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Montréal, Canada H3C 3J7

felipe@iro.umontreal.ca

Abstract

Aligning a sequence of words to one of its
infrequent translations is a difficult task. We
propose a simple and original solution to this
problem that yields to significant gains over
a state-of-the-art transpotting task. Our ap-
proach consists in aligning non parallel sen-
tences from the training data in order to rein-
force online the alignment models. We show
that using only a few pairs of non parallel
sentences allows to improve significantly the
alignment of infrequent translations.

1 Introduction

The task of transpotting consists in identifying the
translation of a given sequence of words, hereafter
called the query, in a pair of parallel sentences
(Simard, 2003). While transpotting may be seen
as a special case of word aligning pairs of parallel
sentences, which is the bread and butter of Machine
Translation (MT), this task deserves to be evaluated
as such. Indeed, transpotting is at the heart of bilin-
gual concordancers (Wu et al., 2003; Callison-Burch
et al., 2005; Bourdaillet et al., 2010; Désilets et
al., 2010), and professional translators in the trans-
lation industry rely heavily on such Computer As-
sisted Translation (CAT) tools (Bowker and Bar-
low, 2008; Macklovitch et al., 2008; Koehn, 2009;
Paulsen Christensen and Schjoldager, 2010; Kara-
manis et al., 2011).

Figure 1 illustrates the answer provided by the
bilingual concordancer Tradooit1 for the English

1http://www.tradooit.com

query meanwhile. Typically, a concordancer re-
turns pairs of sentences where the query and one of
its translations are identified using word alignment.
Based on these alignments, a distribution of transla-
tions, hereafter called transpots, is returned as well
for the query. This gives a user information of how
likely the transpots are. By clicking on a given trans-
pot a user can consult the sentence pairs where it has
been identified.

After inspecting a few bilingual concordancers,
like Tradooit, TransSearch2 or Linguee,3

we observed that often, transpots are partial or even
wrong. This is a precision problem which is due
to word alignment errors. In Figure 1, the French
transpot part is an example of a partial transpot; the
translation being pour sa part (literally, for his part)
which is not present in the transpot distribution.

In an ethnographic field study, Désilets et al.
(2009) analyze that professional translators deal eas-
ily with errors present in lists of translations since
they are bilingual; this means that they can handle
precision problems. On the other hand, they are
more concerned with missing translations, that is,
a recall problem. They suggest to put efforts into
improving the recall of CAT tools such as bilingual
concordancers. Indeed, being able to provide a di-
versified set of infrequent and idiomatic translations
to professional translators would be invaluable.

Rare translations are quite likely to be missing in
the transpot distribution, due to word alignment er-
rors. Indeed, since they co-occur only a few times
with the query in the training data, their lexical

2http://tsrali3.com
3http://www.linguee.com



Figure 1: Screenshot of the web-based bilingual concordancer Tradooit for the query meanwhile. The left part
displays a distribution of the transpots identified. By selecting one of them, here entre-temps, the user can go through
the examples in which it occurs along with the query (main part of the display).

associations tend to be poorly estimated by statis-
tical translation models. For instance, over more
than 8 million sentence pairs we use in this work,
the term consistently appears to be translated only
once by avec logique (literally, with logic) and once
by de façon répétée (literally, of way repeated ),
two valuable translations that none of the standard
word alignment techniques we tried (see Section 3)
aligned properly. Also, infrequent translations are
often idiomatic expressions. This is the case of the
idiomatic translation sur ces entrefaits (literally, on
these intermediate facts), for the query meanwhile,
which is not proposed by the tools we tried.

In the end, the low word-alignment precision
leads to a recall problem in the transpot distribu-
tion. This is unfortunate since many translations are
available in the bitext, but are simply not mined. In
this work, we address this problem by proposing a
two-stage transpotting method that aims at improv-
ing the transpotting of infrequent translations. After
the first transpotting stage that retrieves the transpot
distribution (as in Figure 1), a second stage focuses
on the lower tail of this distribution whose transpots
are suspected to be misaligned.

