
A Development Environment for Large-scale Multi-lingual Parsing Systems

Hisami Suzuki
Microsoft Research
One Microsoft Way

Redmond WA 98052 USA
hisamis@microsoft.com

Abstract

We describe the development environment
available to linguistic developers in our lab
in writing large-scale grammars for
multiple languages. The environment
consists of the tools that assist writing
linguistic rules and running regression
testing against large corpora, both of which
are indispensable for realistic development
of large-scale parsing systems. We also
emphasize the importance of parser
efficiency as an integral part of efficient
parser development. The tools and methods
described in this paper are actively used in
the daily development of broad-coverage
natural language understanding systems in
seven languages (Chinese, English, French,
German, Japanese, Korean and Spanish).

1 Introduction

The goal of the grammar development at Microsoft
Research is to build robust, broad-coverage
analysis and generation systems for multiple
languages. The runtime system is referred to as
NLPWin, which provides the grammar
development environment described in this paper.
The graphical user interface of NLPWin is shown
in Figure A in the Appendix. The system is modular
in that the linguistic code is separate from
non-linguistic code. All languages share the same
parsing engine, which is a bottom-up chart parser
and is fully Unicode-enabled. Linguistic code itself
is also modular, in that it can be specific to a
particular language (e.g., syntax rules) or can be
largely shared across languages (e.g., semantic
mapping rules). Linguistic rules are written in a
proprietary language called G; a sample syntax rule
written in G is given in Figure B in the Appendix.
G-rules are translated into C, yet they are more
convenient for a linguist to use than C, as it gives
special notational support to attribute-value data

structures used within the system. The rule and data
structure formalisms are shared by all languages;
for details, see Jensen et al. (1993) and Heidorn
(2000).

In this paper, we describe the tools and
methods for the cross-linguistic development of
analysis components of our system, which consists
of three major modules: (i) the tokenization
component, which performs word segmentation (in
the case of Chinese and Japanese) and
morphological analysis; (ii) the parsing component,
which performs phrase-structure analysis and
creates parse tree(s)1; (iii) the Logical Form (LF)
component, which computes the basic
predicate-argument structure from parse tree(s)2. In
this paper, we focus on the tools and the methods
for the development of parsing and LF components,
which are essentially the same3.

For an efficient development of a computational
grammar of these modules, we find it necessary to
have a development environment that can provide
immediate feedback to the grammar-writer of the
changes he or she has made. We have three types of
tools in our system to meet these requirements:

 Tools for linguistic rule writing: these include
the tools that let linguists navigate through the
final and intermediate parse trees, and trace
rule application (Section 2).

 Tools for grammar testing: these tools allow
linguists to compare results of two versions of

1 This component is further divided into the Sketch
component, which produces trees with default
attachment of constituents, and the Portrait component,
which finds the best attachment sites (Heidorn, 2000).
2 LF is computed from a surface syntax tree via a level of
representation called Language-Neutral Syntax (LNS),
which serves as an interface to various semantic
representations including predicate-argument structure.
For a more detailed description of LNS, see Campbell
and Suzuki (2002).
3 Similar tools and methods are also available for the
development of sentence realization component.

grammar, and update the database of desired
output structures (called regression suites,
Section 3).

 A very fast processing environment (Section
4).

These tools are described in the following three
sections of this paper. Section 5 gives a summary
and suggests directions for future research.

2 Tools for linguistic rule writing

In this section we present the tools available for the
development of the parsing component. The output

structure of parsing is graphically represented as a
phrase-structure tree, as in Figure 1 above. Various
functionalities are available to navigate through this
tree as well as intermediate (or failed)
representations, by simple operations such as
double-clicking the node in the user interface, or by
typing in commands in the Command window,
which can be invoked by the Command menu in the
user interface (see Figure A). Below is a selected
set of examples of tree navigation functionalities
which are essential to the fast development of
linguistic rules:

Figure 1: A parse tree

Figure 2: Lexical record for VERB1 “discusses” Figure 3: A derivational tree

Accessible records

At any point, a linguist can access the records
underlying the parse tree by double-clicking the
node. The record for a node is comprised of lexical
and morphological information, syntactic and
functional features and attributes, as well as
pointers to the sub-constituents and parent of the
node. For example, double-clicking on the VERB1
node in Figure 1 will display the record structure in
Figure 2.

Derivational tree

We can also display the history of rule application
in graphical form, as in Figure 3. Any node in the
history tree (called the derivational tree) can also
be double-clicked in order to access the record
underlying it.

