Two Methods for Learning ALT-J/E Translation Rules from Examples and a Semantic Hierarchy

Mussein Alnuallim
Info. and Computer Science Dept. King Pahd University of
Petrolemm and Minerals
Dhahran 31261, Saudi Arabia

Yasuhiro Akiba Takefumi Yamazaki
Akio Yokoo Shigeo Kaneda
N'I'I' Communication Science Labs.
1-2356, Take, Yokosuka-shi
Kanagawa-ken 238-03
Japan

Abstract

This pazer presents our work townerls the automatic acquisition of translation rales from Japanese-English translation examples for NT'T's ALT'J/L machine translation system. We apply two machine latrning algorithms: Hausslex's algorithm for learnint internal disjunctive concept and Quinlan's IDS alyorithm. Haperimental ressults show that our approench yields rules that are highly arcatate compared to the manaally created rules.

1 Introduction

A critical issue in AI reseauch is to overcome the knowledge acquisition bottleneck in knowledge-based systems. As a knowledge base is expanded, alding, more knowledge and fixing previous erroneons knowledge become increasingly costly. Moreover, maintaining the integrity of large knowledge bases has proven to be a very challenging task.

A widely proposed approach to deal with the knowledge acquisition bottleneck is to employ some leaming mechanism to extract the desired knowledge antomatically or semi-antomatically from acitual cases or examples [Buchanan \& Wilkins 1993]. The validity of this approath is becoming nome evident as varions machine-leaming-based knowledge acquisition tools for real-world domains are being reported [Kim \& Moldovan 1993, P'orter et al. 1990, Sato 1991a, Sato 1991b, Utsuro et al. 1992, Wilkins 1990].

ALI-J/E, which is an experimental JapmeseEnglish translation system developed at Nippon 'Telegraph and Telephone Corporation ($\mathrm{NI}^{\prime} \mathrm{I}$) , is one example of a large knowledge-based system in which solutions to the knowledge acquisition bottileneck are clefinitely needed. One major component of this system is its huge collection of tratushation rules. Wach of these rules associates a dapmese sentence pattern with an appropriate English pattern. To translate a Japanese sentence into binglish, ALI-.J/E looks for
the me whose Japanese patern matehes the sontence best, and then uses the binglish pattern of that rule for tramslation.

So far, ALI'-d/E tramstation rules have been composed mamally by extemsively trained human experts. To qualify for this job, an expert must not only master both limglish and Japanese, but aso be very familar with varions components of the system. Diach time the mules are expanded or altered, the new set of rules most then be "dehnged" using a collection of test catios Usually, several iterations ane needed to arrive at transhation rules of aceeptable quality.

Creating, now translation mes as woll as refining; existing omes have poven to be extremely diflicult and time-consmming because these tasks require considering a huge space of possible combinations (rules in AL'['- $/ \mathrm{F}$ are expressed in tems of as much as 3000 "semantic categories"). The high costs involved make the mamal creation of ALI'- $/$ / E 's translation rules impractical. Indeed, in spite of the vast amount of resources spent on building the corrent rules of ALI'-J/l', faules in these rules are still detected from time to time, making system mantenance a contimbous requirement.

The aim of this work is to make AL'L'-J/B's tramslattion mes less costly and more reliable through the wee of inductive machine learning tedmiques. Careful examination of the mamal process which has been followed so far by AD'I'J/les experts for building translation rules reveals that most of the eflort is spent on figuring out the condition part of the rules (that is, the dapanese pattems). Therefore, we propose the use of inductive machine leanning algorithms to leam these conditions from examples of Japanese sentences and their linglish translations. Under this machine leaming approadt, the user is relieved from exploring the huge space of alternatives she/he has to consider when constructing translation rules manally foom scratch a joh which only extensively trained experts can perfome. The task is now tumed into a scarch for some reasomable rules that explain the given training examples, where the search is handled automatically by a leaming algorithm. This not only
saves the user＇s time，but also makes it umecessary for the user to be an expert of the ALT－3／E sys－ tem．Moreover，this approach significantly reduces the＂subjectivity＂of the rules since the intervention of human experts is minimized．This is particularly important because the immense nmmber of transla－ tion rules（currently over 10，000）requires employing a team of experts over an extended period of time．

