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Abstract 

We describe the development environment 
available to linguistic developers in our lab 
in writing large-scale grammars for 
multiple languages. The environment 
consists of the tools that assist writing 
linguistic rules and running regression 
testing against large corpora, both of which 
are indispensable for realistic development 
of large-scale parsing systems. We also 
emphasize the importance of parser 
efficiency as an integral part of efficient 
parser development. The tools and methods 
described in this paper are actively used in 
the daily development of broad-coverage 
natural language understanding systems in 
seven languages (Chinese, English, French, 
German, Japanese, Korean and Spanish).  

1 Introduction 

The goal of the grammar development at Microsoft 
Research is to build robust, broad-coverage 
analysis and generation systems for multiple 
languages. The runtime system is referred to as 
NLPWin, which provides the grammar 
development environment described in this paper. 
The graphical user interface of NLPWin is shown 
in Figure A in the Appendix. The system is modular 
in that the linguistic code is separate from 
non-linguistic code. All languages share the same 
parsing engine, which is a bottom-up chart parser 
and is fully Unicode-enabled. Linguistic code itself 
is also modular, in that it can be specific to a 
particular language (e.g., syntax rules) or can be 
largely shared across languages (e.g., semantic 
mapping rules). Linguistic rules are written in a 
proprietary language called G; a sample syntax rule 
written in G is given in Figure B in the Appendix. 
G-rules are translated into C, yet they are more 
convenient for a linguist to use than C, as it gives 
special notational support to attribute-value data 

structures used within the system. The rule and data 
structure formalisms are shared by all languages; 
for details, see Jensen et al. (1993) and Heidorn 
(2000).  

In this paper, we describe the tools and 
methods for the cross-linguistic development of 
analysis components of our system, which consists 
of three major modules: (i) the tokenization 
component, which performs word segmentation (in 
the case of Chinese and Japanese) and 
morphological analysis; (ii) the parsing component, 
which performs phrase-structure analysis and 
creates parse tree(s)1; (iii) the Logical Form (LF) 
component, which computes the basic 
predicate-argument structure from parse tree(s)2. In 
this paper, we focus on the tools and the methods 
for the development of parsing and LF components, 
which are essentially the same3.  

For an efficient development of a computational 
grammar of these modules, we find it necessary to 
have a development environment that can provide 
immediate feedback to the grammar-writer of the 
changes he or she has made. We have three types of 
tools in our system to meet these requirements:  

 Tools for linguistic rule writing: these include 
the tools that let linguists navigate through the 
final and intermediate parse trees, and trace 
rule application (Section 2).  

 Tools for grammar testing: these tools allow 
linguists to compare results of two versions of 

                                                      
1  This component is further divided into the Sketch 
component, which produces trees with default 
attachment of constituents, and the Portrait component, 
which finds the best attachment sites (Heidorn, 2000).  
2 LF is computed from a surface syntax tree via a level of 
representation called Language-Neutral Syntax (LNS), 
which serves as an interface to various semantic 
representations including predicate-argument structure. 
For a more detailed description of LNS, see Campbell 
and Suzuki (2002).  
3 Similar tools and methods are also available for the 
development of sentence realization component.  



 

grammar, and update the database of desired 
output structures (called regression suites, 
Section 3). 

 A very fast processing environment (Section 
4).  

These tools are described in the following three 
sections of this paper. Section 5 gives a summary 
and suggests directions for future research.  

2 Tools for linguistic rule writing 

In this section we present the tools available for the 
development of the parsing component. The output 

structure of parsing is graphically represented as a 
phrase-structure tree, as in Figure 1 above. Various 
functionalities are available to navigate through this 
tree as well as intermediate (or failed) 
representations, by simple operations such as 
double-clicking the node in the user interface, or by 
typing in commands in the Command window, 
which can be invoked by the Command menu in the 
user interface (see Figure A). Below is a selected 
set of examples of tree navigation functionalities 
which are essential to the fast development of 
linguistic rules: 

 

Figure 1: A parse tree 

 

Figure 2: Lexical record for VERB1 “discusses”                Figure 3: A derivational tree 
 

 



 

Accessible records 

At any point, a linguist can access the records 
underlying the parse tree by double-clicking the 
node. The record for a node is comprised of lexical 
and morphological information, syntactic and 
functional features and attributes, as well as 
pointers to the sub-constituents and parent of the 
node. For example, double-clicking on the VERB1 
node in Figure 1 will display the record structure in 
Figure 2.  