This second stage intends to realign the sentence
pairs where these low frequency transpots occur, by
taking advantage of a new word alignment model

adapted online for each query/transpot pair. Due to
the low cooccurrence of the query/transpot pairs in
the training data, there is no additional data available
for the adaptation. To overcome this, we propose to
sentence-align non parallel sentence pairs sampled
from the training material, whose source sentences
contain (only) the query and target sentences con-
tain the suspicious transpot. After transpotting this
artificial bitext, we extract a lexical distribution local
to the sentence pair containing the infrequent trans-
lation. Finally, this sentence pair is retranspotted af-
ter adapting online the lexical distribution, leading
to significant improvements in terms of alignment.

On top of improving the state-of-the art of trans-
potting, a task of practical importance for the trans-
lation industry, there are several contributions we
would like to underline:

• We show that a smart processing of non par-
allel sentence pairs from the training data can
help statistical word alignment, a somehow sur-
prising result. Our two-stage approach sig-
nificantly outperforms the standard bidirectional
IBM word-alignment combined with the main-
stream grow-dial-final heuristic (Koehn et
al., 2007) when aligning rare translations.

• We demonstrate that our approach works while



using only a few non parallel sentence pairs, mak-
ing the approach very tractable.

• We show that it is possible to enhance word align-
ment for infrequent events in the setting of a bilin-
gual concordancer, which is an important concern
for professional translators.

The reminder of this paper is organized as fol-
lows. In Section 2, we describe our approach to en-
hance the alignment of infrequent translations. In
Section 3, we present several state-of-the-art trans-
potting algorithms we compared. In Section 4, we
present our experimental setup, and analyze our re-
sults in Section 5. We discuss related works in Sec-
tion 6 and conclude in Section 7.

2 Approach

Figure 2 presents a transpot distribution produced
by one of the transpotting algorithms we tested (see
Section 3) for the query wait and see. Among those
transpots, some are very frequent, while many ap-
pear rarely, following a typical zipfian law. In this
work we concentrate on frequency-1 transpots, that
is, transpots that appear only once in the transpot
distribution of a given query. Frequency-1 trans-
pots might be correct rare translations, but are more
likely the result of word alignment errors. Among
erroneous transpots, some are entirely wrong, such
as manger (to eat), while others are partially good,
such as verra, which is part of the idiomatic (rare)
translation qui vivra verra (literally, who will live
will see).

After the first transpotting stage that generated the
transpot distribution, we apply a second transpotting
stage for each sentence pair containing a frequency-
1 transpot. These pairs are called seed sentence pairs
hereafter. During this second stage, each seed sen-
tence pair is realigned thanks to a word-alignment
model adapted online for this sentence pair, with the
hope that it will improve the transpotting.

For each seed sentence, we create a small non par-
allel bitext by sampling non parallel sentence pairs
from the training data used for training the align-
ment models in the first place. This bitext is used
to estimate online a lexical model local to the seed
sentence pair. It is important to note that we do not
exploit extra data for adapting the alignment model,
but instead make better use of available data.
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attendre pour voir 66 - - - X
voir 33 - - - X
attendre 32 - - - X
attentiste 14 - - - X
regarder 4 - - - X

. . . . . .
manger 1 X X - -
il faudra 1 X X - -
verra 1 X - X -
inertie 1 X - - X
patiente 1 X - - X

Figure 2: Transpot distribution for the query wait and see.
For each transpot, we mention: its frequency; whether
it is a frequency-1 transpot; and whether it is a wrong,
partial or good transpot.

For our approach to work, we need to specify two
elements: how to gather the material used to adapt
the lexical distributions of the alignment model, and
how to adapt the model.

2.1 Gathering Non Parallel Sentence Pairs

Adapting lexical models usually involves more or
dedicated parallel data (Foster and Kuhn, 2007;
Koehn and Schroeder, 2007; Bertoldi and Federico,
2009). In this paper, we exploit an already large
training set and we do not seek for external data.
Indeed, since we are dealing with infrequent trans-
lations, there is no extra parallel data on top of the
seed sentences that we can exploit.

