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Abstract

Using comparable corpora to find new word
translations is a promising approach for ex-
tending bilingual dictionaries (semi-) auto-
matically. The basic idea is based on the
assumption that similar words have similar
contexts across languages. The context of
a word is often summarized by using the
bag-of-words in the sentence, or by using
the words which are in a certain dependency
position, e.g. the predecessors and succes-
sors. These different context positions are
then combined into one context vector and
compared across languages. However, previ-
ous research makes the (implicit) assumption
that these different context positions should be
weighted as equally important. Furthermore,
only the same context positions are compared
with each other, for example the successor po-
sition in Spanish is compared with the suc-
cessor position in English. However, this is
not necessarily always appropriate for lan-
guages like Japanese and English. To over-
come these limitations, we suggest to perform
a linear transformation of the context vec-
tors, which is defined by a matrix. We de-
fine the optimal transformation matrix by us-
ing a Bayesian probabilistic model, and show
that it is feasible to find an approximate solu-
tion using Markov chain Monte Carlo meth-
ods. Our experiments demonstrate that our
proposed method constantly improves transla-
tion accuracy.

1 Introduction

Using comparable corpora to automatically extend
bilingual dictionaries is becoming increasingly pop-

ular (Laroche and Langlais, 2010; Andrade et al.,
2010; Ismail and Manandhar, 2010; Laws et al.,
2010; Garera et al., 2009). The general idea is
based on the assumption that similar words have
similar contexts across languages. The context of
a word can be described by the sentence in which
it occurs (Laroche and Langlais, 2010) or a sur-
rounding word-window (Rapp, 1999; Haghighi et
al., 2008). A few previous studies, like (Garera et
al., 2009), suggested to use the predecessor and suc-
cessors from the dependency-parse tree, instead of a
word window. In (Andrade et al., 2011), we showed
that including dependency-parse tree context posi-
tions together with a sentence bag-of-words context
can improve word translation accuracy. However
previous works do not make an attempt to find an
optimal combination of these different context posi-
tions.

Our study tries to find an optimal weighting and
aggregation of these context positions by learning
a linear transformation of the context vectors. The
motivation is that different context positions might
be of different importance, e.g. the direct predeces-
sors and successors from the dependency tree might
be more important than the larger context from the
whole sentence. Another motivation is that depen-
dency positions cannot be always compared across
different languages, e.g. a word which tends to oc-
cur as a modifier in English, can tend to occur in
Japanese in a different dependency position.

As a solution, we propose to learn the optimal
combination of dependency and bag-of-words sen-
tence information. Our approach uses a linear trans-
formation of the context vectors, before comparing
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them using the cosine similarity. This can be con-
sidered as a generalization of the cosine similarity.
We define the optimal transformation matrix by the
maximum-a-posterior (MAP) solution of a Bayesian
probabilistic model. The likelihood function for a
translation matrix is defined by considering the ex-
pected achieved translation accuracy. As a prior, we
use a Dirichlet distribution over the diagonal ele-
ments in the matrix and a uniform distribution over
its non-diagonal elements. We show that it is fea-
sible to find an approximation of the optimal so-
lution using Markov chain Monte Carlo (MCMC)
methods. In our experiments, we compare the pro-
posed method, which uses this approximation, with
the baseline method which uses the cosine similarity
without any linear transformation. Our experiments
show that the translation accuracy is constantly im-
proved by the proposed method.

In the next section, we briefly summarize the most
relevant previous work. In Section 3, we then ex-
plain the baseline method which is based on previ-
ous research. Section 4 explains in detail our pro-
posed method, followed by Section 5 which pro-
vides an empirical comparison to the baseline, and
analysis. We summarize our findings in Section 6.