Derivational tree 

We can also display the history of rule application 
in graphical form, as in Figure 3. Any node in the 
history tree (called the derivational tree) can also 
be double-clicked in order to access the record 
underlying it.  

Apply Rule and Rule Explain  

Rule Explain shows the application of the rule 
underlying the formation of a node in the tree. The 
rule application is displayed using a color-coded 
display to highlight successful conditions (green), 
failed conditions (red) and the actions performed on 
the resulting record (purple) on the rules such as the 
one displayed in Figure B. The display is available 
for both successful and failed rule applications: we 
can access the Rule Explain display by 
double-clicking the resulting node, or we can 
manually apply any rule to any constituent to bring 
up Rule Explain.  

Compare 

Parsed trees can be quite large and it may be 
difficult to determine exactly where two trees differ 
from each other. In such a case, trees and nodes can 
be easily compared to detect subtle differences in 
composition or rule history by the Compare 
function.  

Display trees 

This command is particularly useful in checking the 
edges of possible, intermediate constituents. It 
displays all the partial trees with a certain label that 
includes a particular node or spans over specified 
nodes. The following are some examples of 
possible variations in the query:  

(a)  display trees VP 1 5 

(b)  display trees NP NOUN4 

(c)  display trees AJP 

(a) displays all VPs that span from position 1 to 5; 
(b) displays all NPs that include the node NOUN4;�
and (c) displays all possible subtrees whose 
nodetype (label) is AJP.  

Tree filters 

This functionality does not directly assist the 
grammarian in writing rules, yet is extremely useful 
in collecting and examining particular linguistic 
constructions of interest that are output by the 
parser. The linguistic developer can write 
custom-made tree filters in G, which traverses the 
parse trees or LF structures and exports only the 
information needed for a particular purpose, or only 
those sentences with particular linguistic 
configurations. Tree filters are also convenient in 
creating a linguistic annotation for external 
applications.   

The tools described in this section enable linguists 
to inspect the effect of grammar changes in detail, 
with the information of how exactly a particular 
rule applied or failed. These tools are used in the 
context of daily grammar development, which we 
describe in the next section.  

3 Process of grammar development 

3.1 Incremental grammar testing and 
creation of regression suites 

The standard practice of parser development within 
our group is schematically shown in Figure 4. The 
grammarian for each language processes a text file 
with input sentences and adds only the sentences 
with desired parses to what we call a master file, 
which contains the sentences and their target 
structure. A collection of master files is called a 
regression suite. A regression suite thus contains 
the target structures given a particular version of 
the grammar. When new grammar changes are 
made in order to accommodate a new sentence or 
construction, the linguist runs the new grammar 
against the regression suite (called regression 
testing) to examine the consequences of the 
changes to the grammar. When differences are 
found, they are kept in *.dff files and are displayed 
in two colors, highlighting the differences. Figure C 
in the Appendix is an example display of a 
difference (unfortunately in black and white): the 
highlights in green (here the first three lines) 
correspond to the analysis in the master file, while 
those in red (the next three lines) indicate the new 



 

analysis introduced by the new grammar rules. The 
lines that did not change are grayed out. If the 
change is an improvement, the developer can 
choose to update the master file by double-clicking 
on the sentence number (in purple), adding the 
sentence or construction that is newly 
accommodated by the parser to the regression suite. 
If the change is evaluated as negative, the linguistic 
developer reworks the rules that caused the 
regression.  

3.2 Testing against relative standards 

As is described above, we run regression tests 
against the machine-created master files rather than 
against an independent set of hand-annotated target 
corpora. The test is therefore incremental and 
relative, in that new sentences and their target 
structures are constantly added as the grammar 
develops, and what it measures is not the coverage 
against an absolute standard, but the coverage 
improvements relative to the output of an old 
version of the grammar.  

The incremental and relative testing method has 
proven to facilitate the development of a 
broad-coverage parsing system in some important 
respects. First, it ensures that the desired structures 
in the master files are always current. Because the 
master files are constantly incremented and updated 
using the most recent version of the grammar, they 
will never become obsolete should the target 
structures change. The ease of maintenance of the 
regression suite is one of the key features 
contributing to the usefulness of the regression 
suite in our daily development work. 

