Construction of a Bilingual Dictionary Intermediated by a Third Language

Kumiko TANAKA
Division of Fagineering，University of Tolyo． 7.31 Mongo，Bunkyouku，＇Tokyo，1．13，Japrau． kmmiko＠ipl．i．．u－tokyo．ac．jp

Kyoji UMEMURA
NTT Basic Research Jaboratorins．
3－9－11 Midori，Musashino，＇Tokyo，180，Japau． umemuraonuesun．NT＂．J户

Abstract

When using a third language to construct a hilin－ gual dictionary，it is necessary to discriminate equivalencies from inappropriate words derived as a resulti of anbiguity in the third langmage． We propose a method to treat this by utilizing the structures of dictionaries to measure the near－ ness of the meanings of words．＇The resulting die－ tionary is a word－to－word bilingual dictionary of nouns and can be used to refine the entries and equivalencies in published bilingual dictionaries．

1 Introduction

When vocabulary canot be found in bilingual dictionaries，it is frequently obtained by using a third language as an intermediary．＇Ihis indicates that supplemental information may lie in other forms in other dictionaries．Itere we try using， electronic dictionaries which can be refomed on a large scale，to extract this informations so that we can obtain subsidiary data and refine a direct bilingual dictionary．

Looking up words in bilingual dictionaries in－ termediating the third language is a method often used by people who hande uncommon languages in a specific domain．If this process can be anto－ mated，bilingual dictionaries of any kind between any languages may be obtained as long as these concerned languages have dictionaries to a com－ mon language．One objective of the research re－ ported here is to establish a first step in antomat．－ ing this process．

To construct，a Japaneser Prench dictionary， we chose Fonglish as the intermediary lamgatge because Japanese \rightarrow Einglish and English \rightarrow French dictionaries exist in electronic forms and because published Japaneser \rightarrow Prench dictionaries provide enough vocalbulary in comparison with the result，－ ing dictionary．

In Section 2 we describe a method for extract－ ing equivalencies for a given word．Its fundanen－ tal concepts are stated in Section 3．The whole procedure used to constmet the new dictionary is shown in Section 4 and in Section 5 the resulting dietionary is evaluated．

Japanese－English，Foglish－Japanese，Fuglish－ French，French－English，Japanese－French and French－Japanese dictionaries are respectively de－－

 tionary of Dic $y_{y \rightarrow, n}$ ．Japranese words lave infor－ mation in the following fomat：pronmatiation in romaji，and its egnivalence in langlish．Figlish words are writien in this font and liench worels in this font．

2 Overview of the Method

2．1 Inverse Consultation

The most naive way to use Fmerish to obtain french words corresponding to a Japanese word is to look up the Japanese word in a Dic，j－e e and then look up the resultant Enplish words in a Dice－x ${ }^{-1}$ The resulting Panch words can be regarded as equivalence candidates（ FCs ）of the original Japanese word．For example，in Fip，1， ECs for a Japanese word＂競角＂（kyouson ：com－ petition）are competition，concours，race etc． Anong＇these，race and late are inadeduate as equivalents of＂蜕角＂。

As for race，the linglish word race has several moanings with the same spelling：one is to com－ pete and another is human race．It is human race： which induces the inadequate BC race．As for hate，the English word race has the wider mean－ ing to hurry which the original Japanese worl＂确 fr＂does not．Since hate is a direct，translation of to humty，it is intappopriate as an equivalence．
The following three cases；fenerate irrelevant FCs．
1．An linglish word with the same spelling； but will diflerent meanings is intermediaterl． （race in the above example）
2．An English word with a wider meaning，（han that of original Japanese worl is intermeri．． ated．（hate in the above example）
3．There are mistakes in dictionaries．
The first two cases are due to the ambiguity in En－ glish．An English word with a narrower meaning than the Japanese source may miss some French eduivalents．We think that if the orginal worl has antrignity and several meanings，the dictio－ nary gives the correspourling Jinglish words．

We could latudle the problem of choosing exuiv．． alencies from among lics by semantic processing， but expressing meaning of vocabulary in dictio－ maries is a great problem．A simpler way is lo look the BCs up in the inverse dictionary．For ex． ample，one can consult Dicf \quad for compétition，