2 Previous Work

Using comparable corpora to find new translations
was pioneered in (Rapp, 1999; Fung, 1998). The ba-
sic idea for finding a translation for a word q (query),
is to measure the context of q and then to compare
the context with each possible translation candidate,
using an existing dictionary. We will call words
for which we have a translation in the given dic-
tionary, pivot words. First, using the source cor-
pus, they calculate the degree of association of a
query word q with all pivot words. The degree of
association is a measure which is based on the co-
occurrence frequency of q and the pivot word in a
certain context position. A context (position) can be
a word-window (Rapp, 1999), sentence (Utsuro et
al., 2003), or a certain position in the dependency-
parse tree (Garera et al., 2009; Andrade et al., 2011).
In this way, they get a context vector for q, which
contains the degree of association to the pivot words
in different context positions. Using the target cor-
pus, they then calculate a context vector for each

possible translation candidate x, in the same way.
Finally, they compare the context vector of q with
the context vector of each candidate x, and retrieve
a ranked list of possible translation candidates. In
the next section, we explain the baseline which is
based on that previous research.

The general idea of learning an appropriate
method to compare high-dimensional vectors is not
new. Related research is often called “metric-
learning”, see for example (Xing et al., 2003; Basu
et al., 2004). However, for our objective function it
is difficult to find an analytic solution. To our knowl-
edge, the idea of parameterizing the transformation
matrix, in the way we suggest in Section 4, and to
learn an approximate solution with a fast sampling
strategy is new.

3 Baseline

Our baseline measures the degree of association be-
tween the query word q and each pivot word with
respect to several context positions. As a context
position we consider the predecessors, successors,
siblings with respect to the dependency parse tree,
and the whole sentence (bag-of-words). The depen-
dency information which is used is also illustrated in
Figure 1. As a measure of the degree of association
we use the Log-odds-ratio as proposed in (Laroche
and Langlais, 2010).

Figure 1: Example of the dependency information used
by our approach. Here, from the perspective of “door”.

Next, we define the context vector which contains
the degree of association between the query and each
pivot in several context positions. First, for each
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context position i we define a vector qi which con-
tains the degree of association with each pivot word
in the context position i. If we number the pivot
words from 1 to n, then this vector can be writ-
ten as qi = (q1

i , . . . , q
n
i ). Note that in our case i

ranges from 1 to 4, representing the context posi-
tions predecessors (1), successors (2), siblings (3),
and the sentence bag-of-words (4). Finally, the com-
plete context vector for the query q is a long vector
q which appends each qi, i.e.: q = (q1, . . . ,q4).
Next, in the same way as before, we create a con-
text vector x for each translation candidate x in the
target language. For simplicity, we assume that each
pivot word in the source language has only one cor-
responding translation in the target language. As
a consequence, the dimensions of q and x are the
same. Finally we can score each translation candi-
date by using the cosine similarity between q and
x.

We claim that all of the context positions (1 to 4)
can contain information which is helpful to identify
translation candidates. However, we do not know
about their relative importance, neither do we know
whether these dependency positions can be com-
pared across language pairs as different as Japanese
and English. The cosine similarity simply weights
all dependency position equally important and ig-
nores problems which might occur when comparing
dependency positions across languages.

4 Proposed Method

Our proposed method tries to overcome the short-
comings of the cosine-similarity by using the fol-
lowing generalization:

sim(q,x) =
qAxT

√
qAqT

√
xAxT

, (1)

where A is a positive-definite matrix in Rdn×dn, and
T is the transpose of a vector. This can also be con-
sidered as linear transformation of the vectors using√

A before using the normal cosine similarity, see
also (Basu et al., 2004).1

The challenge is to find an appropriate matrix A
which is expected to take the correlations between

1Therefore, exactly speaking A is not the transformation
matrix, however it defines uniquely the transformation matrix√

A.

the different dimensions into account, and which op-
timally weights the different dimensions. Note that,
if we set A to the identity matrix, we recover the
normal cosine similarity, which is our baseline.

Clearly, finding an optimal matrix in Rdn×dn is
infeasible due to the high dimensionality. We will
therefore restrict the structure of A.

