
Communication in large distributed AI Systems for Natural
Language Processing

Jan W. Amtrup*
U n i v e r s i t y o:f [I m : n b u r g , C o m p. Sci. l) e p t .

V o g t - K S l l n - S t r . 30

11)-22527 I [a m b u r g

a m t r u l) ~ . i n for :mat i lc u hi- h a n l b u r g . d e

JSrg Benra*
D F K I G m b H

] ~ r w m - S c h r o d i n g e r - S t ; r . (B a u 57)

]) -67663 K a i s e r s l a u t c r n

t)enrag~d f k i . u n i - k l . d e

Abstract

We. are going to describe the design
and implementatior, of a connnuniea-
lion system l.or large AI projects, ca-
pable of supporting various software
components in a heterogeneous hard-
ware and programming-language envi-
ronment. The system is based on a rood-
ification of the channel approach intro-
duced by Hoare (1978). It is a three-
layered approach with a de facto stan-
dard network layer (PVM), core rou-
tines, and interfaces to live different pro-
g ramming languages together with SUl)-
port l.or the transparent exchange of
complex da ta types. A special compo-
nent takes over: name service functiorrs.
It also records the actual configuration
of the modules present in the application
and the created channels.

We describe the integration of this com-
munication facility in two versions of
a speech-to-speech translation system,
which ditfer with regard to quality and
quanti ty of data. distributed within tire
applications and with regard to the de-
gree of interactivity involved in process-
ing.

1 I n t r o d u c t i o n

(hu:rently, there is a trend of lmilding large AI-
systems in a distrilulted, agent-oriented manner.
'l 'he complex tasks performed e.g. by systems with
nmlt imodal user interfaces or by systems tackling
the processing of spontaneous speech often require
more than one computer in order to run accept-
ably last. If pure speed is not the pr imary moti-
vation, the incorporation of several modules, each

*'l'his rescm'ch was funded by the Federal Min-
istry of l~;dncat;ion, Science., ll.esem'ch and Technol-
ogy (IIMBF) in the framework of the VI,;HIIMOBIL
Project raider Granl, s 01 IV 10l A/O and 01 IV 101
G.

of them possibly being realized in a different pro-
gramming language or even a different program-
ruing lmradignl, demands complex interfaces be-
tween these modules, l, 'urthermore, only modular-
ization makes it possible to develop applications
in a truly distributed inanner without the need to
eol)y and install versions repeatedly over.

~l'he actual realization of tire interfaces should
ground on a sound theoretical framework, and it;
shoukl be as independent as possible from the
module implementations. TypicMly, when an in-
terface between two subcomponents of a system
is needed, at [irst very simple means e.g. file
interfaces or simple pipes a r e considered. This
does uot only lead to a variety of different proto-
cols between components which is natural to
a certain degree, due to the different tasks per-
formed by the components and the purpose of the
internee data but; also to a number of ditf~rent
implementat ion strategies :['or interfaces.

In this pal)er , we present ICE, the In ta rc
Communication Environment (Amtrup, 1995),
an implementat ion of a channel-oriented, multi-
architecture, multi-language communicat ion mod-
ule for large, A l-systems, which is particularly use-
ful for systems integrating speech and language
processing.

A channel-oriented model ['or interaction re-
lations between software modules seemed to be
the most suitable system for our needs. We
adopted the CSP-approach (Horn:e, 11978) and
its actual realization in the transputer hardware
((~rahatn and King, 1990). This core flmctional
model was slightly modified to satisfy the needs
emerging from ext)eriences with actual systems.
We decided not to implement all communica-
tion flmctions from scratch, [)tit instead we use
PVM, the Parallel Virtual Machine (Geist et al.,
1994), a widespread process-comnmnication soft-
ware, which turned out to be extremely reliable.

We will desribe how the communicat ion sys-
tem has been integrated within Verbmobil, a large
research project tbr automat ic speech-to-speech
translation (Wahlster, 1993). ICE is used for the
w~rious I)rototypes of the interpretation system.