Secondly, because the master files are created 
automatically rather than by hand, the resultant 
annotation is guaranteed to be consistent. Creating 
a test corpus for parser evaluation by hand is known 

to be an extremely laborious, inconsistency-prone 
task, especially when the tagging is performed on 
real-life data 4 . In addition, a broad-coverage 
grammar must also work with input strings that are 
not necessarily well-formed, including sentence 
fragments, ungrammatical sentences and extreme 
colloquialisms. Hand-annotating these structures 
may either be impossible or extremely error-prone. 
In contrast, by annotating them automatically 
using the output of the parser, these structures can 
be added to our regression suite easily and 
consistently. Effects of later grammar changes can 
easily be detected by running the regression testing 

as part of the regular development process.  
Finally, incremental and relative testing makes 

the parser development data-driven rather than 
being dictated by a theory. This is an important 
feature for a large-scale system. Though it is 
eventually up to the grammarian to accept or reject 
a particular analysis, the system always provides a 
candidate analysis for any input string, which 
facilitates the rapid creation of the master files. It 
also allows linguistic developers to experiment on 
the grammar code in the following sense: assume 
that there is a sentence or a construction that allows 
multiple linguistically valid analyses, and that there 
is no obvious reason to prefer one to the other, a 
situation that arises often in the development of a 
broad-coverage grammar. In this case, the 
grammarian can temporarily choose one of the 
structures as a target, and add it to the regression 
suite. If the target structure the grammarian has 
selected is inconsistent with the rest of the grammar, 
it will constantly come back as a regression 
(difference) when further changes to the other parts 
of the grammar are made, because the assumption 
implicit in the tentative target structure is not 
consistent with the rest of the grammar. Once the 
change is made to the target structure that is 
consistent with the remainder of the grammar, it 
typically stops appearing as a difference in 
regression tests. The data-driven nature of 
development therefore helps the grammarians to 
proceed with grammar development even when 
there is indeterminacy in the target structure. 
Regular regression testing over large corpora 

                                                      
4 One piece of evidence for this statement is that the 
bracketing guidelines for Penn Treebank project (Bies et 
al. 1995) consist of over 300 pages of documentation for 
annotating relatively homogeneous text.  

 

Figure 4. Flow diagram of daily grammar 
development 



 

ensures that any outlandish analyses have only a 
short life span in our regression suites.  

Possible disadvantages of testing against a 
relative standard include: (i) it is difficult get a feel 
for how mature the grammar is in general; (ii) it 
makes the comparison across different systems 
difficult. The first problem is addressed partially by 
running evaluation testing against blind benchmark 
corpora, which consists of sentences never used in 
the grammar development. The parser coverage is 
automatically measured in terms of the number of 
sentences that received at least one spanning parse, 
versus those that failed to receive any spanning 
analysis.  

Testing and comparing parser performance 
across different systems is an extremely difficult 
task, given different aims and grammatical 
foundations. One possibility, which is currently 
pursued in our group, is to develop a metric that 
enables comparison with manually created golden 
standards, as they have become more widely 
available for various languages, such as the Penn 
Treebank for Chinese and English, NEGRA corpus 
for German, and Kyoto Corpus for Japanese.  

Ultimately, the parser output must be compared 
and evaluated at the level of an application that uses 
the result of linguistic analysis. Campbell et al. 
(2002) is an attempt to use machine translation as a 
test bed for a multi-lingual parsing system.  

4 Parser efficiency as part of efficient 
parser development 

For a development of a truly broad-coverage parser, 
it is critical that grammar changes are constantly 
verified against a very large set of sentences, and 
that the time for feedback is minimal. The 
efficiency of the parsing engine is thus inseparable 
from efficient grammar development.  

Our parsing engine is already quite fast: for 
example, our English system currently parses 
Section 21 of Penn Wall Street Journal (WSJ) 
Treebank (1,671 sentences) in 110 seconds (or 
about 15 sentences/sec) on a standard machine 
(993MHz Pentium III with 512MB RAM); this 
performance is comparable across languages.  

Speed improvements are usually performed by 
non-linguistic developers following standard 
optimization techniques. We use internal profiling 
tools to identify performance bottlenecks, and 
make a special effort to ensure that the G-to-C 

translator generates efficient C-code. Because the 
linguistic code is independent of the non-linguistic 
code of the system, the parsers for any language can 
immediately benefit from performance 
improvements made at the system level.  