Two learning methods are investigated in this pa－ per．Experiments show that the rules learned by these methods are very close to the rules manually composed by human experts．In most cases，given a reasonable number of traning examples，the em－ ployed methods are able to find rules that are more than 90% accurate when compared to the mamally composed rules．

The rest of this document is organized as follows． We begin in Section 2 by a brief overview of the ALT－ J／E Japanese－English translation system．In Section 3，we discuss some of the problems that arise when the translation rules of ALT－J／E are composed manually by human experts．Then，we propose in Section 4 an alternative approach based on machine learning techniques．In Section 5，we describe the inductive learning methods used，followed by an experimental evaluation of these methods in Section 6．Pinally， conclusion remarks are stated in Section 7.

2 ALT－－J／E：A Brief Overview

ALT‥J／E，the Automatic Language Translator： Japanese to Euglish，is one of the most advanced and well－recognized systems for translating Japanese to English．It is the largest such system in terms of the amount of knowledge it comprises．In this work， we are concerned with the following components of the ALT－J／L system：

1．The Semantic Iierarchy，
2．The Semantic Dictionary，and
3．The Translation Rules．
We briefly describe each of these components be－ low．For more details about the ALP－J／L sys－ tem，we refer the reader to［Ikehara et al．1989， Ikehara et al．1990，Ikehara et al．1991］．

As shown in Figure 1，the Semantic Mierarchy is a sort of concept thesaurus represented as a tree structure in which each node is called a semantic：cat－ egory，or a category for simplicity．Edges in this struc－ ture represent＂is－a＂relations annong the categories． For example，＂Agents＂and＂Jeople＂（see Figure 1） are both categories．The edge between these two cat－ egories indicates that any instance of＂Iecople＂is also an instance of＂Agents＂．The current version of ALIT－ J／E＇s Semantic Hierarchy is 12 levels deep and has about 3000 nodes．The Semantic Dictionary maps； each Japanese noun to its appropriate semantic cat－ egories．For example，the Semantic Dictionary states
that the noun ${ }^{\prime \prime}$（niwatori），which meahs＂chicken＂ or＂hen＂in English，is an instance of the categories ＂Meat＂and＂Birds＂．

The Transkation Rules in ALI－J／E associate Japanese patterns with English patterns．Currently， ALCT－J／E uses roughly 10,000 of these rules．${ }^{1}$ As Fig－ ure 2 shows，cach translation rule has a Japanese pat－ tern as its left－hand side and an English pattern as its right－hand side．For example，the first rule in this figure basically says that if the dapanese verb in a sentence is 䍀く（yakn），its subject is an instance of ＂People＂，and its object is an instance of＂Bread＂or ＂Cake＂，then the following English pattern is to bee used：

Subject＂Dake＂Object．

Note that in this case the Japanese verb 㚾く（yaku） is translated into the English verbs＂bake＂．This same Japmese verl can also be translated into the Luglish verbs＂roast＂，＂broil＂，＂eremate＂or＂burn＂，depend－ ing on the context．These cases are handled by the four other rules given in ligure 2.

Translation rules are meant only to hamdle basic sentences that contain just a single Japanese verb． Such sentences are called＂simple sentences．＂${ }^{2}$ To translate a complex sentence，ALI－J／E does various kinds of pre－and post－processing．Roughly speak－ ing，the given complex sentence is first broken into a collection of simple sentences in the pre－proeessing phase．Then，the Einglish translations of these are combined together in the post－processing phase to give the final translation of the complex sentence．

To translate a simple sentence，ALI＇－J／E looks for the most appropriate translation mule to use．Based on the verb of the sentence，the system considers as candidates all those translation rules that have this verb on their left－hand side．The English pattern of the rule whose Japanese pattern matches the sen－ tence best is then used to generate the desired English translation．

As shown in Figure 2，the Japancse pattems are expressed using the variables N_{1}, N_{2}, \cdots ，etc．，which represent varions components of a Japanese sentence， such as the subject，the object，etc：＂The＂degree of matching＂between a Japanese patiem and a sen－ tence is based on how well the values of these vari－ ables for the given sentence match those categories required by the Japanese pattern．The Semantic Dic－