35

We describe experiences and results of the work
on the first demonstrator. Furthermore, we show
that ICE is flexible enough to be used in archi-
tectural experiments and we are going to report
some of the experiences made with them.

2 Appl icat ion acrchitecture

Verbmobil, the primary application for which ICE
was built, aims at developing an automatic inter-
preting device tbr a special type of negotiation be-
tween business people. The dialogue situation is
as follows: Two business persons, speaking difl'er-
eat languages, are involved in a face-to-face dia-
logue trying to schedule an appointment. 'l.'hey
both have at least; some knowledge of English and
use English as a common hmguage. In case one
of the dialogue partners runs into problems, he or
she activates the interpretation system by pressing
a button and switches back to his or her mother-
tongue. The system interprets the respective ut-
terances into English. Therefore, it interprets the
dialogue on demand in certain situations.

The Verbmobil system consists of a large num-
ber of components, each of them designed to cope
with specific aspects of the interpretation pro-
cess. Among them are a recorder for speech sig-
nMs, a HMM-based word recognizer, modules for
prosodic, syntactic and semantic analysis, dia-
logue processing, semantic evaluation as well as
components for both german and english synthe-
sis. There are several interfaces between the in-
dividual parts of the application which are used
to forward results or to realize question-answering
behavior.

The interchanged data between components (a
component normMly corresponds to a unique soft-
ware module) is very heterogeneous with regard
to both type and quantity: Speech information as
it is sent from the recorder to the speech recog-
nizer consists of a stream of short integer values
which may amount to several megabytes. The ob-
jects exchanged between semantics construction
and transfer are relatively small, but highly struc-
tured: Semantic representations with several em-
bedded layers.

3 ICE: Des ign and s t r u c t r u e

As briefly noted above, we are using a chan-
nel abstraction to model communication between
components. The model is largely oriented at
the approach of CSP (Communicating Sequential
Processes, iIoare (1978)), mainly for two reasons:

• We decided to use a message-passing ap-
proach to communication. The two other

kinds of process communication largely avail-
able, namely shared memory and remote
procedure calls are disadvantegous for our
purposes: The employment of shared mem-
ory may lead to memory or bus contention
when several processors are sinmltaneously
attached to the same physical memory seg-
ment. l?urthermore, multiple concurrent
write attempts have to be synchronized. Re-
mote procedure cMls did not seem to be the
right choice either since their use implies
a rendez-vous-synchronization which slows
down a system due to network latencies 1.

• Making the objects involved in communica-
tion explicit, offers several ways to manipu-
late them. Without too much effort, we were
able to introduce split channels in order to in-
corporate visualization tools or introdnce dif-
ferent modes of communication depending on
the type of data to be exchanged.

The low level basis of ICE is realized by PVM
(Geist et al., 1994), which is a message passing
system for multiple hardware architectures. It
has been developed and extended for almost seven
years now and is very reliable. It allows a net of
Unix workstations to behave like a single large
parallel computer. PVM supplies each message
with a tag which simplified the introduction of
channels to a large extent (roughly, a message is
tagged uniquely to identify the channel it is sent
on. This enables a receiving component to select
messages Oll individual channels).

3.1 S y s t e m s t r u c t u r e

The architecture of a system using ICE as commu-
nication framework is depicted in Pig. 1. Before
describing in detail the structure of a component,
we will point out the overall layout of an applica-
tion.

We assume that an application consists of a
number of components. We could have adopted
the notion of agents cooperating to a certain de-
gree while carrying out a certain task coopera-
tively, but this would have meant to mix up dif-
ferent conceptual levels of a system: The com-
munication facilities we are describing here estab-
lish the means by which pieces of sottware may
communicate with each other. They do not pre-
scribe the engineering approaches used to imple-
ment the individual software components them-
selves. We do not state that agent architectures

1 rph e channels of CSP and Occam both use rendez-
vous-synchronization. In this respect we deviated
fi'om the original model.