Let I be the identity matrix in Rn×n , then we
define the matrix A, as follows:

A =




d1I z1,2I z1,3I z1,4I
z1,2I d2I z2,3I z2,4I
z1,3I z2,3I d3I z3,4I
z1,4I z2,4I z3,4I d4I




It is clear from this definition that d1, . . . , d4 weights
the context positions 1 to 4. Furthermore, zi,j can
be interpreted as a the confusion coefficient between
context position i and j. For example, a high value
for z2,3 means that a pivot word which occurs in
the sibling position in Japanese (source language),
might not necessarily occur in the sibling position in
English (target language), but instead in the succes-
sor position. However, in order to reduce the dimen-
sionality of the parameter space further, we assume
that each such zi,j has the same value z. Therefore,
matrix A becomes

A =




d1I zI zI zI
zI d2I zI zI
zI zI d3I zI
zI zI zI d4I


 .

In the next subsection we will explain how we de-
fine an optimal solution for A.

4.1 Optimal solution for A

We use a Bayesian probabilistic model in order to
define the optimal solution for A. Formally we try
to find the maximum-a-posterior (MAP) solution of
A, i.e.:

arg max
A

p(A|data, α). (2)

The posterior probability is defined by

p(A|data, α) ∝ fauc(data|A) · p(A|α) . (3)

fauc(data|A) is the (unnormalized) likelihood func-
tion. p(A|α) is the prior that captures our prior be-
liefs about A, and which is parameterized by a hy-
perparameter α.
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4.1.1 The likelihood function fauc(data|A)
As a likelihood function we use a modification

of the area under the curve (AUC) of the accuracy-
vs-rank graph. The accuracy-vs-rank graph shows
the translation accuracy at different ranks. data
refers to the part of the gold-standard which is used
for training. Our complete gold-standard contains
443 domain-specific Japanese nouns (query words).
Each Japanese noun in the gold standard corre-
sponds to one pair of the form <Japanese noun
(query), English translations (answers)>. We de-
note the accuracy at rank r, by accr. The accuracy
accr is determined by counting how often the cor-
rect answer is listed in the top r translation candi-
dates suggested for a query, divided by the number
of all queries in data. The likelihood function is
now defined as follows:

fauc(data|A) =
20∑

r=1

accr · (21− r) . (4)

That means fauc(data|A) accumulates the accura-
cies at the ranks from 1 to 20, where we weight ac-
curacies at top ranks higher.

4.1.2 The prior p(A|α)
The prior over the transformation matrix is factor-

ized in the following manner:

p(A|α) = p(z|d1, . . . , d4) · p(d1, . . . , d4|α) .

The prior over the diagonal is defined as a Dirichlet
distribution:

p(d1, . . . , d4|α) =
1

B(α)

4∏

i=1

dα−1
i

where α is the concentration parameter of the sym-
metric Dirichlet, and B(α) is the normalization con-
stant. The prior over the non-diagonal value a is de-
fined as:

p(z|d1, . . . , d4) =
1
λ
· 1[0,λ](z) (5)

where λ = min{d1, . . . , d4}.
First, note that our prior limits the possible matri-

ces A to matrices which have diagonal entries which
are between 0 and 1. This is not a restriction since
the ranking of the translation candidates induced by

the parameterized cosine similarity will not change
if A is multiplied by a constant c > 0 . To see this,
note that

sim(q,x) =
q(c ·A)x√

q(c ·A)q
√

x(c ·A)x

=
qAx√

qAq
√

xAx
.

Second, note that our prior limits A further, by re-
quiring, in Equation (5), that every non-diagonal el-
ement is smaller or equal than any diagonal element.
That requirement is sensible since we do not expect
that a optimal similarity measure between English
and Japanese will prefer context which is similar in
different dependency positions, over context which
is similar in the same context positions. To see this,
imagine the extreme case where for example d1 is 0,
and instead z12 is 1. In that case the similarity mea-
sure would ignore any similarity in the predecessor
position, but would instead compare the predeces-
sors in Japanese with the successors in English.