[^0]

Figure 1：The upper levels of the Semantic Iticrarchy in AL＇I＇．J／E．

F

J－Verb	＝＂娭く（yalin）＂

J－Verb	＝＂㧤く（yaku）${ }^{\text {c }}$
$N_{1}(\mathrm{Subj})$	三＂People＂
$\left.\lambda_{2}(0) b^{\prime}\right)$	三＂Pread＂or＂Cake＂

THEN	Subj	$=\lambda_{1}$
	E－Verb	$=$＂bake＂
	Ohj	$=N_{2}$
THLeN		
	Subj	$=N_{1}$
	E－Vid，	$={ }^{\text {croist }}{ }^{\text {＂}}$
	（ H j	$=\lambda_{2}$
THEN		
	Sinloj	$=N_{1}$
	B－\ern	二＂hroil＂
	（ H j j	$=N_{2}$
THIN		
	Subj	$=\lambda_{1}$
	F－\erb	$=$＂cmate＂
	Obj	$=N_{2}$
THEN		
	Subj	$=\lambda_{1}$
	E－Virl	\therefore＂burn＂
	Olij	$=N_{2}$

F＇igure 2：＇Thambation rules for the Japanese verb 炒く（vaku）．These rules are composed mamally by hmman experts．＂$=$＂indicates＂an instance of＂．
tionary is nsed during the matching process to deter－ mine whether or not a given noun is an instance of a certain category．

3 Shortcomings of the Manual Approach

Translation rules in the ALT－J／E system have so far been composed manually by human experts．How－ ever，due to the high cost－per－rule，and because of the huge number of translation rules needed for ALIP J／E to carry out a reasonable translation job，the mamal approach has been conctuded by the developers of ALI－J／E to be impractical．In particular，the follow－ ing problems have been reported：
－Building and maintaining the translation rules require a great deal of expertise．To qualify for this task，skillful experts are required not only to master both Japanese and English，but also to be fully familiar with ALT－J／E＇s large Semantic： Hierarchy and to understand the overall process of the system．Such qualifications are costly and involve extensive training．
－In spite of the vast amount of resourcess spent on building the current rules of ALT＇－J／E by hu－ man experts，faults are still detected from time to time，making the maintenance of the system a contimous reguirement．
－The translation rules are not quite concrete and vary depending on the expert．Rules constructed by one expert are not easy for another expert to understand and modify．This makes the mainte－ nance process more difficult and makes it hard to sulstitute an expert by another．
－An important objective is to build specialized versions of ALT－．J／E to be used in specific：ap－ plication domains．The mannal approach is ob－ viously umealistic since it involves more traning of the human experts with respect to the target application domain，and becanse this process has； to be repeated for every new domain．
－One of the problems facing the designers of AlT－ J / E is the refinement of the Semantic Hieratchy． Whenever this structure is altered，the trans－ lation rules must also be revised to reflect the change．Such revision is extremely troublesome and error－prone if it is done mamally．

4 A．Machine Learning Ap－ proach

The problems we have just listed regarding the man－ wal construction of ALTS－J／E＇s translation rules are largely solved if the process can be antomated．An
attractive approach to this problem is to resort to inductive machine learning techniques to extract the desired translation rules from examples of Japanese sentences and their English translations．At the com－ rent stage，however，learning translation rules fully automatically from examples alone seems to be too challenging．A more realistic goal is to minimize－． rather than to totally diminate \cdots the intervention of human experts in the rule aquisition process．Thus， our current objective is to concentrate on automat－ ing the most difficult and time－consuming parts of the mamal procedure．

The goal of the present work is to learn what we call ＂partial translation rules＂．A partial translation rule consists of the left－hand side along with the English verb of the right－hand side of a translation rule．In other words，the only difference between a translation rule and a partial translation rule is that the latter has only an English verb rather than a full bonglish pattern as its right－hand side．

Constructing a partial translation rule is the most difficult part of constructing a translation rube．In－ deed，turning a partial rule into a complete one is a relatively casy task that can be done by a human operator with moderate knowledge of English and Japanese．