Fig． 1 Equivalence candidates（ECs）for＂競争＂．

Fig． 2 One time inverse consultation（ $I C_{1}$ ）．

争＂，and＂人種＂（jinshu：human race）as their respective equivalencies．Since＂人稿＂has noth－ ing to do with＂競fl＂，race is excluded．We call this method of looking up ECs in the inverse dictionaries when choosing relevant equivalencies inverse consultation，and we call the words ob－ tained by looking up inverse dictionaries the se－ lection area（SA）．Inverse consultation utilizes the structure of dictionaries to measure the nearness of the meanings of words in different languages．
The simplest application of inverse consultation is to use Dic $_{f \rightarrow e}$ ．In the above example，each EC is looked up in Dic $\mathrm{f}_{\mathrm{f} \rightarrow \mathrm{e}}$ and the results are com－ pared with the English equivalencies of＂競手＂＂（E）； namely，competition，contest，and race．The SA of compétition is competition，contest and match， which have the elements contest and competition in common with E （Fig．2）．As compétition derived from competition，competition should be put aside，but contest is still left as a common element and thus competition is selected as an equivalence of＂親争＂．As for race，the SA of race consists of race and ancestry，whose inter－ section with E only gives race；so race is judged as an inadequate EC ．In short，the number of ele－ ments in common between the selection asea and E indicates the nearness of the meaning between the EC and the original word．

For the inverse consultation described above， the SA was in English．If we use Dic $\mathrm{e}_{\mathrm{e} \rightarrow \mathrm{j}}$ as an inverse dictionary successively after consult－ ing Dic $_{f \rightarrow 0}$ ，then the SA is in Japanese and we compare＂親争＂with the SA（Fig．3）．The SA for

Fig． 3 Two times inverse consultation（IC C_{2} ）．
compétition consists of two＂皎争＂s and three ＂喼技＂s（kyougi ：game）．For race，the SA has ＂競手＂，＂人㮔＂，＂先样＂（senzo ：ancestry）Since ＂喼争＂appears only once for race，we discard the EC race．
There can be a infinite number of inverse con－ sultations according to the number of consulted inverse dictionaries．If the inverse dictionaries are consulted n times，we call the method n times inverse consullation（ $I C_{n}$ ）．Which inverse dictio－ nary to use does not always have a unicue answer． For $1 C_{2}$ for example，we may consult Dic $_{\mathrm{e} \rightarrow \mathrm{f}}$ af－ ter consulting Dic $_{f \rightarrow e}$ wilh the SA in French．

2．2 Selection Procedure

Once the SA for a given word is obtained，equiv－ alencies are selected by handling two collections of words．We call this process the selection pro－ cedure．

One way to do this is to comnt the number of specific elements in the SA．For example，if the SA is in Japanese，the number of the clement＂稳争＂itself is counted．Another way is to coment how many parts of words（ PWs ）are contained in the SA．For example，the number of＂稳＂and＂flo＂ contained in the SA is considered（thins＂䗑＂in ＂稳技＂is also counted）．

If we handle the meaning of words，a third way is to look up，＂敫争＂in a Japancse thesaurus and count how many times the synonyms appear in the SA．For example，if＂績技＂is a synonym of ＂経争＂，then the number of appearances of＂䞄技＂is added to that of＂晩予＂．If we go further to handle the meaning，we might as well process words by semantic processing．

Since a kanji is an ifleogram，the second method also handles the meaning．When the selection area is in English or Prench，the corresponding method is to count morphemes such as＂inter＂ and＂national＂for the word＂international＂．We are interested in to what extent the method that does not explicilly concern the meaning may be used to handle the meaning of words．In the fol－ lowing，we focus on the former two methods．

3 Fundamental Concepts

3．1 Harmonized Dictionary

A bilingual dictionary forms a graph whose nodes are words and whose branches are correspon－ dences between the words．Branches have direc－ tions，which make the graph asymmetric．Dic $x_{x \rightarrow y}^{-1}$ is a graph with all the branches in Dic $c_{x, y}$ in int verse direction．