Apply Rule and Rule Explain

Rule Explain shows the application of the rule
underlying the formation of a node in the tree. The
rule application is displayed using a color-coded
display to highlight successful conditions (green),
failed conditions (red) and the actions performed on
the resulting record (purple) on the rules such as the
one displayed in Figure B. The display is available
for both successful and failed rule applications: we
can access the Rule Explain display by
double-clicking the resulting node, or we can
manually apply any rule to any constituent to bring
up Rule Explain.

Compare

Parsed trees can be quite large and it may be
difficult to determine exactly where two trees differ
from each other. In such a case, trees and nodes can
be easily compared to detect subtle differences in
composition or rule history by the Compare
function.

Display trees

This command is particularly useful in checking the
edges of possible, intermediate constituents. It
displays all the partial trees with a certain label that
includes a particular node or spans over specified
nodes. The following are some examples of
possible variations in the query:

(a) display trees VP 1 5

(b) display trees NP NOUN4

(c) display trees AJP

(a) displays all VPs that span from position 1 to 5;
(b) displays all NPs that include the node NOUN4;�
and (c) displays all possible subtrees whose
nodetype (label) is AJP.

Tree filters

This functionality does not directly assist the
grammarian in writing rules, yet is extremely useful
in collecting and examining particular linguistic
constructions of interest that are output by the
parser. The linguistic developer can write
custom-made tree filters in G, which traverses the
parse trees or LF structures and exports only the
information needed for a particular purpose, or only
those sentences with particular linguistic
configurations. Tree filters are also convenient in
creating a linguistic annotation for external
applications.

The tools described in this section enable linguists
to inspect the effect of grammar changes in detail,
with the information of how exactly a particular
rule applied or failed. These tools are used in the
context of daily grammar development, which we
describe in the next section.

3 Process of grammar development

3.1 Incremental grammar testing and
creation of regression suites

The standard practice of parser development within
our group is schematically shown in Figure 4. The
grammarian for each language processes a text file
with input sentences and adds only the sentences
with desired parses to what we call a master file,
which contains the sentences and their target
structure. A collection of master files is called a
regression suite. A regression suite thus contains
the target structures given a particular version of
the grammar. When new grammar changes are
made in order to accommodate a new sentence or
construction, the linguist runs the new grammar
against the regression suite (called regression
testing) to examine the consequences of the
changes to the grammar. When differences are
found, they are kept in *.dff files and are displayed
in two colors, highlighting the differences. Figure C
in the Appendix is an example display of a
difference (unfortunately in black and white): the
highlights in green (here the first three lines)
correspond to the analysis in the master file, while
those in red (the next three lines) indicate the new

analysis introduced by the new grammar rules. The
lines that did not change are grayed out. If the
change is an improvement, the developer can
choose to update the master file by double-clicking
on the sentence number (in purple), adding the
sentence or construction that is newly
accommodated by the parser to the regression suite.
If the change is evaluated as negative, the linguistic
developer reworks the rules that caused the
regression.

3.2 Testing against relative standards

As is described above, we run regression tests
against the machine-created master files rather than
against an independent set of hand-annotated target
corpora. The test is therefore incremental and
relative, in that new sentences and their target
structures are constantly added as the grammar
develops, and what it measures is not the coverage
against an absolute standard, but the coverage
improvements relative to the output of an old
version of the grammar.

The incremental and relative testing method has
proven to facilitate the development of a
broad-coverage parsing system in some important
respects. First, it ensures that the desired structures
in the master files are always current. Because the
master files are constantly incremented and updated
using the most recent version of the grammar, they
will never become obsolete should the target
structures change. The ease of maintenance of the
regression suite is one of the key features
contributing to the usefulness of the regression
suite in our daily development work.

Secondly, because the master files are created
automatically rather than by hand, the resultant
annotation is guaranteed to be consistent. Creating
a test corpus for parser evaluation by hand is known

to be an extremely laborious, inconsistency-prone
task, especially when the tagging is performed on
real-life data 4 . In addition, a broad-coverage
grammar must also work with input strings that are
not necessarily well-formed, including sentence
fragments, ungrammatical sentences and extreme
colloquialisms. Hand-annotating these structures
may either be impossible or extremely error-prone.
In contrast, by annotating them automatically
using the output of the parser, these structures can
be added to our regression suite easily and
consistently. Effects of later grammar changes can
easily be detected by running the regression testing

as part of the regular development process.
Finally, incremental and relative testing makes