Finally, note that our prior puts probability mass
over a subset of the positive-definite matrices in
R4×4, and puts no probability mass on matrices
which are not positive-definite. As a consequence,
the similarity measure in Equation (1) is ensured to
be well-defined.

4.2 Training
In the following we explain how we use the training
data in order to find a good solution for the matrix
A.

4.2.1 Setting hyperparameter α

Recall, that α weights our prior belief about how
strong we think that the different context positions
should be weighted equally. From a practical point-
of-view, we do not know how strong we should
weight that prior belief. We therefore use empirical
Bayes to estimate α, that is we use part of the train-
ing data to set α. First, using half of the training
set, we find the A which maximizes p(A|data, α)
for several α. Then, the remaining half of the train-
ing set is used to evaluate fauc(data|A) to find the
best α. Note that the prior p(A|α) can also be con-
sidered as a regularization to prevent overfitting. In
the next sub-section we will explain how to find an
approximation of A which maximizes p(A|data, α).

13



4.2.2 Finding a MAP solution for A

Recall that matrix A is defined by using only five
parameters. Since the problem is low-dimensional,
we can therefore expect to find a reasonable solution
using sampling methods. For finding an approxima-
tion of the maximum-a-posteriori (MAP) solution of
p(A|data, α), we use the following Markov chain
Monte Carlo procedure:

1. Initialize d1, . . . , d4 and z.

2. Leave z constant, and run Simulated-
Annealing to find the d1, . . . , d4 which
maximize p(A|data, α).

3. Given d1, . . . , d4, sample from the uniform dis-
tribution [1, min(d1, . . . d4)] in order to find the
z which maximizes p(A|data, α).

The steps 2. and 3. are repeated till the convergence
of the parameters.

Concerning step 2., we use Simulated-
Annealing for finding a (local) maximum of
p(d1, . . . , d4|data, α) with the following settings:
As a jumping distribution we use a Dirichlet distri-
bution which we update every 1000 iterations. The
cooling rate is set to 1

iteration .
For step 2. and 3. it is of utmost importance to

be able to evaluate p(A|data, α) fast. The com-
putationally expensive part of p(A|data, α) is to
evaluate fauc(data|A). In order to quickly evalu-
ate fauc(data|A), we need to pre-calculate part of
sim(q, x) for all queries q and all translation can-
didates x. To illustrate the basic idea, consider
sim(q, x) without the normalization of q and x with
respect to A, i.e.:

sim(q, x) = qAxT = (q1, . . . ,q4)A(x1, . . . ,x4)T .

Let us denote I−dn a block matrix in Rdn×dn which
contains in each n× n block the identity matrix ex-
cept in its diagonal; the diagonal of I−dn contains the
n × n matrix which is zero in all entries. We can
now rewrite matrix A as:

A =




d1I 0 0 0
0 d2I 0 0
0 0 d3I 0
0 0 0 d4I


 + z · I−dn .

And finally we can factor out the parameters
(d1, . . . d4) and z in the following way:

sim(q, x) = (d1, . . . , d4)·




q1xT
1

...
q4xT

4


+z·(qI−dnx

T )

By pre-calculating




q1xT
1

...
q4xT

4


 and qI−dnx

T , we can

make the evaluation of each sample, in steps 2. and
3., computationally feasible.

5 Experiments

In the experiments of the present study, we used
a collection of complaints concerning automobiles
compiled by the Japanese Ministry of Land, Infras-
tructure, Transport and Tourism (MLIT)2 and an-
other collection of complaints concerning automo-
biles compiled by the USA National Highway Traf-
fic Safety Administration (NHTSA)3. Both corpora
are publicly available. The corpora are non-parallel,
but are comparable in terms of content. The part
of MLIT and NHTSA which we used for our ex-
periments, contains 24090 and 47613 sentences, re-
spectively. The Japanese MLIT corpus was mor-
phologically analyzed and dependency parsed using
Juman and KNP4. The English corpus NHTSA was
POS-tagged and stemmed with Stepp Tagger (Tsu-
ruoka et al., 2005; Okazaki et al., 2008) and depen-
dency parsed using the MST parser (McDonald et
al., 2005). Using the Japanese-English dictionary
JMDic5, we found 1796 content words in Japanese
which have a translation which is in the English cor-
pus. These content words and their translations cor-
respond to our pivot words in Japanese and English,
respectively.6

