component and the generation component can be de-
veloped and tested independently.

In this paper we focus on the generation com-
ponent of the system. Coherent (possibly discon-
tinuous) sequences of words are coded in one tem-
plate. We (re) generate the sentences by using tem-
plate grammars and paraphrase grammars as well
as a weighing procedure to rank the produced para-
phrases. We compare the paraphrases that are pro-
duced with the different grammars.

In the following section we outline our approach
to TL generation. Then, in section 3., we show how a
template-based generation grammar is induced from
a large English corpus and how a paraphrase gram-
mar is generated by using lexical and grammatical
variation patterns. In section 4. we describe the para-
phrase generation algorithm and how weights are as-
signed and trained. In section 5. we give an eval-
uation of the approach and show that even a small
paraphrase grammar outperforms a template gram-
mar that has a 100 times more rules. Last we outline
future work on this approach.

66 EAMT 2005 Conference Proceedings

2. Approach
Shake & bake generation starts from a bag of TL

items, where the order of the items in the bag is irrele-
vant (Whitelock, 1992). Generation freely combines
the items to produce all sentences that are compatible
with the constraints in the bag and in the TL gram-
mar. According to Brew(Brew, 1992), all items in the
bag are to be used in the generated target sentence.

While this paper investigates whether the S&B
approach can be combined with template grammars,
our approach deviates from standard S&B in that:

1. a paraphrase may contain additional items
which are not contained in the bag.

2. a paraphrase may be generated that does not
contain all the items in the bag.

3. SL word order is marked and therefore accessi-
ble in the bag of items. This information can be
considered as a preference mechanism and help
score solutions, if there are more than one.

4. Grouping information may be carried over from
the SL to express grouping preferences in the
TL.

5. Additional constraints may be used to guide the
generation process.

This paper would not consider items 3, 4 and 5.
See section 6. for a discussion on future investigation.

Since one of the aims of METIS-II is to ex-
ploit the knowledge inferable from corpora to a maxi-
mum degree, we automatically induce a TL template-
grammar from a huge monolingual corpus. The tem-
plates contain different degrees of generalisations as
outlined in section 3.1.. In this way we induce many
more generation rules than could ever be produced
by hand. As a second step of generalisation, we gen-
erate a paraphrase grammar from the template gram-
mar by enriching the latter with information concern-
ing lexical and grammatical variation as described in
section 3.2..

On the basis of the induced template grammar
and paraphrase grammar, TL sentences are produced
from the initial bag of words and scored according to
the length and appropriateness of the rules and tem-
plates involved in their generation. We use learning
methods to train weights of the rules in order to as-
sign higher scores to better paraphrases.

In contrast to S&B, where the free combination
of items in the bag is restricted by constraints of a
hand-made TL grammar, in our approach most of the
constraints, in particular word-order, are left implicit
in the context of the templates.

3. Generation of Shake & Bake Grammar

The METIS-II project uses the British National
Corpus (BNC) as a target language corpus. The
BNC2 is a collection of 4,054 annotated spoken and
written English texts tagged with the CLAWS tag-
ger3.

We have extracted from the BNC two sets of se-
quences4:

• set1 with 1,000 sequences

• set2 with 100,000 sequences

All sequences contain at least one finite verb and
are between 5 and 15 words long. The sets have
8,555 and 863,245 words respectively.

We have partially parsed the sequences and ex-
tracted a CFG-like template grammar. The template
grammars for set1 and set2 are stored in grammars G1

and G2 respectively. In addition, we have generated
the paraphrase grammars G1P and G2P from G1 and
G2. In the remainder of this section we outline how
we have parsed the sets, extracted the four grammars
and generated the paraphrase grammars.

3.1. Inducing a Template Grammar

Partial parsing yields a bracketed structure, as
shown in the following example. The pronoun “i”,
the adverb “never” and the NP “the embarrassment”
are bracketed.

(i)pron ’ll (never)adv forget (the (embarrassment)noun)np

We do not allow overlapping and/or ambiguous
segmentation but enable recursive bracketing. Thus,
a “noun” can be bracketed within a larger “np”
which can be part of a “pp” etc. For instance, the
bracketed noun “embarrassment” is contained in the
larger “np” (the (embarrassment)noun)np .