3 6

Figure]: Principle component layout

(e.g. Col-,en et al. (:t9!)4)) can not be realized with
our :mechanis:nl 2, but the range of cases where ICI,',
can 1)e applied is broader than this.

All communicat ion is clone by the trieatls of
channels, as set out above. We (listinguish two
types of channels:

• B a s e channe ls ~re the pr imary ['acilities of
communicat ion. They are configured in a
way guaranteeing that each comlxment is
able to interm:t with each other component
it wishes to, regardless of programming hm-
guages, hardware architectures, or system
software being used. This is achiewxl 1)y
using the standard communicat ion mode of
PVM, which supports XI)I{ a. Message pass-
ing is done asynchronously.

• Add i t i ona l channels were added in order to
satis[~y some needs that frequently arise dur-
ing the design ~md implementat ion of b~rge
A l-systems with heavy use of communication.
They can 1)e used to separate data st,'cants
Dora control messages or may 1)c configured
it, various ways, e.g. by switching off {;he X1)t{
encoding to speed up message passing.

3 . 2 Sp l i t (' h anne l s

Both types of channels can be configured in an ~d-
ditional way. Beyond being bidirectionM commu-
nication devices between two components, other

2In(Iced, distributed 1)lackboards as used in
(Johen et al. (]994) can easily be modelled using a
(:hanncl-bascd al)proach.

aeXternal
1)ata Representation, see Corbin (1990), an encoding
schema for data objects independent of the current
programming environment.

modules can be attached to listen to data trans-
ported on a channel or to inject messages. These
split channels are achieved by dividing ~L channel
into two endpoints, one at each side of the chan-
nel.

Iloth ends are described using a conlignr~tion
lile that is read by the ILS (see below) upon
startup. In l;his fi le, [br each endpoint a list o f

real chaimels is defined, e~mh of which points to a
compolmnt and is equipped with a name, (:onfigu-
ration flags and its purpose (whieh c a n be sending
or receiving). Any uumber of' real channels may
be marked sendiug or receiving. The behavior of
l;he components allotted by split chammls does not
have to be changed, since splitting occurs trans-
I)arently for them.

Consider Fig. 2 as an exa.mi)[e for what purpose
split channels were used.

Compo l ~ - ~ Compo
A - B

[u, j
Figure 2: Split channel contiguration

Two components, A and B, are connected us-
ing a channel which is depicted by a dashed line.
The channel endpoints are split up to allow visual-
ization of message data sent by either component.
The visualization is performed by two additional
components la.belled UI_A and UI_B. lqn:ther-
more, the data sent by component A must un-
dergo some moditication while being transported
to cOlnl)onellt l~. Thus, another component C is
contigurcd capable of transforming the data. It
is spliced into the (h~ta path between A and B.
Note that data sent by component B arrives at A
unaffeeted from modification by component C.

a .a ILS: I l f f o r l n a t i o n S e r v i c e

Channels c a n be established by any component.
There is no need for synchronization between
conlponents during the configuration of the con>
munication system. To support this schema, a
dedicated component named ILS (In tarc License
,%rver) was introduced, lilt stores information
about the actuM structure of the applieation sys-
tem. This information includes names and loca-
tions of all components participating in the sys-

37

tern as well as an overview about all channels cur-
rently established between components. The ac-
tions performed by the ILS include:

• At tachment and Detachment of components.
A component desiring to take part in the
communicat ion activities of the application
has to identify and register itself at the ILS.
This is done by sending a message containing
the name of the component to the ILS. Analo-
gously, a component should detach itself from
the ILS by sending an appropriate message
before leaving the application. In case of a
program failure resulting in the inability of
a component to detach the 1LS is capable of
handling the detachment autonomously.