2http://www.mlit.go.jp/jidosha/carinf/rcl/defects.html
3http://www-odi.nhtsa.dot.gov/downloads/index.cfm
4http://www-lab25.kuee.kyoto-u.ac.jp/nl-

resource/juman.html and http://www-lab25.kuee.kyoto-
u.ac.jp/nl-resource/knp.html

5http://www.csse.monash.edu.au/ jwb/edict doc.html
6Recall that we assume a one-to-one correspondence be-

tween a pivot in Japanese and English. If a Japanese pivot word
as more than one English translation, we select the translation
for which the relative frequency in the target corpus is closest
to the pivot in the source corpus.
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5.1 Evaluation

For the evaluation we extract a gold-standard which
contains Japanese and English noun pairs that ac-
tually occur in both corpora.7 The gold-standard
is created with the help of the JMDic dictionary,
whereas we correct apparently inappropriate trans-
lations, and remove general nouns such as 可能性
(possibility) and ambiguous words such as米 (rice,
America). In this way, we obtain a final list of 443
domain-specific Japanese nouns.

Each Japanese noun in the gold-standard corre-
sponds to one pair of the form <Japanese noun
(query), English translations (answers)>. We divide
the gold-standard into two halves. The first half is
used for for learning the matrix A, the second part
is used for the evaluation. In general, we expect that
the optimal transformation matrix A depends mainly
on the languages (Japanese and English) and on the
corpora (MLIT and NHTSA). However, in practice,
the optimal matrix can also vary depending on the
part of the gold-standard which is used for training.
These random variations are especially large, if the
part of the gold-standard which is used for training
or testing is small.

In order to take these random effects into ac-
count, we perform repeated subsampling of the
gold-standard. In detail, we randomly split the gold-
standard into equally-sized training and test set. This
is repeated five times, leading to five training and
five test sets. The performance on each test set is
shown in Table 1. OPTIMIZED-ALL marks the re-
sult of our proposed method, where matrix A is opti-
mized using the training set. The optimization of the
diagonal elements d1, . . . , d4, and the non-diagonal
value z is as described in Section 4.2. Finally, the
baseline method, as described in 3, corresponds to
OPTIMIZED-ALL where d1, . . . , d4 are set to 1,
and z is set to 0. This baseline is denoted as NOR-
MAL. We can see that the overall translation accu-
racy varies across the test sets. However, we see that
in all test sets our proposed method OPTIMIZED-
ALL performs better than the baseline NORMAL.

7Note that if the current query (Japanese noun) is a pivot
word, then the word is not considered as a pivot word.

5.2 Analysis

In the previous section, we showed that the cosine-
similarity is sub-optimal for comparing context vec-
tors which contain information from different con-
text positions. We showed that it is possible to find
an approximation of a matrix A which optimally
weights, and combines the different context posi-
tions. Recall, that the matrix A is described by the
parameters d1 . . . d4 and z, which can interpreted as
context position weights and a confusion coefficient,
respectively. Therefore, by looking at these parame-
ters which we learned using each training set, we can
get some interesting insights. Table 2 shows theses
parameters learned for each training set.

We can see that the parameters, across the train-
ing sets, are not as stable as we wish. For example
the weight for the predecessor position ranges from
0.27 to 0.44. As a consequence, the average values,
shown in the last row of Table 2, have to be inter-
preted with care. We expect that the variance is due
to the limited size of the training set, 220 <query,
answers> pairs.