1 seg → <pron> ’ll <*adv> forget <np> .
2 np → the <noun>
3 pron → i
4 noun → embarrassment
5 adv → never

We extract a CFG grammar from these trees in
the following way. On the one hand, we extract rules
from the bracketed structures by transforming the

2http://www.natcorp.ox.ac.uk
3http://www.comp.lancs.ac.uk/

computing/research/ucrel/claws/
4The BNC manual refers to “sequence” rather than

sentences: The sequence “is the basic organisational prin-
ciple for the whole corpus . . . ” In many cases a sequence
corresponds with regular orthographic sentences.

Using Template-Grammars for Shake & Bake Paraphrasing

EAMT 2005 Conference Proceedings 67

G1 G2 G1P G2P

1837 seg
1775 noun

508 adj
128 adv
115 card
99 sentence
95 np
54 pp

5 clause
4616

158211 seg
34957 noun

9640 adj
7373 sentence
3669 card
1290 adv
358 np
215 pp

26 clause
215739

2714 seg
1782 noun

515 adj
157 sentence
139 adv
116 card
98 np
55 pp

5 clause
5581

243149 seg
34968 noun
11468 sentence

9651 adj
3669 card
1299 adv
358 np
215 pp

26 clause
304803

Table 1: Distribution of Rules in Template Grammars G1 and G2 and in Paraphrase Grammars G1P and G2P

tag into the left-hand side (LHS) of the rules and the
contents into the right-hand side RHS. Thus the tag
noun appears on the LHS in rule (4) while the con-
tents of the bracketed expression ”embarrassment”
occurs in the RHS. On the other hand, templates are
generated by replacing the bracketed constituents
with their tags. A tag can be marked optional with
an asterisk ∗. For instance, the adverb “never” is
marked as an optional slot in template (1) carrying
the feature <*adv> while the <np> object is a
compulsory slot in the same template.

The grammar extracted from the above example
consists of 5 context-free rules, where seg is the
top-level symbol and np, noun and adv are non-
terminals. Note that at least one terminal symbol
must occur in the RHS of the rules.

The partial parser is implemented in KURD (Carl
and Schmidt-Wigger, 1998). The parser consists
of three sets of rules which incrementally produce
larger brackets: the LEX set marks only the lexi-
cal items: nouns, adjectives, adverbs and numbers.
The PHRASE set marks adjective phrases, noun
phrases, conjunctions of noun phrases and preposi-
tional phrases. The CLAUSE set marks subordinate
clauses and sentences.

A separate template is generated for each set of
rules. Thus, sequence (6) can be generalised in three
different ways: template (7) is generated with the
LEX set by substituting only lexemes. Template (8)
is generated with the PHRASE set by substituting
phrases whereas template (9) contains a substituted
clause. In addition to the generated templates of the
sequences, constituents and their generalisations are
also extracted.

6 seg → we ’ll see if we can get you to rights .
7 seg → <pron> ’ll see if <pron> can get <pron> to <noun> .
8 seg → <pron> ’ll see if <pron> can get <pron> <pp> .
9 seg → <pron> ’ll see <clause> .

Table 1 shows size and contents of the grammars

G1 and G2 generated from set1 and set2 respectively.
The number of rules in G1 is more than 4 times
higher than the number of sequences in set1 while
for G2 on average slightly more than two rules are
generated for each sequence. For each sequence in
the sets, 1.8 respectively 1.5 sequence templates were
generated on average.

3.2. Inducing a Paraphrase Grammar

We enrich the template grammars G1 and G2 with
synonyms, variants and paraphrases using a method-
ology described in (Carl et al., 2004). Similar to the
approach in (Rinaldi et al., 2003), we operate on two
levels: on the phrase level, lexical paraphrases are
generated while on the sentence level, paraphrases
based on grammatical variation are produced. This
paraphrasing process relies on two types of manu-
ally collected resources: lexical variation patterns in-
cluding writing variants and synonyms of words and
phrases on the one hand and grammatical variation
patterns on the other.

The following examples illustrate the para-
phrasing process for sequence (10). The template
grammar (as described in section 3.1.) produces
template (11). This template is the input to the
paraphrasing process.