Since the purpose of bilingual dictionaries is to denote the correspondences of words that have the same meaning［Har83］，it is natural that branches are bidirectional．We therefore design symmetrical dictionaries and we denote a dictio－ nary from language x to y as D_{x-y} ，calling it a harmonized dictionary．When $\mathrm{D}_{x \rightarrow-y}$ and $\mathrm{D}_{y \rightarrow-x}$ are constructed from the same dictionaries， $\mathrm{D}_{y \rightarrow \rightarrow x}=:$ $\mathrm{D}_{x \rightarrow y}^{-1}$ holds．We remove the overlaps of branches．

3．2 Syntactic Selection Procedure

A multiset here is a set in which each element has a weight that is a natural number．The weight of an element is defined as the number of times it appears when looking up words in dictionaries． In the example shown in Fig．3，the multiset SA for compétition consists of＂竸fr＂with weight 2 and＂親技＂with weight 3 ．We denote the weight of element x in multiset X as $\delta_{\mathrm{a}}(X, x)$ ；for in－ stance，$\delta_{\mathrm{a}}(S A$, 競手 $)=2$ ．Using the same nota－ tion，$\delta_{\mathrm{a}}(X, Y)$ is defined as follows when X and Y are multisets：

$$
\delta_{\mathrm{a}}(X, Y)=\sum_{y \in Y} \delta_{\mathrm{a}}(X, y)
$$

When a multiset Z consists of＂竞屜＂and＂競技＂， then $\delta_{\mathrm{a}}(S A, Z)=5$ ．

The notation $\delta_{\mathrm{b}}(X, x)$ represents the sum of the weights of the elements that contain PWs of x in multiset X ．For instance，if PWs are defined as kanji，$\delta_{\mathrm{b}}\left(S A\right.$ ，競争 ${ }^{2}$ ）is 7 by adding 5 （sum of weights of elements in the SA that have kanji ＂競＂）and 2 （sum of weights of elements in the SA that have kanji＂fo＂）．Using the same notat tion，$\delta_{\mathbf{a}}(X, Y)$ is defined as follows when X and Y are multisets：

$$
\delta_{\mathrm{b}}(X, Y)=\sum_{y \in Y} \delta_{\mathrm{b}}(X, y)
$$

For instance，$\delta_{\mathrm{b}}(S A, Z)=12$ ；that is 7 phins 5 $\left(=\delta_{\mathrm{b}}(S A\right.$, 悦技 $\left.)\right)$ ．We use the notation δ as a pa－ rameter for δ_{a} or δ_{b} ．

3．3 Properties of Inverse Consultation

 In the following，we use $D_{f \rightarrow 0}$ and $D_{e \cdots j}$ as inverse dictionaries when starting from Japanese words and we use $D_{j \rightarrow e}$ and $D_{\theta \rightarrow f}$ as inverse dictinmaries when starting from French words．French ECs for a Japanese word j form a multiset F expressed as $F=D_{\mathrm{e} \rightarrow \mathrm{r}} \mathrm{D}_{\mathrm{j} \rightarrow \mathrm{o}} \mathrm{j}$.French equivalencies selected by $I C_{1}$ form a

Fig． 4Λ structure that δ_{a} is inapplicable．
multiset whose element if satisfies
$f \in F \operatorname{and} \delta\left(D_{f \rightarrow e} f, D_{j \rightarrow e} j\right)>1$.
French equivalencies selected by $I C_{2}$ form a mul－ tisel whose element f satisfies
$f \in F$ and $\delta\left(D_{\mathrm{e} \rightarrow \cdot \mathrm{j}} \mathrm{D}_{\mathrm{f} \rightarrow \mathrm{e}} \mathrm{f}, \mathrm{j}\right)>1$.
Tn the following，we focus on the $I C_{1}$ and $I C_{2}$ described above and examine their properties．