• Configuration of channels. Each creation and
destruction of a channel is done by interact-
ing with the ILS in order to notify the ILS
of the request and to get back information
about the necessary da ta structures. The
creation of a channel is done in two phases:
First, any of the endpoint components sends a
channel creation request to the ILS. The ILS
updates its internal configuration map taking
care that split channel definitions are taken
into account; it then answers to the request-
ing component the individual tag used for
this channel and the process identity of the
target component 4. If the target component
has not, yet registered within the application,
this fact is acknowledged to the source com-
ponent. The only point at which this matters
is the t ime of the first message sending at-
t empt which will be blocked until the target
component registers at the ILS. In that case,
the ILS notifies the source component of the
event and communicat ion c~n take place nor-
really.

The second phase handles the notification of
the target component. As just described, this
component need not be present by the time
of the channel creation request. In this case
the notification is simply delayed. The no-
tification consists of the necessary da ta to
create the intended channel within the com-
ponent. The implementor need not track
those configuration messages, the communi-
cation layer handles this transparently. Fur-

4 p V M addresses c o m p o n e n t s which are identi-
cal to processes for i t - by a task id t h a t is ass igned
by the p w n daemon . T h e ILS ma in ta ins a mapp ing
fl'om compo lmn t n a m e s to those task ids. This map-
p ing need no t be bijective, since we allow mult iple
componen6s wi th in one process (see below).

thermore, concurring channel requests do not
inteffer.

3.4 C o m p o n e n t s t r u c t u r e

The interior structure of a component (see Fig. 1)
is layered as far as the communicat ion parts of the
software are concerned. The low level communi-
cation routines are provided by PVM (see above).
Next, a software layer defines the functions of ICE.
This is comprised of the basic functionality of ICE
itself and a set of interface functions for different
programming languages. We currently support C,
C + + , Lisp (Allegro Common Lisp, Lucid Com-
mon Lisp and CMSP), Prolog (Quintus Prolog
and Sicstus Prolog) and Tc l /Tk .

These software layers suffice to communicate
basic da ta types like nmnbers and strings. Addi-
tionally, a separate layer (IDL) is present to allow
the exchange of more compex data types. One
may specify routines to encode and decode user-
defined da ta types which can then be t ransmit ted
just as the predefined scalar types. At the lno-
ment, this schema is used for a few dedicated da ta
structures, e.g. for speech da ta or arbi trary prolog
terms, which may be even cyclic.

4 Experiences with the application

Verbmobil is built up by two sorts of components.
The "(:ore" components are used to t ransform the
input data into the output data (e.g. recording,
speech recognizer etc.). These Nl,P-<'omponents
are embedded in the so called "testbed" that
serves as an application Damework. The testbed
is designed as an experimental enviromnent that
provides all the features required to test the core
components and to study the operation of the
whole application. ']?he testbed consists mainly
of the following parts:

• The graphical user interface (GUI) provides a
comlbrtable Dontcnd to the application. Us-
ing the GUI the user can watch the operation
of the whole system, control the behavior of
the components and monitor the datafiow be-
tween the components.

• The testbed manager (TBM) is used to start
up the whole application and to distribute the
processes of the application to the hosts of
the network. Further, the testbed manager
collects data about the operation of the com-
ponents and visnalizes this intbrmation using
the GUI.

® The visualisation manager (VIM) collects all
the da ta transferred between any of the com-
ponents using IC'E channels.

3 3

If one wants to study only some parts of the
system, it is t)ossib]e to start the al)l)li(;ation con-
taining only a subset of the existing components
(e.g. only the speech recording module aim some
speech recognizers). The testbed provides the fa.-
cility to choose in an oflline process the compo-
nents that are desired to I)e executed. This config-
uration is done by simply editing a coMiguration
file and selecting the keywords "yes" or "no" for
each cornl)onent. All the comf)onents not selected
are automatical ly replaced by "stut)-modules," so
there is no need to change source code and re-
compile the components, ew:n if data is sent 1,o a
nou-existent component. On the other side it; is
possible to configure the usage of alternative com-
ponents (e.g. two gerlnan speech recognizers). In
this case l)oth eoml)onents are started and we are
at)It to select fl'om the GUI which of both (:onq)o-
I lents we a(: t l la l ly wal l t to]lSe.