Nevertheless, we can draw some conclusions with
confidence. For example, we see that the prede-
cessor and successor positions are the most impor-
tant contexts, since the weights for both are al-
ways higher than for the other context positions.
Furthermore, we clearly see that the sibling and
sentence (bag-of-words) contexts, although not as
highly weighted as the former two, can be consid-
ered to be relevant, since each has a weight of around
0.20. Finally, we see that z, the confusion coeffi-
cient, is around 0.03, which is small.8 Therefore,
we verify z’s usefulness with another experiment.
We additionally define the method OPTIMIZED-
DIAG which uses the same matrix as OPTIMIZED-
ALL except that the confusion coefficient z is set
to zero. In Table 1, we can see that the accu-
racy of OPTIMIZED-DIAG is constantly lower than
OPTIMIZED-ALL.

Furthermore, we are interested in the role of the
whole sentence (bag-of-words) information which is
in the context vector (in position d4 of the block vec-
tor). Therefore, we excluded the sentence informa-

8In other words, z is around 17% of its maximal possible
value. The maximal possible value is around 0.18, since, recall
that z is, by definition, smaller or equal to min{d1 . . . d4}.
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Test Set Method
Top-1 Top-5 Top-10 Top-15 Top-20

Accuracy Accuracy Accuracy Accuracy Accuracy

1
OPTIMIZED-ALL 0.20 0.37 0.47 0.50 0.54

OPTIMIZED-DIAG 0.20 0.34 0.43 0.48 0.51
NORMAL 0.18 0.32 0.43 0.47 0.50

2
OPTIMIZED-ALL 0.20 0.35 0.43 0.48 0.52

OPTIMIZED-DIAG 0.19 0.33 0.42 0.46 0.52
NORMAL 0.18 0.34 0.42 0.47 0.49

3
OPTIMIZED-ALL 0.17 0.31 0.37 0.44 0.48

OPTIMIZED-DIAG 0.17 0.27 0.36 0.41 0.45
NORMAL 0.16 0.27 0.36 0.41 0.44

4
OPTIMIZED-ALL 0.14 0.30 0.38 0.43 0.46

OPTIMIZED-DIAG 0.14 0.26 0.34 0.4 0.43
NORMAL 0.15 0.29 0.37 0.41 0.44

5
OPTIMIZED-ALL 0.18 0.34 0.42 0.46 0.51

OPTIMIZED-DIAG 0.17 0.30 0.38 0.43 0.48
NORMAL 0.19 0.31 0.40 0.44 0.48

average
OPTIMIZED-ALL 0.18 0.33 0.41 0.46 0.50

OPTIMIZED-DIAG 0.17 0.30 0.39 0.44 0.48
NORMAL 0.17 0.31 0.40 0.44 0.47

Table 1: Shows the accuracy at different ranks for all test sets, and, in the last column, the average over all test sets.
The proposed method OPTIMIZED-ALL is compared to the baseline NORMAL. Furthermore, for analysis, the results
when optimizing only the diagonal are marked as OPTIMIZED-DIAG.

Training Set
d1 d2 d3 d4 z

predecessor successor sibling sentence confusion coefficient
1 0.35 0.26 0.19 0.20 0.03
2 0.27 0.29 0.21 0.23 0.03
3 0.35 0.31 0.16 0.18 0.02
4 0.44 0.24 0.17 0.16 0.04
5 0.39 0.28 0.20 0.13 0.03

average 0.36 0.28 0.19 0.18 0.03

Table 2: Shows the parameters which were learned using each training set. d1 . . . d4 are the weights of the context
positions, which sum up to 1. z marks the degree to which it is useful to compare context across different positions.

tion from the context vector. The accuracy results,
averaged over the same test sets as before, are shown
in Table 3. We can see that the accuracies are clearly
lower than before (compare to Table 1). This clearly
justifies to include additionally sentence information
into the context vector. It is also interesting to note
that the average z value is now 0.14.9 This is consid-
erable higher than before, and shows that a bag-of-
words model can partly make the use of z redundant.
However, note that the sentence bag-of-words model
covers a broader context, beyond the direct prede-
cessors, successor and siblings, which explains why

9That is 48% of its maximal possible value. Since for the
dependency positions predecessor, successor and sibling we get
the average weights 0.38, 0.33 and 0.29, respectively.

a small z value is still relevant in the situation where
we include sentence bag-of-words into the context
vector.