10 seg → it wo n’t dry till next week.
11 seg → <pron> wo n’t dry till next <noun>.
12 seg → <pron> will not dry until the following <noun>.
13 seg → <pron> is n’t going to dry till

next <noun>.
14 seg → <pron> is;am;are not going to dry until the

following <noun>.

The paraphrase grammar operates in several steps,
adding new templates to the template grammar. In a
first step only the lexical variation patterns are used to
generate paraphrase templates (12). Then, the gram-
matical variation patterns are applied to template (11)
producing paraphrase template (13) whereas para-
phrase template (14) is produced by combining the

Carl et al.

68 EAMT 2005 Conference Proceedings

lexical and grammatical variation patterns.5

The figures for the generated paraphrase gram-
mars are given in table 1. Compared to the template
grammars, the paraphrase grammars G1P and G2P

contain on average one more rule for each initial se-
quence. Thus, grammar G1P is more than five times
larger than set1 while grammar G2P contains slightly
more than three times the number of sequences in
set2.

4. Shake & Bake Paraphrasing

In this section we show how we match a bag of
words on a template grammar and how paraphrases
are generated.

4.1. Paraphrase Generation

We produce a set of paraphrases p0 . . . pn−1 from
an English sentence s using the generation grammars
G1 G2 G1P and G2P as outlined in section 3.. First
we transform the English sentence s into a bag of
words B enriched with further constraints. Each sub-
set of B is matched on the grammar and the retrieved
rules are assembled in a generation grammar Gs for
s as outlined in section 4.2..

Generation of paraphrases from Gs works in a
top-down manner starting from rules with the top-
level tag seg recursively filling the variable slots,
thereby building a derivation for a particular para-
phrase pi. When filling the slots of templates, the
slot’s tag must unify (actually be identical) with the
LHS of the filling rule. In order to avoid non-
terminating recursion, we only allow rules with at
least one terminal symbol on the RHS.

We describe how the paraphrases are weighted in
section 4.3.. Weights are computed while the para-
phrases are generated. In section 4.4. we propose an
algorithm to train the weights. We evaluate the ap-
proach based on the similarity of paraphrases pi and
the original sentence s in section 5..

4.2. Retrieving Rules from the Template
Grammar

To find most suitable rules in the template gram-
mar, two weights are computed rw(rj |B) and
ew(B|rj). The weight rw(rj |B) indicates whether
the rule rj contains additional items that are not in
B. The weight ew(B|rj) indicates to which extent
the rule rj covers the items in B

5In the present architecture surface forms of words are
used rather than lemmas. In future versions we will con-
sider lemmas instead of the surface forms.

Thus, we seek two functions that have the follow-
ing properties:

rw(rj |B) = 1 if rj is a subset of B.
rw(rj |B) < 1 if rj contains items that are not in B.
ew(B|rj) = 1 if B is a subset of rj .
ew(B|rj) < 1 if B contains items that are not in rj .

We grade the retrieved rules by the product of the
two functions:

rew(rj , B) = rw(rj |B) ∗ ew(B|rj)

The rules in Gs are selected according to the
weight rew(.)6. The generation grammar Gs con-
tains the first n-best (e.g. n = 20) rules for each subset
of B.

Since not every item in B and rj is equally im-
portant, we weigh the items by their inverse logarith-
mic frequencies. That is, an item that occurs very
frequently in the grammar, as e.g. articles, will con-
tribute less to the overall weights than items that oc-
curs only few times. In this way we hope to assign
higher weighs to rules that realise to a better extent
the contents of the bag.

rw(rj |B) =
∑

t∈rj∩B

1/[cnt(rj) ∗ log(f(t))]

ew(B|rj) =
∑

t∈rj∩B

1/[cnt(B) ∗ log(f(t))]

where log(f(t)) is the logarithm of the frequen-
cies a token t occurs in the grammar and the count
cnt is the inverse sum over all token log frequencies
in X:

cnt(X) = 1/
∑

t∈X

log(f(t))

Thus, the bag B is mapped onto a grammar from
which a set of rules is retrieved. The set of rules is
considered a generation grammar Gs for s. From
this generation grammar, a number of paraphrases
{p0...pn−1} are produced as outlined above. The
next sections describe how paraphrases are weighted.