(h t r r e n t] y t he re are 32 existing eon~l)otmnts t h a t
contribute to roughly 650 Mill disk space (the ex-
ecutables, libraries and da ta liles required at rlln-
time use up 380 MB). Some of the components ~u:e
structured using sul)eomi)onents that are iml)le
mented in different programnfing languages and
are executed in own l)rocesses. The ',{2 main con>
ponents a r e implemented using the following l)ro
t r a m m i n g languages: C (10 components), l,isl)
(r (:o.u)ouents), l'r(,log (S ,'onU,onents), (:++
,:on u)onents), t,'ortra,, ¢:o, ,pouents), ' r , :F'rk (J
(:o111 l)Onellt) .

Starting a heavy weight system containing all
the currently existing eoml)onents, we get al)out
95 UNIX l)roeesses requiring 520 M]l memory. In
this configuration we are using 52 I)ase channels
and 24 additional channels (76 ICI'; channels in
total). Six of these 24 additional (:hannels are con-
figured not to use the XI)R coding, 1)eeause they
are used to transfer high volume data (e.g. audk)
data).

Because the communicat ion is built u 1) I)y
s t r i c t l y u s ing the featm:es of ICE and the under-
h~ying PVM, the apl)licatiott cnn run on ~ single
host ;~s well as distributed to the hosts of a.a local
area network. The decision which cOlnl)onent will
rtm on which host of the network is conligurable.
Each coml)onent can I)e assigned to a sl)ecilie host,
or wc can leave the assignment of an adequate host
to PVM.

5 E x p e r i e n c e s w i th an
archi tec tura l e x p e r i m e n t

la addition to the employment wil;hin the Verl)mo-
I)il l)rototype, we used l(Jl,', as con,,,mm(:ation &'-
vice ('or some eXl)erjt~mnts i l, the ['ra.ntewor]¢ o1" the

I ~emantlc Evaluation)
¢

/
=o,.: t

Beam Decoder ~

l,'igttr('. 3: 'l 'he experimental system architectm:e.

archit¢'ctm'M branch of the project. The apl)roac]l
here is to develop a. speech translation system
obeying design principles that have their orighl in
the goal of constructing a system retlecting some
of the assumed properties of human speech pro-
eessing, namely working incrementally fi'om left
to right and exploring the ell'ects of il~teraetion
between dilDrent levels of speech recognition and
understanding. These two principles have serious
implications for the design of individual t e m p o
uents and the (:on-,ph;te system. To give a con-
crete exmnple, consider the interface between a
speech recognizer and a synt~mtic parser. The re<:-
ognizer In'educes a e o n l l e c t e d graph where each
edge denotes a word hypothesis. Due to the in-
ability to remove paths in adwmee that can not be
pursued fln:ther at a late]: stage of operation, the
input to the syntactic parser grows enormously.
We noticed that wordgri~phs produced inerenmn
tMly laity])e tell tiIlles larger than conw'.ntionally
constructed gr~q)hs (resulting in over 2000 word
hypol, heses for an utterance of 4.7 seconds).

The exlmrinmntM system architecture is shown
in Fig. 3. It, consists off several modules inter-
connected by ,t lnain da.tlt path that delivers re-
suits according to the "standard" linguistic hie>
archy, viz. from word recognition to syntax, se-
uumtics and fitmtly transfer !;. Besides t, his inain
stream data path we set t] l) several interaction
facilities that ~u'e used to propagate int'ornmtiou

r>J'ltc (;r;ttlsf(w (:ompontm{, i,';t not, shown in]"it,+ 3.

39

backwards, which may consist of binary judge-
meats about the applicability of a hypothesis, a
ranking among different possible analyses or even
predictions about what might be expected in the
future.