5 Learning Task and Methods

In this work，we investigate two different inchuctive karning algorithms．Before talking about these al－ gorithms，we will first make the learning task more precise and shed some light on the difficulties that distinguish it from other previously studied learning tasks．

5．1 The Learning Task

The job of a leaming algorithm in our setting is to construct partial translation rules．For a given Japanese verb J－vest and a possible English transla－ tion fevertb of that vert，the algorithm has to find the appropriate condition（s）that should hold in the context in order to map J－verd to bi－werb ．

As an example，consider the Japancse verb 健 9 （tsukan）．This verb corresponds to the Dinglish verbs ＂nse＂，＂spend＂and＂employ＂．The choice among these English verbs depends mostly on the object of the sentence．For example，if the object is an in－ stance of＂Asset＂or＂Time＂，then＂spend＂is appro－ priate．Thus，a rough rule for mapping 使 5 （tsukau） to＂spend＂may look like

$$
\begin{aligned}
& \text { IF } 1 \text { - Veras = 使 } 5 \\
& \text { and Opsect is an inntance of "Tinse" or "Asset" } \\
& \text { THEN } \mathrm{E}-\mathrm{IERB}=\mathrm{spmad} \text {. }
\end{aligned}
$$

We seek to leam this kind of mess from examples of Japanese sentences and their Einglish translations， such as the following pair：

After parsing (which is carried out by AIT-J/t's parser), the above example gives the following pair:

$$
\begin{aligned}
& \text { Obsecu = kame }] \text {. E- \emb }=\text { spend } \text {) }
\end{aligned}
$$

By looking up the Semantic Dictionary of ALI'-J/E, the possible semantic categories for onjyo are "Noble I'erson", "Danghter" and "Female", and those for kane are "Asset", "Metal", "Day" and "Medal". Thus, this example is firally given to the learning algorithm in the following form:

```
( | Sumaser \equiv{Noble Prsom, Danghter. Pemate }.
    Ombect \equiv{ Asset, Metal, Day: Nexlal ||.
    E-VEMB= speml ),
```

where N := S indicates that the sentence componemt N is an instance of each category $s \in S$. The general format of the traning examples is as follows:

$$
\begin{align*}
\langle[& N_{1} \equiv\left\{a_{1}, a_{2}, \cdots\right\} \\
& N_{2} \equiv \equiv\left\{b_{1}, b_{2}, \cdots\right\}, \cdots \tag{1}\\
& \left.\left.N_{n} \equiv\left\{c_{1}, c_{2}, \cdots\right\}\right], B_{-}-V_{e} b\right\rangle
\end{align*}
$$

where each N_{i} represents a component of the sentence (subject, object, ete.), and each a_{i}, b_{i}, and r_{i} is a semantic ategory.

Prom the viewpoint of machine leaming research, the above learning task is interesting/challonging, from two jersjectives:

- IUuge amonnt of background knowledge: To be appropriate for our leaming task, the leaming algorithm most effectively utilize ALJJ/E's large Semantic Mierarchy. This requirement of being capable of exploiting such a huge amonnt of background knowledge disqualifies most of the known inductive learning algorithns from directly being nsed in our domain.
- Ambiguity of the training examples: Unlike most known leaming domains, the traming examples in our setting (as piven in lia. (1)) are armbiguous in the sense that each of the variables (Subsber, Obsect, etc:) is assigned multiple values rather than a single value Pocusing on the relevant values (that is, the values that conttributed to the choice of the Finglish verb) is an extra challenge to the learner in our domain.
To deal with the above leanning problem, we investigated two aproaches. One is based on a theoretical algorithm introduced by Hanssler for leaming internal disjumetive concepts, and the other on the well-known ID 3 algorithm of Quinlan.

5.2 Haussler's algorithm for learning, internal disjunctive expressions

In our first approach, we represent the conditions of the leamed partial translation rules as informal disjunctive erpressions, and employ an alporithm given
by Hansiser for lemming concepts expresised in this syntax. Hanssler's algorithm enjoys many advantages. Jirst, it has been analytically proven to be quite efficient both in terns of time and the momber of examples needed for learning. Second, the algorithon is capable of explicitly utilizing the background knowledge represented by the Semantic Hierarchy. Noreover, the language used by human experts to construct Ali'- J/fi's rules is quite similar to internal disjumetive expressions, suggesting the appropriateness of this algocithm's bias. Haussler's algorithm, on the other hand, suflers the important shorteoming (within our setting') that it is not capable of learning from ambiguous examples. In order to be able to use the algorithm for our task, the ambiguty has to be explicitly removed from all the taning examples. Of comrse, this approad is not desimble becanse it requires some intervention by a human expert and becanse there are no gratanteres that disambignation is done in a perfect mamer.