Property 1

$\delta_{a}\left(D_{e \rightarrow j} D_{f \rightarrow e} f, j\right)=\delta_{a}\left(D_{j \rightarrow e} j, D_{f \rightarrow e} f\right)$

$$
=\delta_{a}\left(D_{e \rightarrow f} D_{j \rightarrow e} j, f\right)
$$

This property indicates that when using selection procedture δ_{a} ，equivalencies selected by $I C_{1}$ and $I C_{2}$ are exactly the same．Moreover，it is suf－ ficient to choose BCs whose weights are greater than 1 in F．The proof of Property 1 is shown in Appendix．
Property 2 If δ is δ_{a} ，the resalting Japanese－ french dictionary is a harmonizel dictionary． This is not always true for δ_{b} ．
＇Jhis property is clear with symmetrically struc－ tured dictionaries．When δ_{1} ，is used，the resulting dictionary depends on how PW is defmed and does uot always become a harmonized dictionary．
Property 3 If there is a structure such as shown in Fig．4，δ_{b} mast be used as δ to erclude． irtelcuand ECs．
When δ_{a} is used，the SA for two ECs will be ex aetly the same，which makes it impossible to dis－ card inappropriate ECs．Although this kind of structure seems to be rare，it can exist because of the historical transition of words．When a single English word is intemediated，inappropriate BCs camot be discarded by using δ_{a} for $I C_{1}$ ．

4 Experiment

4．1 Dictionary Data

＇The dictionaries used in the experiment are $\operatorname{Dic}_{\mathrm{j} \rightarrow \mathrm{e}}[\mathrm{Ich} 90], \quad \mathrm{Dic}_{\mathrm{e} \rightarrow \mathrm{j}}[\mathrm{KoiOO}], \quad \mathrm{Di} \mathrm{C}_{\mathrm{e} \rightarrow \mathrm{f}}$［For82］， and Dic $_{f \rightarrow-e}$［Led82］．The whole experimental pro－ cedure is shown in Fig．5．Word－to－word dictio－ naries are first extracted from each dictionary．All words are nouns；in particular，they are one word nouns in Buglish and French．Since the dietio． nary syntax was not always consistent，word－to－ word dictionaries contain some mistakes（inade－ （prate correspondences）．
Itarmonized diclionaries are then constructed from the word－to－word dictionaries as follows：

$$
D_{e \rightarrow j}=D_{i c}^{\cdots 1} \cup D i c_{e \rightarrow j}
$$

Fig． 5 Whole procedure．

$$
\begin{aligned}
& D_{\mathrm{j} \rightarrow \mathrm{e}}=\mathrm{D}_{\mathrm{e} \rightarrow \mathrm{j}}^{-1} \\
& \mathrm{D}_{\mathrm{e} \rightarrow \mathrm{f}}=\mathrm{Dic}_{\mathrm{f} \rightarrow \mathrm{e}}^{-1} \cup \text { Dic } \mathrm{C}_{\mathrm{a} \rightarrow \mathrm{f}} \\
& \mathrm{D}_{\mathrm{f} \rightarrow \mathrm{e}}=\mathrm{D}_{\mathrm{e} \rightarrow \mathrm{f}}^{-1}
\end{aligned}
$$

Although there are other ways to symmetrize dic－ tionaries，（for example，by removing all branches that are not bidirectional），we chose the above procedures for the lexicographical reason de－ scribed below［Har83］．

There are two kinds of bilingual dictionar－ ies，one is from a foreign language (f) to the mother langtage（Dic $\mathcal{f} \rightarrow m$ ），and the other is from a mother language (m) to a foreign language （Dic $m_{m \rightarrow f}$ ）．In Dic $f_{\rightarrow \rightarrow m}$ ，when there are no equiv－ alencies in m for a foreign word，the dictionary gives its definition or explanation of the word in m ．Therefore，all the foreign words can be con－ tained in the dictionary．In Dic $m_{m \rightarrow f}$ on the other hand，if there are no equivalencies in f for a word of m ，the word itself is often dropped from the dictionary．The words contained in the dictionary are therofore a part of m ，and Dic $m_{m \rightarrow f}$ lacks many entries．A harmonized dictionary is a solution to this problem because it contains equivalencies of Dic $f_{f \rightarrow m}$ as entries of Dic ${ }_{m \rightarrow f}$ ．