4.3. Weighing Paraphrases

In order to grade the produced paraphrases, we
compute a weight which is composed of the weights
of the involved rules and the length of the produced
paraphrases. The basic idea is that paraphrases com-
posed of one (or few) piece(s) (i.e. few specific rules)
are likely to be better than paraphrases composed of

6rew(.) = 1 if rj and B are identical, else rew(.) < 1.

Using Template-Grammars for Shake & Bake Paraphrasing

EAMT 2005 Conference Proceedings 69

G1 G1P G2 G2P

md(S, t0) 0.195349
md(S, t1) 0.151062
md(S, t2) 0.122849
md(S, t3) 0.103013
md(S, t4) 0.088030
md(S, t5) 0.076157
md(S, t6) 0.066480

0.171970
0.132748
0.109684
0.094421
0.083225
0.074405
0.067166

0.205970
0.173205
0.159651
0.141437
0.138416
0.113293
0.119586

0.185604
0.178096
0.164168
0.156727
0.141413
0.126913
0.119260

i will never love him .
will , love never .
i and him never .
i , him never .
i will tell him .

i will never love him .
i never love him .
i will never see him .
i shall never love him .
i and him never .

i will never love him .
will i my love gain never .
him will never love i .
i will love him .
fi rst i will gain him .

i will never love him .
i will never understand him .
i shall never love him .
i ’ll never love him .
oh i will never call him .

Table 2: Convergence of the the template and paraphrase grammars on a set of 15 test sequences and some of
the best produced paraphrases after 6 iterations

many small pieces (i.e. many rules). Accordingly,
weights assigned to paraphrases decrease the more
they are built from small pieces. In addition, a para-
phrase should be as complete as possible. That is,
compared to the bag of items from which it is gener-
ated, the paraphrase should contain

We initialise the weight of a rule rj at time t0
based on the number of its terminal symbols sj and
its non-terminal symbols nj :

w(rj , t0) = sj/(sj + nj)

The initial weight w(rj , t0) is equal to 1 if rule
rj contains only terminal symbols. The more non-
terminal symbols rj contains, the smaller will be its
weight.

Since rules map a certain number of items in
B, we contextualise the weight of rj according to
the amount of items it covers in B. The weight
w(rj , B, tk) of a rule rj given a bag of items B at
time tk is:

w(rj , B, tk) = w(rj , tk) ∗ sj/|B|

The weight w(rj , B, t0) is equal to 1 if rj and B
share the same tokens and if rj contains only termi-
nal symbols. The weight w(rj , B, t0) decreases if rj

contains non-terminal symbols and/or if rj covers a
subset of B.

Finally, we compute the weight w(pi, B, tk) of
an English paraphrase pi as the sum of the contex-
tualised weights for the rules rj which are used to
build pi:

w(pi, B, tk) =
∑

rj �→pi

w(rj , B, tk)

which is equivalent to:

w(pi, B, tk) = 1/|B| ∗
∑

rj �→pi

w(rj , tk) ∗ sj

Weights are computed compositionally and recur-
sively as the derivation tree of a particular paraphrase
is built up. Since these two processes are processed
in parallel, the weight w(rj , B, tk) gives us the pos-
sibility to grade and order the next rule to apply in
every step of the generation process. The rules and
constraints, on the other hand, tell how the pieces
should be stitched together. This makes it possible
to generate n-best paraphrases or stop below a cer-
tain threshold or beyond a fixed number of generated
sentences.

4.4. Training Weights

We re-estimate the weights using an “objective
score”. The objective score evaluates each para-
phrase p0 . . . pn−1 according to some external crite-
ria. The goal of the algorithm is to adjust the rule
weights w(rj , tk) so that the mean error between the
objective score and the internal weight w(pi, B, tk)
is minimised.

We use BLEU as an objective score to compare
the produced paraphrases p0 . . . pn−1 with the En-
glish source string s. We compute for each para-
phrase pi the delta D = bleu(pi, s) − w(pi, Bs, tk).
The weights of the rules rj used to generate pi are ad-
justed at time tk+1 according to the following equa-
tion:

w(rj , tk+1) = w(rj , tk) + d(rj , tk)/nj

where d(rj , tk+1) and nj are computed as in fig-
ure 3.

Carl et al.

