SENSE DISAMBIGUATION in the

PANGLYZER

Steve Helmreich

Computing Research Laboratory

ARPA Machine Translation Evaluation Workshop

March 17-18, 1994

Two Problems of Sense Disambiguation

- 1. Determining the Standard
- 2. Determining the Method

Approaches to Problem One

- a. Disambiguation to a task
- b. Disambiguation to a dictionary
- c. Disambiguation to an ontology
- d. Disambiguation to internal standard

Approaches to Problem Two

- 1. (explicit) Knowledge-Based
- 2. Statistical (implicit Knowledge-Based)
 - a. Definition overlap (e.g., Cowie, Guthrie and Guthrie)
 - b. Probabilistic (e.g., Brown et al.)
 - c. Word Space (e.g., Schütze)

WORD SPACE ALGORITHM

- 1. Collect 4-grams from large quantities of text
- 2. Reduce the number of 4-grams to a reasonable amount
- 3. Construct a collocation matrix
- 4. Perform SVD (Singular Value Decomposition) on the matrix
- 5. Take the top 97 dimensions
- 6. For every word, create a context vector for every occurrence of that word
- 7. Normalize and sum the context vectors to create a word (or confusion) vector
- 8. Cluster the context vectors to produce senses

SINGULAR VALUE DECOMPOSITION (SVD)

Given any matrix, A, decompose it into a product of three matrices, U, Σ, V^T , producing a decomposition $A=U \Sigma V^T$ such that Σ is a diagonal matrix with decreasing positive values down the diagonal.

By cutting off the lower end of the matrix, Σ , a lower-dimensional matrix than the original is obtainable, that is the best approximation (at that rank) for the original matrix.

CRL's APPROACH

Mark Casper and Jim Hargrave

- 1. Use syllables instead of 4-grams
- 2. Use sentences as context window
- 3. Disambiguate sense clusters to LDOCE-WordNet senses
- 4. Use LDOCE definition and WordNet synset as context vector

shelmrei@ithaka

stdin

tido

Fri Mar 4 14:24:23 1994

NeWSprint 2.1 Rev B Openwin library 3 NeWSprint interpreter 3.010

Lessons Learned

- There will be a "VIASA" article in each evaluation
- 70% to 60% in 6 months: we'll be done in 3 years!

Seriously, though:

- Study of inter-subject time variations: who is helped more?
- Incremental test-and-development cycle very important
- Multiple-Engine MT via chart manager looks very promising
- Methodological issue: fully investigating one MT technique versus finding the best-performance combination in the short run

Research Plans

Continued development of current MT engines and chart manager, including:

- Semantic mapper, sentence planner; later, higher-level semantic processing
- Example analysis problem: Ranking techniques for Spanish analysis
- Example generation problem: Article insertion in English generation
- Example of expansion of Pangloss: Japanese/English translation