For regression testing, we also have a means to 
distribute the processing onto multiple CPUs: the 
processing cluster currently consists of 19 
machines with 2 CPUs each (500MHz, 
128~512MB RAM), which parses the entire WSJ 
section of Penn Treebank (49,208 sentences) in 3 
minutes and 10 seconds (or 259 sentences/sec), and 
a one million-sentence Nikkei newspaper corpus of 
Japanese in about 30 minutes (550+ sentences/sec). 
In daily grammar development, each grammarian 
typically works with a regression suite consisting of 
10,000 to 30,000 sentences at various levels of 
analyses; the time required for processing a 
regression suite is 2 to 6 minutes. In addition, 
automatic regression testing is run nightly against 
relevant regression suites using the most recent 
builds of the system, ensuring that no negative 
impact is made by any changes introduced during 
the day5.  

In this section, we have discussed the issue of 
parser efficiency from the perspective of grammar 
development. Our processing environment enables 
immediate feedback to grammar changes over very 
large corpora, and is thus an essential part of the 
development environment for a broad-coverage 
parser. 

5 Conclusion 

In this paper we have described the tools and 
methods for a development of large-scale parsing 
systems. We have argued that constant testing of 
the grammar against a large regression suite is the 
central part of the daily grammar development, and 
that the tools and methods described in this paper 
are indispensable for maximizing the productivity 
of linguistic developers. Though the tools are 
specific to NLPWin, we believe that the general 
practice of grammar development presented in this 
paper is of interest to anyone engaged in grammar 
development under any grammar formalism.  
 As a cross-linguistic development environment 
for analysis and generation components, some of 

                                                      
5 We use standard version control software to manage 
both linguistic and non-linguistic source code.  



 

the properties of NLPWin discussed in this paper 
are shared with such projects as ParGram (Butt et 
al., 1999). One of the main differences between 
ParGram and NLPWin is that the latter has so far 
been developed and used at one site. As there are 
more parsers available in many languages, it would 
be interesting to see if externally developed 
components can be plugged into NLPWin at the 
level of LNS. Such research is left for the future as 
a possible extension to the modularity and 
cross-linguistic aspect of NLPWin.  
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Appendix 

Figure A: Graphical user interface of NLPWin 

 



 

Figure B: Example of a phrase-structure rule6 

AVPwAVPl: 
    AVP#1 (^Comma & ^Conjt & ^NoAdv & ^Top & Nodetype(Head)^="IJ" & 
          (Nodetype ^in? set{AVPNP AVPVP} | Compr | Intens | Tme | Ntimes) & 
          (Advrz -> (^Adv(Lex) & Intens)) & 
          (ModalAdvs -> Intens) & 
          (Nconj -> (^Conj(Lex) & Lemma^in? set{�})) ) 
    AVP#2 (^AVPcoord & ^Conjt & ^Kakari & ^Nconj & ^NoAdv & ^Wh & 
           Nodetype^in? set{AVPNP AVPVP} & Nodetype(Head)^="IJ" &             
          ^tokntest("ADV", Ft(AVP#1), Lt, []) & 
          ^tokntest(-1, Ft(AVP#1), Lt(first(Factrecs)), []) & 
          (Compr(AVP#1) -> (Advrz | Quant)) & 
          (Demo(AVP#1) -> ^J_state_zyoo) & 
          (Intens -> Intens(AVP#1)) & 
          (Tme -> (Quant | P_every_mai)) & 
          (Tme(AVP#1) -> (Intens(AVP#1) | Compr(AVP#1))) & 
           Lem^="hoka" &    
           Lemma^in? set{�} )  
--> AVP { %%AVP#2; Temp=segrec{%%AVP#1; -Quant; 
            if (Quant) Nodetype="QUANP";  
            if (Comp & ^Wa5(AVP#2)) -Mim; }; 
           Prmods=Temp++Prmods; Degree=Degree(AVP); -Temp;   
           if (Compr(AVP#1) | (Lem(AVP)=="mou" & Quant)) +Comp; 
       } 

 
 
Figure C: Example of the difference display with master file 

 
 

                                                      
6 This rule, taken from the NLPWin Japanese grammar, is read as "AVP with AVP to the left", which takes two 
adjacent nodes, whose categories are both AVP (adverbial phrase), and creates a new node that spans both of the input 
nodes, also labeled as AVP, whose head is the second AVP of the left-hand side of the rule (indicated by %%AVP#2 
in the right-hand side of the rule). A rule can be as small as this one, or can be very large (up to hundreds of lines of 
code). Each language in NLPWin has about 100 to 150 phrase-structure rules, in 10 to 20 files that are 
language-specific. LF rules are also written in G and have a similar format, but the files are shared by all languages, as 
are most rules, to ensure the output of the LF component is consistent across languages.   
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