5.3 Quinlan's ID3

Onr secomd approach is based on the DD3 algorithm introduced by Quintan in [Quinlan 1986]. As it is, 1D3 is not albe to ntilize the background knowledge of our domain, nor is it capable of dealing with ambiguous traning examples of the form given by lig. (1). It is clearly imppropriate to treat $N_{1}, N_{2} \cdots$ as multivalued variables, which is the most common way of using 11)3. This is because of the hage number of values these variables can take, and also becanse we need to exploit the backgromad knowledge represented by the Semantic Hiemarchy.

To be able to use 1 D 3 in our domain, we transform the traning examples into a new representation that can be hamolled by II)3. The transfomation we propose is done in a way such that the relevant information from the the Semantic Hierarchy are incheded in the newly represented examples, and, at the same time, these newly represented examples still reflect the ambisuly present in the original exampes.

Our transformation method is described as follows: Let A be the set of all the eategories that appeared in the traning examples, and their ancestors. For every - $€$: we define a binary feature as a test of the form

$$
\text { Is } N_{i} \text { an instance of } c \text { ? }
$$

For a traning example

$$
\left\langle\left[N_{1} \cdots S_{1}, \cdots N_{i}=S_{i}, \cdots N_{n}=S_{n}\right], F_{r}^{\prime} V \in r b\right\rangle
$$

we let the ontcone of the above test be truef if and only if there exists some $s \in S_{i}$ such that s is an ancestor of 6 in the Somantic Jhemeny, or e itself. Using these features, we convert cach of the traning examples into a new pair $\left\langle V^{\prime}, b^{\prime}-V / t b\right\rangle$ where V is a vector of bits each representing the matcome of the corresponding feature for the given training example.

Given the above definition of the binary features, the new pairs (V, E-Verb) include all the necessary background knowledge obtained form the Semantic Hierarchy, and also reflect the ambiguity of the original training examples. In other words, the above transformation can be seen as "compiling" the information of the original ambiguous training examples along with the necessary parts of the Semantic Hierarchy into a format that is ready to be processed by II)3 (or in fact, by many other feature-based learning algorithms).

Note that if we create a feature for every semantic category c and every sentence component N_{i}, then the total number of features will becone infeasibly large (many thonsands). However, what we need is only to consider those categories that appeared in the training data, and their ancestors (the set A above). In our experiments, this results in a reasonable number of features (one to two hundred). This is because the number of examples is limited and also because of the rather "tilted" distribution of what categories can naturally appear as a certain component of a sentence for a given verb. (Eg. the object of the verb) ts (nomu), which roughly means to "drink", can not be just anything!)

The most important advantage of the above approach is that it can be applied to ambignous training examples as they are, without the need to remove the ambiguity explicitly as we did with Haussler's algorithm. Another advantage of using ID3 is that we do not need to break our learning task into binary class learning problems since ID3 is capable of learning multi-class learning concepts.

6 Experimental Work

The goal of the experiments reported here is to evaluate the quality of the partial translation rules leaned by the two learning methods we have just described. The comparison includes the following three settings:

1. Using Haussler's algorithm to learn from training examples after removing the ambiguity.
2. Using ID3 to learn from training examples after removing the ambiguity and performing the transformation given in the Subsection 5.3.
3. Using ID3 to learn from training examples after performing the transformation given in the Subsection 5.3 , but without removing the ambignity.

In a sense, the first setting represents the best we can do in the absence of the ambiguity since Haussler's algorithm does a good job in exploiting the background knowledge from the Semantic Hierarchy. Comparing Setting 2 with Setting 1 tells us how successful our transformation of the training examples is in letting ID3 make use of the available background knowledge. Finally, comparing Setting 3 with Setting 2 tells us
how successful our transformation is in letting ID3 learn directly from ambiguous training examples.