4．2 Procedure of Inverse Consultation

Irom Property 1 ，we use δ_{a} with $I C_{1}$ and we use δ_{b} with $I C_{2}$ ．The PW for δ_{b} are defined as fol－ lows：
－Japanese 6353 kanjis．
－French morphemes［Mau85］． 1151 prefix and 710 suffix．
From Property 2，inverse consultation is applied to both Japariese and French entries，and then the results are put together to construct a harmo－ nized dictionary．We clenote it as $D_{j \rightarrow f}$ or $D_{f \rightarrow j}$ ．

Each entry within $D_{j \rightarrow e}$ and $D_{f \rightarrow \theta}$ is classified into one of five types according to the procedure used to select its equivalencies from ECs．
－Type 1 A single EC exists and is selected unconditionally as the equivalence．
－Type B Equivalencies by $I C_{1}$ exist；all are selected and the rest of the ECs are discarded．
－Type C There are no equivalencies by $I C_{1}$ but there are by $I C_{2}$ ．One third（empirically decided）of ECs by $I C_{2}$ are selected according to the value of the following fraction（larger ones are selected）：

$$
\frac{\text { Value of function } \delta_{\mathrm{b}}}{\mathrm{SA} \text { (byte) }}
$$

－Type D No equivalencies by $I C_{1}$ nor by $I C_{2}$ appeared but there are several ECs．For this entry，it is impossible to select the rele－ vant equivalencies．
－Type E There are no ECs．
Entrics of Type A acquire more appropriate equivalencies than do entries of Type B ，and en－ tries of Type B acquire more appropriate equiva－ lencies than do entries of Type C ．

5 Evaluation of Experiment，

5．1 Result of the Example

Equivalencies obtained for the Japanese word＂競争＂are
concours，rivalité，compètition， course，concurrence，émulation
and the intermediated English words are competition，contest，rival，rivalry，race．
 ECs is 41 （including overlaps），and 13 of them are selected by $I C_{1}$ ．The number of ECs in each category of irrelevant words described in Section 2.1 is listed in Table 1，which indicates that in－ verse consultation can detect the relevant words even when there are mistakes in the dictionar－ ies．The word which should not be dropped was joute．

Equivalencies for＂喼予＂in［Tam85］are

Table 1 Details of ECs of＂颠折＂．

Selected equivalencies	13
Different meaning in English	9
Meaning extended in Fnglish	9
Mistakes of dictionaries	9
Words which must not be dropped	1

Table 2 Classification of entries．

	$\mathrm{D}_{\mathrm{j}-\mathrm{f}}$		$\mathrm{D}_{\mathrm{f}-, j}$	
Total	42190	(100.0%)	23710	(100.0%)
Type A	1600	(3.8%)	385%	(16.2%)
Type B	8179	(19.4%)	7397	(31.3%)
Type C	24047	(57.0%)	6452	(27.2%)
Type D	1514	(3.6%)	2088	(12.6%)
Type E	6850	(16.2%)	3021	(12.7%)

Table 3 Entries with no lic．

category	example	English equivalence
Cultural words	打作 1 l （otoshidama： Onr tradition to give money to children on New Year） cédille	handsel cedilla
Technical terms or proper nomes	ガツス（gats ：gatss）	gauss
	Cicéron	Cicero
Borrowed words	アバリー゙ク（ajerichihu ：apetizer） tec－shirt	apéritif teeshirt

concours，rivalité，compètition， course，concurrence．
Our result contains emulation（which means ri－ valry）in addition to the entries in the published dictionary．

5．2 Evaluation of Entries

Table 2 lists the each number of entrics belong－ ing to the Types A～D（defined in Section 4．2） Type I）consists of the following entries．
－One English word is intermediated and sev－ eral ECs appear．
－＇The entry contains no PW．
The Type D percentage difference between $D_{j-\rightarrow f}$ and $D_{f \rightarrow j}$ shows that the number of entries of Type D depends on the number of registered PWs．

No EC appears when an English word to be in－ termediated does not：exist as the entry of $\mathrm{D}_{\mathrm{e} \rightarrow \mathrm{f}}$ or $\mathrm{D}_{\mathrm{a} \rightarrow \mathrm{j}}$ ．Such entries can be categorized as in Table 3.