the parser development data-driven rather than
being dictated by a theory. This is an important
feature for a large-scale system. Though it is
eventually up to the grammarian to accept or reject
a particular analysis, the system always provides a
candidate analysis for any input string, which
facilitates the rapid creation of the master files. It
also allows linguistic developers to experiment on
the grammar code in the following sense: assume
that there is a sentence or a construction that allows
multiple linguistically valid analyses, and that there
is no obvious reason to prefer one to the other, a
situation that arises often in the development of a
broad-coverage grammar. In this case, the
grammarian can temporarily choose one of the
structures as a target, and add it to the regression
suite. If the target structure the grammarian has
selected is inconsistent with the rest of the grammar,
it will constantly come back as a regression
(difference) when further changes to the other parts
of the grammar are made, because the assumption
implicit in the tentative target structure is not
consistent with the rest of the grammar. Once the
change is made to the target structure that is
consistent with the remainder of the grammar, it
typically stops appearing as a difference in
regression tests. The data-driven nature of
development therefore helps the grammarians to
proceed with grammar development even when
there is indeterminacy in the target structure.
Regular regression testing over large corpora

4 One piece of evidence for this statement is that the
bracketing guidelines for Penn Treebank project (Bies et
al. 1995) consist of over 300 pages of documentation for
annotating relatively homogeneous text.

Figure 4. Flow diagram of daily grammar
development

ensures that any outlandish analyses have only a
short life span in our regression suites.

Possible disadvantages of testing against a
relative standard include: (i) it is difficult get a feel
for how mature the grammar is in general; (ii) it
makes the comparison across different systems
difficult. The first problem is addressed partially by
running evaluation testing against blind benchmark
corpora, which consists of sentences never used in
the grammar development. The parser coverage is
automatically measured in terms of the number of
sentences that received at least one spanning parse,
versus those that failed to receive any spanning
analysis.

Testing and comparing parser performance
across different systems is an extremely difficult
task, given different aims and grammatical
foundations. One possibility, which is currently
pursued in our group, is to develop a metric that
enables comparison with manually created golden
standards, as they have become more widely
available for various languages, such as the Penn
Treebank for Chinese and English, NEGRA corpus
for German, and Kyoto Corpus for Japanese.

Ultimately, the parser output must be compared
and evaluated at the level of an application that uses
the result of linguistic analysis. Campbell et al.
(2002) is an attempt to use machine translation as a
test bed for a multi-lingual parsing system.

4 Parser efficiency as part of efficient
parser development

For a development of a truly broad-coverage parser,
it is critical that grammar changes are constantly
verified against a very large set of sentences, and
that the time for feedback is minimal. The
efficiency of the parsing engine is thus inseparable
from efficient grammar development.

Our parsing engine is already quite fast: for
example, our English system currently parses
Section 21 of Penn Wall Street Journal (WSJ)
Treebank (1,671 sentences) in 110 seconds (or
about 15 sentences/sec) on a standard machine
(993MHz Pentium III with 512MB RAM); this
performance is comparable across languages.

Speed improvements are usually performed by
non-linguistic developers following standard
optimization techniques. We use internal profiling
tools to identify performance bottlenecks, and
make a special effort to ensure that the G-to-C

translator generates efficient C-code. Because the
linguistic code is independent of the non-linguistic
code of the system, the parsers for any language can
immediately benefit from performance
improvements made at the system level.

For regression testing, we also have a means to
distribute the processing onto multiple CPUs: the
processing cluster currently consists of 19
machines with 2 CPUs each (500MHz,
128~512MB RAM), which parses the entire WSJ
section of Penn Treebank (49,208 sentences) in 3
minutes and 10 seconds (or 259 sentences/sec), and
a one million-sentence Nikkei newspaper corpus of
Japanese in about 30 minutes (550+ sentences/sec).
In daily grammar development, each grammarian
typically works with a regression suite consisting of
10,000 to 30,000 sentences at various levels of
analyses; the time required for processing a
regression suite is 2 to 6 minutes. In addition,
automatic regression testing is run nightly against
relevant regression suites using the most recent
builds of the system, ensuring that no negative
impact is made by any changes introduced during
the day5.

In this section, we have discussed the issue of
parser efficiency from the perspective of grammar
development. Our processing environment enables
immediate feedback to grammar changes over very
large corpora, and is thus an essential part of the
development environment for a broad-coverage
parser.