These methods were for example examined at
the crucial interface between a HMM-based speech
recognition device and a syntactic parser (ttauen-
stein and Weber, 1994). A tight interaction be-
tween these two components was created which
was used to model a synchronization point at ev-
ery frame in the speech input (i.e. every 10 ms).
At each of these points a set of word hypotheses
is sent to the parser. The parser then tries to in-
tegrate the new hypotheses into existing partial
analyses constructed so far. The feedback loop
to the speech recognizer consists of information
about the syntactic ranking of the parse each word
is integrated into. If a word can not be used in
any way, it is s imply rejected. In the case of in-
tegration of a word into a parse a ranking is pro-
duced which incorporates values from a statistical
n-gram language model and a stochastic unifica-
|;ion g r a m m a r which models the probabili ty of a
syntactic derivation.

To realize a prediction mode in this interaction,
a different schema was used: At each frame the
parser computes a set of possible continuations
for each word, i.e. it restricts the language model
to pairs of words (in case of a bigram model)
which are syntacticallly plausible and could be in-
tegrated into a currently existing syntactic deriva-
tion. By doing so, the search space of the speech
recognizer is restricted.

6 C o n c l u s i o n

We have presented the concepts and implementa-
tion of a communicat ion system designed for use
in large AI systems which nowadays are typically
built to operate in a distributed manner within lo-
cal networks of workstations. We argued that the
adapta t ion of sound theoretical concepts which
for example can be found in Hoare (1978) lead
to solutions that have considerably more power
that ad-hoc communicat ion devices implemented
as the need to communicate arises. ' r im channel
model was slightly modified and realized on top of
l?VM, a de facto s tandard for communication in
distributed systems. The system structure reflects
a set of components that communicate bilaterally
without the involvement of a central mechanism
or da ta structure that participates in every com-
rnunication event. Instead, once the identity of
the communicat ion partners is established, corn-
municat ion between them is strictly local.

We introduced a central name server in order to
store the components acting in an application and
to be able to service requests for the creation of
channels and such. Channels come in two flavors
what on the one hand guarantees succesful com-
rnunication between any two partners and on the
other hand leaves room for tailoring properties of
message channels to certain preferences. Further-
more, split channels allow for the easy configura-
tion of a system with respect to interchangeable
parts of the system and attached visualization.

We showed that the communicat ion system
realized using this methods is advantegeous in
several situations and system contexts, ranging
fi'om strictly sequential systems over intermediary
forms to highly interactive systems.

R e f e r e n c e s

Jan W. Amtrup. 1995. 1CI~-Intarc Communica-
tion Environment: User's Guide and Reference
Manual. Version 1.4. Verbmobil Technical l)oc-
ument 14, Univ. of Hamburg, December.

P.R. Cohen, A. Cheyer, M. Wang, and S.C. Baeg.
1994. An open agent architecture. In Proc. of
AAA1-g4, pages 1 8, Stanford, CA.

John tl.. Corbin. 1990. The Art of Distributed
Applications. Sun Technical Reference l,ibrary.
Springer-Verlag, New York.

AI Geist, Adarn Beguelin, Jack Dongarra, We-
icheng Jiang, Robert Manchek, and Vaidy Sun-
detain. 1994. PVM3 User's Guide and R e f
erence Manual. Technical Report O R N L / T M -
12187, Oak Ridge National Laboratory, Oak
Ridge, Te., May.

lan Graham and T im King. 1990. The Transputer
Handbook. Prentice tlall, New York, London et
al.

Andreas Hauenstein and I lans Weber. 1994. An
Investigation of Tightly Coupled Speech Lan-
guage Interfaces Using an Unification Gram-
mar. 111 Proceedinqs of the Workshop on lu~
tegration of Natural Language and Speech Pro-
ccssing at AAA I '94, pages 42- 50, Seattle, WA.

Charles A. Richard Hoar< 1978. Communicat ing
Sequential Processes. Communications of the
ACM, 21(8):666-677, August.

Wolfgang Wahlster. 1993. Translation of face-to-
face-diMogs. In Proc. M T Summit IV, pages
127--135, Kobe, Japan.

40