Original words are apt to be translated into un－ common langlish words，so they normally do not appear as entries if the same kind of words do not； exist，in the objective langange．＇Jechnical tems and proper nouns depend very much on culture．

S＇able 4 Evaluation of equivalencies．

$\left[\right.$| | $\mathrm{D}_{\mathrm{j}}-\mathrm{f}$ | | $\mathrm{D}_{\mathrm{f}-\mathrm{j}}$ | |
| :---: | ---: | ---: | ---: | ---: |
| rate | R 1 | $\mathrm{R2}$ | $\mathrm{R1}$ | $\mathrm{R2}$ |
| $80 \% \sim 100 \%$ | 58 | 56 | 18 | 58 |
| $00 \% \sim 80 \%$ | 4 | 11 | 8 | 15 |
| $40 \% \sim 60 \%$ | 9 | 13 | 13 | 9 |
| $20 \% \sim 40 \%$ | 8 | 10 | 24 | 4 |
| $0 \% \sim 20 \%$ | 22 | 7 | 37 | 14 |

Many Fronch placenames，for instance，are Typo F．Borrowed words are expressed in incousistent， spellings，and which of them are to be fomed in the dictionary also depends on the culture（apéritif is； the equivalence in Dic j_{me} ）．

Since a harmonizing；dictionary angments the entries，the resulting dictionary contains entries that are not in the published diedionary．As ex－ phaned in Section 4．1，this phenomenon is com－ spicuous when we compare $\mathrm{D}_{\mathrm{j} \rightarrow \mathrm{f}}$ with the pub－ lished rlietionary［Sum70］，＇I＇hesse entrics can be cat．－ egorized as follows：
1．Collocpual worils．
Bx．わんちゃん（wanchan：puppy）
2．Technical terms or proper nonus．
Fx．ゲスベスト（asubesuto）asbeste）
3．Compound nouns．
Ex．股化作汌（humkasayon：disintegrate）物价发安政策（bukkantejseisaka： valorization）
Harmonizing dictionaries help to gather corre－ spondences between the mother language and a foreign language and are nseful in revising mb－ lished dictionaries．

5．3 Evaluation of Equivalencies

We evaluated the equivalencies of resulting dictio－ mavies by comparing them with those of published dictionaries［＇an85］［Suzzo）．For random 100 en－ tries in both dictionaries，the following two per－ centages（calculaterl mannally）are listed in Table 4：
－R1 Praction of ecruivalencies in the pub－ hished dietionary which were also found by this method．
－R2 Praction of exuivalencies found by this method which were judged appropriate．
Note that entries with greater R2 contain appo－ priate equivalencies on higher rate．This is not trine for R1，since R1 indicates the discrepancy of equivalencies between the resulting dietionary and published dictionaries．

Entries of $122=100 \%$ can be classified ats follows： 1．Entries of＇Type A or B．（See Section 4．2．）
2．Fintries that lave less than three BCs． Entries with less than 3 ECs amount to 29.0% for $\mathrm{D}_{\mathrm{j} \rightarrow \mathrm{f}}$ and 34.2% for $\mathrm{D}_{\mathrm{f}, \mathrm{j}}$ ．This indicates that words with specific meanings are apt to acguire appropriate equivalencies．

Table 5 French entries whose R1 are 0% ．

entry	$\mathrm{D}_{\mathrm{f} \rightarrow \mathrm{j}}$	Published dictionary ［Tam85］
distique	行 連 何対 们（gy－ ourenku，tuiku： the terminology for Japanese and Chi－ nese poems of same kind）	2 行符（2 gyou－shi coinage for the term for European poems）
pull	セーター（ sectaa ：sweater written with Japanese let－ ters．This word is common）	プルオーバー（рu：u obar ：pull－over writ－ ten with Japanese letters．This term is not common in Japan）
boulier	第整（sanban：Aba－ cus in general）	そわばん，数え罒 （soroban，kazoedama ：Japanese abacus）

