Victor Sadler
WORKING
WITH
ANALOGICAL SEMANTICS:
Disambiguation Techniques in DLT
1989
FORIS PUBLICATIONS
(Distributed
Language Translation 5)
[copyright
Mouton de Gruyter]
Table of Contents
Acknowledgements
… 8
Introduction  … 9
Part I: Prototype R&D
Chapter 1. The field: Types of ambiguity relevant to machine translation … 15
1.1 Types and terms …. 17
1.1.1          
Lexical
ambiguity … 18
1.1.2          
Relational
ambiguity … 19
1.2 The scale of difficulty … 25
Chapter 2. The background: Development of the prototype architecture … 27
2.1         
Dumb syntax, smart
semantics … 30
2.2   
The knowledge sources …
33
2.2.1           
Potential sources … 33
2.2.2   
Knowledge sources in
the prototype … 36
Chapter 3. The theory: Assessing plausibility … 39
3.1         
What
constitutes plausibility? … 40
3.2   
Methods
of assessing plausibility … 41
3.2.1           
The
conventional approach: features and primitives … 41
3.2.2   
The DLT prototype:
collecting the evidence … 43
3.2.3           
The first DLT prototype:
making meaning explicit … 46
3.2.4   
The
second DLT prototype: leaving meaning implicit … 50
Chapter 4. The techniques: Reasoning by analogy … 53
4.1          
The
word match … 55
4.2   
Disambiguating
the source language … 59
4.2.1           
Lexical choice: the
word pair match … 59
4.2.2   
The Y match … 61
4.2.3   
The
X match  … 62
4.2.4   
Combining the X and Y
matches … 64
4.2.5   
Combining
word pair matches … 64
4.2.6   
Resolving
relational ambiguities … 66
4.2.7   
The
disambiguation dialogue … 68
4.3 Disambiguating the intermediate language … 71
4.3.1   
Contextual
cues in the bilingual dictionary … 72
4.3.2   
Word match and
expectancy match … 74
4.3.3   
Method of the
expectancy match … 76
4.3.4   
Combining
the match scores  …  77
4.3.5   
Functional
disambiguation …  78
Chapter 5. The evaluation: Tests and limitations … 81
5.1 Some tests of SWESIL … 82
5.1.1           
Testing
the word match function …  82
5.1.2   
Testing
the word pair match function … 86
5.1.3   
The
Meijby Test … 89
5.1.4   
Applications
for referential disambiguation  …  98
5.2 The limitations of SWESIL … 99
5.2.1           
Strategic
problems …  99
5.2.2   
Limitations
on existing functions … 102
5.2.3   
Adding
new functions … 104
Part II: Design for a production system
Chapter 6. The Bilingual Knowledge Bank: An integrated knowledge source for machine translation … 109
6.1 Rationale for a BKB … 110
6.1.1           
Objectivity:
the corpus as primary knowledge resource 
…  110
6.1.2   
Dictionary
building: the need for a bilingual corpus 
…  111
6.1.3   
Reversibility:
the use of bilingual context …   112
6.1.4   
Consistency:
discarding the LKB …   114
6.1.5   
Quantity:
structuring the corpus …   116
6.1.6   
Scope:
increasing the breadth of knowledge  …  119
6.1.7   
Specificity:
processing encyclopaedic knowledge …  
122
6.1.8   
Sensitivity:
distinguishing word senses …   124
6.1.9   
Productivity:
towards full alignment …   126
6.1.10   
Dynamicity:
updating the knowledge sources …   131
6.1.11            
Probability:
relativising the frequencies …   132
6.1.12   
The
conclusion: the need for an on-line corpus 
…  132
6.1.13   
Comparison
with other research …   133
6.2 Constructing the BKB … 137
6.2.1            
Structural
disambiguation  …  137
6.2.2   
Identifying
translation units …   139
6.2.3   
Identifying
referents …   140
6.3 Advantages and spin-offs of the BKB approach … 143
6.3.1           
Basic
advantages …   143
6.3.2    The spin-offs …   145
6.3.3   Possible objections  …  146
Chapter 7. Disambiguation with a BKB: Something old and something new, something borrowed... 149
7.1 Towards a new process architecture … 153
7.1.1   
Selecting
the translation units …   155
7.1.2   
Challenging
the selections …   156
7.1.3   
Backtracking
…   157
7.2 Examples of (simulated) BKB-based disambiguation … 158
7.2.1           
An
example of lexical disambiguation …   159
7.2.2   
Choosing
between TL synonyms  …  182
7.2.3   
Structural
disambiguation  …  186
7.2.4   
Functional
disambiguation …   188
7.2.5   
Referential
disambiguation  …  190
7.3 Principles and techniques …. 193
7.3.1           
TU selection by the Metataxor  … 193
7.3.2   
Semantic
coherence and the Examiner …   195
7.3.3   
Evaluating
referential relations  …  198
7.3.4   
Evaluating
functional relations …  198
7.3.5   
Backtracking and
semantic feedback …  200
7.4 A new look at the disambiguation dialogue … 202
7.4.1   
Structural
ambiguity …  203
7.4.2   
Referential
ambiguity …  204
7.4.3   
Functional ambiguity …   204
7.4.4 Lexical ambiguity … 205
Chapter 8. Towards intelligent disambiguation: Inferencing over the BKB … 207
8.1 Inferring indirect referential relations … 209
8.1.1           
Inference based on
explicit references  … 209
8.1.2   
Inference in the
absence of explicit references  … 212
8.2   
Recognizing
contradictions and inconsistencies …  218
8.3         
Exploring
deeper implications  …  223
8.4   
The BKB as a basis for
inference procedures  … 227
8.4.1           
Discovering
inference rules  …  227
8.4.2   
Applying inference
rules …  229
8.4.3           
The
knowledge representation …   230
Chapter 9. Spin-off: BKBs, MKBs and other animals... 235
9.1          
Other
translation environments …  236
9.2    Monolingual knowledge banks …  241
9.3          
Database
applications …  243
In
conclusion …   246
References  …  247
Index …   252