70 EAMT 2005 Conference Proceedings

for all (sequences sp ∈ test set)
generate a bag of items Bp from sp

extract generation grammar Gp from G
produce paraphrases Pp : {p0...pn−1} from Gp

for all (paraphrases pi ∈ Pp)
Dp = bleu(pi, sp) − w(pi, Bp, tk)
for all (rules rj used to generate pi)

d(rj , tk+1)+ = Dp

nj + +;
end

end
end

Table 3: Re-estimating rule weights

5. Evaluation
We have trained the algorithm on a test set (S) of

15 sequences containing no out of vocabulary words.
The sequences in S were between 5 and 12 words
long. For each sequence approximately 100 para-
phrases were generated. Each paraphrase was as-
signed an internal score w(pi, Bp, tk) as discussed in
section 4.3. The BLEU score was computed for each
paraphrase pi measuring the ’distance’ to the original
sentence sp. The numerical difference between the
internal score and the BLEU score was fed back into
the rules of the grammars as discussed in section 4.4..

Table 2 shows the mean arithmetic distance (md)
between the internal and the external weight for the
test set at the successive iteration steps t0 to t6. The
mean arithmetic distance was computed as follows:

md(S, tk) =

√
1/|S| ∗

∑
sp∈S

(bleu(pi, sp) − w(pi, Bp, tk))2

As shown in table 2, the training algorithm min-
imises the mean arithmetic distance (md) in succes-
sive iteration steps. However, larger grammars con-
verge more slowly. We expect this to be due to the
small size of the test set.

It is also interesting to note that the paraphrase
grammars (G1P and G2P) start with a better lower
error than the template grammars. An example of
the produced paraphrases is shown in the lower part
of the table. This small test seems to indicate that
paraphrase grammars are better suited for S&B para-
phrasing than the template grammars.

6. Future Work
In the future we intend to extend the approach in

several directions.

The reference material as well as the items in the
bags are to be lemmatized. In order for the lemma-
tizer to be useful for generation, it has to come along
with a reversible token-generator. That is, not only
it must be possible to re-generate the original word-
forms but the token-generator also has to produce re-
lated forms. For instance, a noun might occur in its
singular in a template as it was extracted from the
BNC. When re-using the template in a different con-
text it might be necessary to re-generate the word’s
plural form.

In conjunction with a reversible
lemmatizer/token-generator, a morphological
generator becomes indispensable. While the token-
generator produces a particular word-form given a
lemma and additional features, the morphological
generator figures out which forms are to be pro-
duced. Since the lemmatizer abstracts from number,
person and tense, the morphological generator must,
in principle, make sure that each lemma is associated
with the correct information concerning number,
person and tense for the token-generator to produce
the correct forms. Thus, the morphological generator
is responsible for correct agreement, realisation of
(personal) pronouns. We are currently investigating
the possibilities of these tools and elaborate a list of
requirements to be met by the system.

Eventually we want to generate the bag of words
not from a TL sentence, but obtain the items from
a source language. This requires a bilingual dictio-
nary and an appropriate lexical transfer module. Con-
sistent integration of the mathematics for retrieval of
rules (see in section 4.2.), weighing (section 4.3.) and
training (4.4.) would have to extend to lexical weights
obtained from dictionary lookup. Training of weights
will have to feed-back into the dictionary resources.

As mentioned in section 2., additional constraints
shall be used to guide the generation process as de-
scribed in this paper. These constraints may stem
from different sources and will have an impact on the
rules retrieved from the grammar (cfg. section 4.2.)
and how they are stitched together.

These constraints and preferences include:

• collocation preferences of certain word combi-
nations

• chunking or parsing information carried over
from the SL

• requirements wrt. type of text and domain

• user preferences wrt. terminology, paraphras-
ing, style etc.

Using Template-Grammars for Shake & Bake Paraphrasing

EAMT 2005 Conference Proceedings 71

Our generation architecture can be viewed as a
sort of “machine translation without a source text”
(Somers et al., 1990). With Somers we assume that
some kind of “conventional compositional transla-
tion” is required but also additional guiding informa-
tion (which they call dialogue context DC in their
paper) is necessary. While flexibility and recall of
our system is achieved by the compositionality of
the template grammar, Somers’ vision is that “the
equivalence relation of two expressions is not guar-
anteed by the expressions themselves but by the DCs
which are given rather independently of the informa-
tion content ...”