Finally, to see why it can be helpful to compare
different dependency positions from the context vec-
tors of Japanese and English, we looked at concrete
examples. We found, for example, that the trans-
lation accuracy of the query word ディスク (disc)
improved when using OPTIMIZED-ALL instead of
OPTIMIZED-DIAG. The pivot word 歪み (wrap)
tends together with both the Japanese query ディ
スク (disc), and with the correct translation ”disc”
in English. However, that pivot word occurs in
Japanese and English in different context positions.
In the Japanese corpus 歪み (wrap) tends to occur
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Method Top-1 Top-5 Top-10 Top-15 Top-20
OPT-DEP 0.13 0.25 0.34 0.38 0.41
NOR-DEP 0.12 0.23 0.29 0.33 0.38

Table 3: The proposed method, but without the sentence
information in the context vector, is denoted OPT-DEP.
The baseline method, but without the sentence informa-
tion in the context vector, is denoted NOR-DEP.

together with the queryディスク (disc) in sentences
like for example the following:

“ブレーキ (break)ディスク (disc)に歪み
(wrap)が生じた (occured)。”

That Japanese sentence can be literally translated as
”A wrap occured in the brake disc.”, where ”wrap”
is the sibling of ”disc” in the dependency tree. How-
ever, in English, considered out of the perspective
of ”disc”, the pivot word ”wrap” tends to occur in a
different dependency position. For example, the fol-
lowing sentence can be found in the English corpus:

“Front disc wraps.”

In English ”wrap” tends to occur as a successor of
”disc”. A non-zero confusion coefficient allows us
to account some degree of similarity to situations
where the query (here ”ディスク”(disc)) and the
translation candidate (here ”disc”) tend to occur with
the same pivot word (here ”wrap”), but in different
dependency positions.

6 Conclusions

Finding new translations of single words using com-
parable corpora is a promising method, for exam-
ple, to assist the creation and extension of bilin-
gual dictionaries. The basic idea is to first create
context vectors of the query word, and all the can-
didate translations, and then, in the second step,
to compare these context vectors. Previous work
(Laroche and Langlais, 2010; Fung, 1998; Garera
et al., 2009) suggests that for this task the cosine-
similarity is a good choice to compare context vec-
tors. For example, Garera et al. (2009) include the
information of various context positions from the
dependency-parse tree in one context vector, and, af-
terwards, compares these context vectors using the
cosine-similarity. However, this makes the implicit

assumption that all context positions are equally im-
portant, and, furthermore, that context from differ-
ent context positions does not need to be compared
with each other. To overcome these limitations, we
suggested to use a generalization of the cosine simi-
larity which performs a linear transformation of the
context vectors, before applying the cosine similar-
ity. The linear transformation can be described by a
positive-definite matrix A. We defined the optimal
matrix A by using a Bayesian probabilistic model.
We demonstrated that it is feasible to approximate
the optimal matrix A by using MCMC-methods.

Our experimental results suggest that it is bene-
ficial to weight context positions individually. For
example, we found that predecessor and successor
should be stronger weighted than sibling, and sen-
tence information. Whereas, the latter two are also
important, having a total weight of around 40%.
Furthermore, we showed that for languages as dif-
ferent as Japanese and English it can be helpful to
compare also different context positions across both
languages. The proposed method constantly outper-
formed the baseline method. Top 1 accuracy in-
creased by up to 2% percent points and Top 20 by
up to 4% percent points.

For future work, we consider to use different pa-
rameterizations of the matrix A which could lead to
even higher improvement in accuracy. Furthermore,
we consider to include, and weight additional fea-
tures like transliteration similarity.
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