The experiments were done for six diflerent Japanese verls. Table 1 shows a list of these verbs, along with the number of training examples used, and the accuracy levels obtained by each mothod. In the table, "Hanssler", "ID3-NA" and "ID3 A" denote Setting 1, Setting 2 and Setting 3, respectively. The accuracy was estimated using the leave-one-out crossvalidation methoc ${ }^{4}$, and assuming that the rules come posed manally by human experts are perfeet (that is, we are measuring how close the learmed rules are to those composed manaally).

The performance levels of both Hiussler's algorithm and ID3 when leaning from unambigoons exanples are quite similar in spite of the fact that earh algorithm implements a different bias and has a completely different way of exploiting the background knowledge. Comparing the performance of ID3 in the two cases of learning from ambiguous and unambiguous examples, ambiguity is not harmfin to ID 3 's performance in most cases. In fact, for some of the verbs, the performance is even better when ambiguity is present. This suggests that the approach we have chosen to deal with ambiguity is effective for our task, and that explicit removal of ambiguity is not an attractive strategy since it is not easy to do, and since it does not greatly improve the accuracy anyway.

The most important point here is that the observed accuracy of both the ID3 algorithm and Haussler's algorithm is satisfactorily high overall in spite of the limited number of the training examples used. Such a high level of accuracy strongly indicates that the use of these algorithms will provide significant aid in the construction of AL.T-J/E's translation rules.

7 Conclusion

This paper reported our work towards the acquisition of Japanese-Finglish translation rules through the use of inductive machine leaming techniques. 'T'wo approaches were investigated. The first approach is based on a theoretically-fomoded algorithm given by Itaussler for learning intermal disjunctive concepts. This algorithm has the advantage that it is tailored to utilize background knowledge of the kind available in our domain. We found, however, no obvious way to make this algorithm learn directly from ambiguons training examples, and thus, ambiguity was explicitly removed from the training examples in order to use this algorithm. Our second approach is based on the ID3 algorithm. As it is, ID3 is not able to utilize the background knowledge of our domain, nor is it capable of dealing with ambiguous traning exan-

[^1]Table 1：Expermental results on six Japancse verbs．Numbers show the accuracy per－cent，estimated using the leave－one－ont cross－validation methoch．1D3－NA indicates using 1D） 3 with the ambiguity removed from the traning examples．ID3 A iudicates using ID 3 to leam from ambiguous training examples．

Japanese Verb	Drughish Verts	$\begin{aligned} & \text { No. of } \\ & \text { Brs. } \end{aligned}$	Acmtuy \％		
			Hatssiler	II） 3 NA	ID） 3 A
使的（tsukan）	use，spend，employ	80	85	93	91
饮枵（nomm）	chink，take，eat，accept	． 12	90	98	93
行庫ら（okonam）	conduct，play，houd	33	9.1	88	88
心じる（oujiru）	answer，enter，meet	30	90	87	90
娭く（yaku）	burn，bake，roast，broil，cremate	27	93	89	93
所く（tokn）	solve，undo，disped	29	100	100	97
Averaye Aceurucy			92.0	92.5	92.0

ples．We gave，however，an casy way to＂compile＂ the relevant backgroum knowledge along with the ambignous training examples into a modified set of training examples on which we were able to directly run ID3．Lixperiments comparing these appoaches showed that the rules leamed using the second ap－ proach with the ambiguity present in the traming ex－ amples are almost as accurate as those obtained from ambiguity－free examples using llaussler＇s algerithm．

Overall，our experiments showed that usimg mat chine learning techniques yields rules that are highly accurate compared to the manatly created rukes． These results suggest that exploiting the reported in－ ductive learning techniques will significantly aceeler－ ate the construction process of ALI＇－J／E＇s translation rules．Currently，the reported leaming approaches are being included in a semi－automatic knowledge acepui－ sition tool to be used in the actual development of the AL＇I＇－J／L system．
Acknowledgement：We wish to thank Dr．S． Ikehara for his continuous encomragement．This work was done while the first anthor was spending a post－ doctoral year at NT＂${ }^{\prime}$ ．He also thanks King IFhd Un－ versity of Petroleum and Minerals，Saudi Arabia，for their support．