Rather, we propose an empirical way to better ex-
ploit the training data. For each seed sentence pair,
we randomly sample from the training data source
sentences where the query occurs. We artificially as-
sociate them to the target seed sentence which con-
tains the frequency-1 suspicious transpot. This gives
a set of non parallel sentence pairs to which we add
the seed sentence pair. Figure 3 illustrates such a
“bitext” for the frequency-1 transpot verra transpot-
ted instead of the (rare) translation qui vivra verra.
As can be observed, to the exception of the seed
sentence pair (the first one in Figure 3), all the other
pairs of sentences are not translations, but contain by
construction the query and the frequency-1 transpot.



I hope that the parliamentary secretary is here to
tell us that is not true, but we shall wait and see.

J’espère que le secrétaire parlementaire est ici pour
démentir ces rumeurs, mais qui vivra verra.

He continues to dodge and weave, wait and see,
hide and seek.

J’espère que le secrétaire parlementaire est ici pour
démentir ces rumeurs, mais qui vivra verra.

...
...

Instead it chose the wait and see approach, and
what have we seen?

J’espère que le secrétaire parlementaire est ici pour
démentir ces rumeurs, mais qui vivra verra.

Figure 3: Non parallel bitext gathered for the seed query wait and see and the frequency-1 transpot verra which was
transpotted instead of the correct rare translation qui vivra verra. The first sentence pair is the seed pair. All other pairs
are non parallel sentence pairs, where the source sentence contains the seed query and the target sentence is the seed
target sentence where the frequency-1 transpot was identified.

2.2 Adapting Alignment Models
The artificial bitext is then transpotted with the same
transpotting algorithm used during the first stage.
The list of transpots C is extracted and each trans-
pot is considered to be a translation of the query. A
typical transpot list is provided for our running ex-
ample in Figure 4. From this list, it is straightfor-
ward to compute an a posteriori lexical model of the
query, by counting the frequency of each word and
by normalizing.4

Although the transpot list C is typically noisy, it is
interesting to note that (at least a part of) the refer-
ence translation occurs most of the time in the candi-
date transpots. Therefore, one might hope that the a
posteriori lexical distribution contains useful lexical
associations.

This a posteriori distribution (pl), local to each
seed sentence pair, can then combined with the
global lexical distribution (pg) trained once for all
on the entire training data. This is done by linearly
combining both distributions, where λ controls the
combination:

p(t|s) ={
λpg(t|s) + (1− λ)pl(t|s) if s ∈ query
pg(t|s) otherwise

(1)
4We tried an alternative and smarter way to estimate the a

posteriori lexical model. We used GIZA++ to train an HMM
alignment model on the artificial bitext formed by the query
sentence-aligned with each transpot of the transpot list C. Then
the resulting lexical distribution is used as the local a posteri-
ori distribution, the remainder of the 2-stage method being the
same. In the end, we did not obtain any gain in experiments
similar to those described in Section 5.

vivra
mais qui vivra verra
J’espère que le
rumeurs, mais qui vivra verra
qui vivra
est ici pour démentir ces rumeurs, mais qui
vivra verra
mais qui vivra
ces rumeurs, mais qui vivra
que le secrétaire parlementaire est ici pour
qui
vivra verra

Figure 4: Transpot list C obtained after aligning the arti-
ficial bitext of Figure 3, for the seed query wait and see.
For computing the a posteriori lexical model, each word
of these transpots is considered aligned to each word of
the seed query. It is then straightforward to count word
alignments and normalize their count in order to obtain a
probability distribution. (The reference translation words
are emphasized for the sake of the presentation.)

Finally, the seed sentence pair is transpotted again
using Eq. (1). Since there is no reason why the local
distribution would improve the alignment of words
outside the query, the combination in Eq. (1) is only
applied when transporting words of the query. For
the other words, the global distribution is used, as in
the first transpotting stage.

In the end, the result of this second transpotting
stage is returned to the user with the hope that it is
more accurate than the transpot identified in the first
place for the query in the seed sentence pair.