Against this background we are investigating pos-
sibilities to express different types of constraints in a
homogeneous format. It should be possible to eas-
ily adopted constraints to different needs and they
should well integrate into the architecture of the sys-
tem.

7. Conclusion

The paper presents a first step towards a corpus-
based MT system using a huge monolingual target
language corpus and a hand-crafted dictionary. The
paper presents a generation component from a bag of
TL words.

We discuss two approaches to paraphrase genera-
tion that are simultaneously used in one system: (a)
a ’rule-based’ paraphrasing system which extends a
template grammar with lexical and grammatical vari-
ation patterns and (b) a ’data-driven’ shake & bake
generation module that generates a number of para-
phrases from a bag of words using the original tem-
plate grammar and the paraphrase-extended template
grammar. We show that a small extended template
grammar produces better results than a large gram-
mar that is not extended with paraphrases.

The use of two different techniques, i.e. rule-
based and data-driven paraphrasing, to achieve one
goal is motivated by the nature of the approach
adopted for TL generation within the METIS-II MT
system. On the one hand the input from which we
want to generate the paraphrases is a bag of items
and not a syntactically correct text. Therefore special
constraints are needed in the TL grammar in order to
produce an adequate output. On the other hand, we
seek to exploit the knowledge contained in a large
text corpus to a maximum extent. Hence, the rule-
based paraphrasing method was used as an instru-
ment to extend and refine the resources that are in-
duced from the corpus. We show that adding further
rule-induced knowledge to a text corpus increases the
performance of paraphrase generation.

8. References
Barzilay, R., K. McKeown, and M. Elhadad, 1999. Infor-

mation Fusion in the Context of Multi-Document Sum-
marization. In Proceedings of the ACL.

Brew, Chris, 1992. Letting the Cat out of the Bag: Gen-
eration for Shake & Bake MT. In Proceedings of COL-
ING92.

Carl, Michael, Ecaterina Rascu, Johann Haller, and
Philippe Langlais, 2004. Abducing Term Variant Trans-
lations in Aligned Texts. Terminology, 10(1):103–133.

Carl, Michael and Antje Schmidt-Wigger, 1998. Shallow
Postmorphological Processing with KURD. In Pro-
ceedings of NeMLaP3/CoNLL98. Sydney.

Dologlou, Y., S. Markantonatou, G. Tambouratzis,
O. Yannoutsou, A. Fourla, and N. Ioannou, 2003. Using
Monolingual Corpora for Statistical Machine Transla-
tion: The METIS System. In Proceedings of the EAMT-
CLAW 03: Controlled Language Translation.

Dras, M., 1999. Tree Adjoining Grammar and the Reluc-
tant Paraphrasing of Text. Ph.D. thesis, Macquarie Uni-
versity.

Iordanskaja, L., R. Kittredge, and A Polguere, 1991. Nat-
ural Language Generation in Artificial Intelligence and
Computational Linguistics. Kluwer Academic Publish-
ers.

Jacquemin, C., J. Klavans, and E. Tzoukerman, 1997.
Expansion of Multi-Word Terms for Indexing and Re-
trieval Using Morphology and Syntax. In Proceedings
of the ACL.

Mitamura, T. and E. Nyberg, 2001. Automatic Rewriting
for Controlled Language Translation. In Proceedings
of the NLPRS 2001 Workshop on Automatic Paraphras-
ing: Theories and Applications.

Rinaldi, F., J. Dowdall, D. Molla, K. Kaljurand, and
M. Hess, 2003. Exploiting Paraphrases in a Question
Answering System. In Proceedings of the ACL.

Robin, J., 1994. Revision-based Generation of Natu-
ral Language Summaries Providing Historical Back-
ground. Ph.D. thesis, New York University.

Somers, Harold, Jun ichi Tsujii, and Danny Jones, 1990.
Machine translation without a source text. In Proceed-
ings of the COLING90.

Whitelock, P., 1991. Shake-and-Bake Translation. Un-
published Draft.

Whitelock, P., 1992. Shake-and-Bake Translation. In Pro-
ceedings of the COLING92.

Carl et al.

72 EAMT 2005 Conference Proceedings