Table 6 Japanese entries whose R1 are 0% ．

entry	$\mathrm{D}_{\mathrm{j} \rightarrow \mathrm{F}}$	Published dic－ tionary［Suz70
つぐみ（tsugumi ；	grive	merle calembour
㳔 㳭（share ：wit－	astuce	
	badinage	
	drôlerie	
	facérie	
	farce	
	plaisanterie	

The entries tend to have either $\mathrm{R} 1=80 \% \sim 100 \%$ or $\mathrm{R} 1=0 \% \sim 20 \%$ ．Of the latter，some examples are listed in Table 5 and 6 ．For distique in Ta－ ble 5，which is a term in French literature， $\mathrm{D}_{\mathrm{f} \rightarrow \mathrm{j}}$ translates it into the term for the corresponding kind of Japanese literature．Although it resem－ bles to the direct translation of distique，it is only an analogy．On the other hand，since the di－ rect translation of distique in the published dic－ tionary adopts the concept of French poems，it is uncommon and cannot be understood by most Japanese readers．The same is true for boulier except that the common Japanese is indicated in a published dictionary．Pull is borrowed from the English word pull－over whose direct translation is contained in a published dictionary，and it is not a common word in Japanese．

In the first example in Table 6，grive is the generic name equivalent to thrush，whereas merle is a kind of thrush．The second example shows that more equivalencies are found in $D_{j \rightarrow f}$ ．

To sum up，the resulting dictionary can be uti－ lized in conjunction with the published dictionar－ ies as follows：
－To revise the equivalencies．
－To supplement the equivalencies．
Sections of the resulting dictionaries is listed in Table 7．List 1 is $D_{j \rightarrow f}$ and List 2 is $D_{f \rightarrow j}$ ．

For each list，entries are in the first row and their equivalencies are in the third row．Symbols in the second row indicate how appropriate each equiv－ alence is．（Refer to the notes beside．）

6 Related Work

The use of a third language Fuglish as an inter－ mediary in the construction of a bilingual dictio． nary was tested manually on a large scale on edit－ ing the Spanish－Japanese dictionary［Kuw90］．It is now a representative middle－sized dictionary hav－ ing a large quantity of information．

Tokunaga and Tanaka［Tok90］tried to extract a conceptual dictionary from Japanese－English and English－Japanese dictionaries．Although they used a concept similar to ours that is the graph structure of a dictionary related to meaning of words，their frameworks and final product differ from ours．

7 Conclusion and Future Works

The proposed method for using a intermediate language to construct a bilingual dictionary uti－ lizes the structure of dictionaries and morphemes and can choose appropriate equivalencies for most entries．Comparing the resulting dictionary with published dictionaries showed that data obtained are useful for revising and supplementing the vo－ cabulary of existing dictionaires．

To increase the accuracy with which equiva－ lencies can be selected，mistakes in word－to－word dictionaries must be corrected even if our method may detect appropriate equivalencies．One way to do this would be to use thesaurus to check whether the extracted correspondences are rele－ vant．

Nouns were taken into consideration in this re－ search，and the next step will be to apply the proposed method to other parts of speech．We also need to establish a way to hande compound words in Buropean languages．

Acknowledgements

We express our gratitude to Prof．Hideya Iwasaki of University of Tokyo for his guidance on theoret－ ical aspects and essential remarks on experiments． We are also thankful to Prof．Nigel Ward of Uni－ versity of Tokyo for his lexicographical advice and for his invaluable aid in shaping our idea．

References

［Bog89］Boguraev，B．ot al．（1089）．Computa－ tional Lexicography for Natural Language Pro－ cessing．Longman．
［Fil85］Fillmore，C．（1985）．Frames and the se－ mantics of moderstanding．Quaderni di Seman－ tica，Vol．G，No．2．
［Fi192］Fillmore，C．and Atkins，B．（1992）．To－ ward a Prame－Based Lexicon．The semantics of RISK and its Neighbors．Acalcmic Press．

Table 7 A part of resulting Japaneset \rightarrow French dictionary.