5 Conclusion

In this paper we have described the tools and
methods for a development of large-scale parsing
systems. We have argued that constant testing of
the grammar against a large regression suite is the
central part of the daily grammar development, and
that the tools and methods described in this paper
are indispensable for maximizing the productivity
of linguistic developers. Though the tools are
specific to NLPWin, we believe that the general
practice of grammar development presented in this
paper is of interest to anyone engaged in grammar
development under any grammar formalism.
 As a cross-linguistic development environment
for analysis and generation components, some of

5 We use standard version control software to manage
both linguistic and non-linguistic source code.

the properties of NLPWin discussed in this paper
are shared with such projects as ParGram (Butt et
al., 1999). One of the main differences between
ParGram and NLPWin is that the latter has so far
been developed and used at one site. As there are
more parsers available in many languages, it would
be interesting to see if externally developed
components can be plugged into NLPWin at the
level of LNS. Such research is left for the future as
a possible extension to the modularity and
cross-linguistic aspect of NLPWin.

Acknowledgements

This paper presents the work that has been designed
and implemented by many people in the NLP
Group at Microsoft Research, particularly George
Heidorn and Karen Jensen.

References

Bies, Ann, Mark Ferguson, Karen Katz, and Robert
MacIntyre, 1995. Bracketing Guidelines for
Treebank II Style. Penn Treebank Project,
University of Pennsylvania.

Butt, Miriam, Tracy Holloway King,
Maria-Eugenia Niño and Frédérique Segond.
1999. A Grammar Writer's Cookbook. CSLI
Publications, Stanford.

Campbell, Richard, and Hisami Suzuki. 2002.
Language-Neutral Representation of Syntactic
Structure. In Proceedings of SCANALU 2002.

Campbell, Richard, Carmen Lozano, Jessie
Pinkham and Martine Smets. 2002. Machine
Translation as a Test Bed for Multilingual
Analysis. In Proceedings of the Workshop on
Grammar Engineering and Evaluation, COLING
2002, Taipei.

Heidorn, George. 2000. Intelligent Writing
Assistance. In Robert Dale, Hermann Moisl and
Harold Somers (eds.), A Handbook of Natural
Language Processing: Techniques and
Applications for the Processing of Language as
Text. Marcel Dekker, New York. Chapter 8.

Jensen, Karen, George E. Heidorn and Stephen D.
Richardson (eds.). 1993. Natural Language
Processing: The PLNLP Approach. Kluwer
Academic Publishers, Dordorecht.

Appendix

Figure A: Graphical user interface of NLPWin

Figure B: Example of a phrase-structure rule6

AVPwAVPl:
 AVP#1 (^Comma & ^Conjt & ^NoAdv & ^Top & Nodetype(Head)^="IJ" &
 (Nodetype ^in? set{AVPNP AVPVP} | Compr | Intens | Tme | Ntimes) &
 (Advrz -> (^Adv(Lex) & Intens)) &
 (ModalAdvs -> Intens) &
 (Nconj -> (^Conj(Lex) & Lemma^in? set{�})))
 AVP#2 (^AVPcoord & ^Conjt & ^Kakari & ^Nconj & ^NoAdv & ^Wh &
 Nodetype^in? set{AVPNP AVPVP} & Nodetype(Head)^="IJ" &
 ^tokntest("ADV", Ft(AVP#1), Lt, []) &
 ^tokntest(-1, Ft(AVP#1), Lt(first(Factrecs)), []) &
 (Compr(AVP#1) -> (Advrz | Quant)) &
 (Demo(AVP#1) -> ^J_state_zyoo) &
 (Intens -> Intens(AVP#1)) &
 (Tme -> (Quant | P_every_mai)) &
 (Tme(AVP#1) -> (Intens(AVP#1) | Compr(AVP#1))) &
 Lem^="hoka" &
 Lemma^in? set{�})
--> AVP { %%AVP#2; Temp=segrec{%%AVP#1; -Quant;
 if (Quant) Nodetype="QUANP";
 if (Comp & ^Wa5(AVP#2)) -Mim; };
 Prmods=Temp++Prmods; Degree=Degree(AVP); -Temp;
 if (Compr(AVP#1) | (Lem(AVP)=="mou" & Quant)) +Comp;
 }

Figure C: Example of the difference display with master file

6 This rule, taken from the NLPWin Japanese grammar, is read as "AVP with AVP to the left", which takes two
adjacent nodes, whose categories are both AVP (adverbial phrase), and creates a new node that spans both of the input
nodes, also labeled as AVP, whose head is the second AVP of the left-hand side of the rule (indicated by %%AVP#2
in the right-hand side of the rule). A rule can be as small as this one, or can be very large (up to hundreds of lines of
code). Each language in NLPWin has about 100 to 150 phrase-structure rules, in 10 to 20 files that are
language-specific. LF rules are also written in G and have a similar format, but the files are shared by all languages, as
are most rules, to ensure the output of the LF component is consistent across languages.

	Table of Content
	Workshops
	Authors