References

［Buchanan \＆Wikins 1993］Buchanan，B．（i．and Wilkins，D．C．（Eds．），Readings in knowledge at－ quisition and learning，Morgan Kaulinam， 1993.
［Haussler 1988］Haussler，D．，＂Quantifying inductive bias：Al learning algorithms and Valiant＇s learning framework＂，Artificial Intelligence，26（2）， 177 221， 1988.
［Ikehara et al．1989］Ikehara，S．，Myyazaki，M．，Shi－ rai，S．and Yokoo，A．，＂An Approach to Nachine Translation Method based on Constructive Pro－ cess＇Theory＂，Review of HCL ，vol．37，No．1， 39 4．1， 1989.
［Ikchara ct al．1990］Ikehara，S．，Shima，S．，Yokoo，A． and Nakawa，Il．，＂Loward an M＇L．System with－ out Pre－Editing Effects of New Methods in ALS＇ J／b：＂，Proc．of MT Summit－3， 1990.
［lkeham et al．1991］Ikchara，S．，Yokoo，A．aurl Miyaraki，M．，＂Semantic Amalysis Dictionaries for Machine＇Translation＂，（in Japanese），LEICE Re－ pert，NLC 91－19，Institutc of Electronics，Informa－ tion and Communication Brugineers，Japan， 1991.
［Kim \＆Moldovan 1993］Kim，J．＇T＇．and Moldowan， D．I．，＂Acquisition of Semantic Patterns for Infor－ mation Extraction from Corpora＂，Procoof CAIA－ 93， 171 176， 1993.
［Porter et al．1990］Porter，B．W．，Barriss，R．，and Ifolte，R．C．Concept learning and hemristic classi－ fication in weak－theory domains．Artificial Intelli－ gence，45（3）：229 263， 1990.
［Quinlan 1986］Quinlan，J．R．＂Incluction of Decision ＇Trees＂，Machine Leatving，1（1）：81－106， 1986.
［Sato 1991a］Sato，S．，＂MBT＇I：Example－13ased Word Selection＂（in Japancse），Journal of Japanese So－ cicty for Artificial Intelligence，vol．6，No．4， 1991.
［Sato 1991b］Sato，S．，＂M13T＂2：A methorl for Com－ bining fragments of lexamples in Examphe－Based ＇Translation＂（in Japanese），Jourmal of Japanese Society for Artificial Intelligence，vol．6，No．6， 1991.
［Utsuro et al．1992］Utsuro，I＇，Matsmmoto，Y．and Nagao，M．＂Lexical Knowledge Acquisition from Bilingual Conpora＂，Proce of the 1 thth Interma－ tional Conference on Computational Linguistics， $581587,1992$.
［Wilkins 1990］Wilkins，D．C．Knowledge base refine－ ment as improving an incomplete and incorrect do－ main theory．In Kodratoff，Y．and Michalski，R．S．， （eds），Mactinae Learniny：An Artificial Intelligence： Approuch，vol．I11，pp 493 514，Morgan－Kanfinam Publishers， 1990.

[^0]: ${ }^{1}$ ha fact．ALST－J／b has three different kinds of translation males：（i）the sematic patem transfor mbes（ronghly 10,000 rules）．（ii）the idionatic expression transfer mes（abont 5.000 rules），and（iii）the general transfor mbes．We nse the term ＂Translation Rules＂here to refor to the semantic pattem trams－ fer rules．These form the majority of the mess and they ane the most frequently used by AJT．J／E．
 ${ }^{2}$ The tem＂simple sentence＂is a divect tramslation of＂in ${ }^{x}$ （tanlun）in dapanese．
 ${ }^{3}$ To be precise．Japanse semtences are nsually parsed inte
 （quite differen from those nsed in English．Using＂subject＂and ＂wbject＂here is only meant to catse the disenssion for English reaclets．

[^1]: "Examples are exchuled from the tatinger set one at a time. The rule baracel from the rest of the examples is them nised to predict the class of the removed example. This wats reprated for all the examples. and the peremtage of correct classification is reported.