[For82] Forbes, P. ct al. (1982). Shorter FnglishFrench Dictionary. Harrap Litnited.
[Har83] Martmanm, R. (1983). Lexicogruphy: principles and practice. Academic Press.
[Ich90] Ichikawa, S. (1990). New JapaneseEnglish Dictionary. Kenkyuusha.
[Ide93] Ide, N. and Véronis, J. (1993). Extracting knowledge basis from machine readable dictionaries. $K B \& K S$, JIPDEC.
[Koi90] Koine, Y. (1990). New English-Japanese Dictionary. Kenkyuusha.
[Kuw90] Kuwana, K. (1990). Spanish-Japenese Dictionary. Shougakukan.
[Led82] Ledésert, M. et al. (1982). Shorter French-Lnglish Dictionary. Harrap Limited.
[Mau85] Maulourguet, P. et al. (1985). Grund Dictionnaire Encyclopédique LAROUSSE. Larousse.
[Mi190] Miller, G. et al. (1990). Five Papers on WordNet. CSL Report 43. Cognitive Science Laboratory, Princeton University.
[Oht78] Ohtsuki, T. et al. (1978). Crown FrenehJapanese Dictionary. Sanseido.
[Suz70] Suzuki, S. (1970). Standard JapaneseFrench Dictionary. 'aishhukan.
[Tam85] Tamura, T. (1985). Dictionnaire FrançaisJaponais ROYAL. Makusuisha.
[Tok90] Tokmaga, T. and Tauaka, II. (1990). The Automatic Fixtraction of Conceptat Items from Bilingual Dictionaries. PRICAI.

Appendix
The following two lemmas are needed to prove Property 1.
Lemma 1-1 $\quad x \in \mathrm{D}_{y, r} x \Leftrightarrow y \in \mathrm{D}_{r-r} x$
This is clear from the symmetrice structure of the hamonized dictionary.
Lemman 1-2 If X is a set (emery clement has a weight of 1) then $\delta_{\mathrm{a}}\left(\mathrm{D}_{x \rightarrow y} X, y\right)=\delta_{\mathrm{a}}\left(X, \mathrm{D}_{y \rightarrow x} y\right)$ lroof: ($|X|$ denotes the number of elements in X)

$$
\begin{aligned}
& \delta_{\mathrm{a}}\left(\mathrm{D}_{x \rightarrow y} X, y\right) \\
& =\left|\left\{x \mid x \in X \wedge y \in \mathrm{D}_{x \rightarrow r y} x\right\}\right| \\
& =\left|\left\{x \mid x \in X \wedge x \in \mathrm{D}_{y, x} y\right\}\right| \\
& =\delta_{\mathrm{a}}\left(X, \mathrm{D}_{y-x} y\right) \quad \square
\end{aligned}
$$

As branches do not overlap, $\mathrm{D}_{\mathrm{f} \rightarrow \mathrm{o}} \mathrm{f}$ is a set. From Lemma 1.-2, the proof for Property 1 is givel as follows:

$$
\begin{aligned}
& \delta_{a}\left(D_{c \rightarrow-j} D_{f \rightarrow e} f, j\right) \\
& =\delta_{\mathrm{a}}\left(\mathrm{D}_{\mathrm{f} \rightarrow \mathrm{e}^{\mathrm{f}},}, \mathrm{D}_{\mathrm{e}-, \mathrm{j}}^{-1} \mathrm{j}\right) \\
& =\delta_{\mathrm{a}}\left(\mathrm{D}_{\mathrm{f} \rightarrow \mathrm{o}} \mathrm{f}, \mathrm{D}_{\mathrm{j} \rightarrow \mathrm{e}} \mathrm{~F}\right) \\
& =\delta_{\mathrm{a}}\left(\mathrm{D}_{\mathrm{j} \rightarrow \mathrm{e}^{\mathrm{f}}}, \mathrm{D}_{\mathrm{f} \rightarrow \mathrm{e}} \mathrm{f}\right)
\end{aligned}
$$

The proof for the second equation is the same.