3 Transpotting Algorithms

IBM models are natural contenders for tackling the
transpotting task (Brown et al., 1993). Formally,
given a source language sentence S = s1...sn and
its target language translation T = t1...tm, an IBM-
style alignment a = a1...am links each word of T to
a word of S (aj ∈ {1, ..., n}) or to the empty word
(aj = 0) which is arbitrarily associated to untrans-
lated words. For the IBM model 2, the joint prob-
ability of a target sentence and its alignment given
the source sentence is expressed by:

p(tm1 , a
m
1 |sn1 ) = p(m|n)

m∏
j=1

p(tj |saj )×p(aj |j,m, n)

(2)
where p(m|n) is the sentence length probability, the
first term of the product is the lexical probability, and
the second term is the alignment probability. Ac-
cording to this formulation, the most probable align-
ment of two sentences, argmaxam1

p(am1 |tm1 , sn1 ),
can be efficiently computed in O(mn) time; we call
it (by abuse of language) the Viterbi alignment.

The hidden Markov alignment model (HMM) is
a generalization of the IBM model 2 (Vogel et al.,
1996). In this case, the alignment probability in
Equation (2) is expressed by p(aj |aj−1, n), where
the alignment probability is designed by a first-order
dependency: the alignment of a target word depends
of the alignment of the preceding one. The Viterbi
alignment is obtained by dynamic programming in
O(mn2) time.

A simple transpotting algorithm consists in com-
puting the Viterbi alignment of a sentence pair using
either an IBM model 2 or an HMM, then the tar-
get words which are aligned to the (source) query
words correspond to the transpot. We call those
algorithms IBM2 and HMM respectively. Unfortu-
nately, this approach tends to produce discontinu-
ous transpots, most of the time erroneously. To
overcome this, we adapt an idea initially described
in (Simard, 2003), where for each pair 〈j1, j2〉 ∈
[1,m] × [1,m], j1 < j2, two Viterbi alignments are
computed: one between the target word sequence
tj2j1 and the source query si2i1 , and the other between
the remaining of the two sentences s̄i2i1 ≡ s

i1−1
1 sni2+1

and t̄j2j1 ≡ tj1−1
1 tmj2+1. The transpot t̂ĵ2

ĵ1
is then ob-

tained by maximizing:

argmax
j1,j2

max
a
j2
j1

p(aj2j1 |s
i2
i1
, tj2j1)×max

ā
j2
j1

p(āj2j1 |s̄
i2
i1
, t̄j2j1)


(3)

Thanks to dynamic programming, this maximiza-
tion can be computed in O(mn) with IBM model 2
and O(mn2) with HMM. We call these algorithms
C-IBM2 and C-HMM respectively.

These transpotting algorithms can be enhanced by
using lexical distributions in both translation direc-
tions (IBM models are not symmetrical). For this,
the lexical probability of a target word t given a
source word s is reformulated as:

pbi(t|s) = φ(pS→T (t|s), pT→S(s|t)) (4)

where φ(·) is a function to define that combines
lexical probabilities from both translation direc-
tions. This enhancement does not the alter the time
complexity of the aforementioned algorithms. For
HMM, we call this algorithm C-HMM-bi.

Finally, Callison-Burch et al. (2005) proposed
to use phrase-based translation models for transpot-
ting. MOSES offers a state-of-the-art toolkit for ex-
tracting a phrase-based model from a given bitext
(Koehn et al., 2007). Using such a model, transpot-
ting is done by searching in the phrase table the set
of candidate segment pairs whose source segments
equals the source query and the target segment oc-
curs in the target sentence. The scores associated
with each segment pair in the phrase table enables
to keep the best transpot among candidates. We call
this method PBM.

4 Experimental setup

4.1 Corpus

We used the Canadian Hansards bilingual corpus
made of the proceedings of the Canadian parlia-
ment from 1986 to 2007. It is composed of more
than 8.3 million sentence pairs. In order to measure
how transpotting algorithms are impacted by the fre-
quency of a translation, we designed two test cor-
pora. TESTFREQ enables the evaluation of the trans-
potting algorithms when aligning frequent transla-
tions, and TESTRARE when aligning against rare
translations.



Both corpora are built semi-automatically by ex-
tracting sentence pairs containing query/translation
pairs and then by validating manually the correct-
ness of those pairs. For this, we rely on real user
queries we obtained from the logs of the commer-
cial bilingual concordancer TransSearch.

We crossed the most frequent queries from these
logs with an in-house bilingual dictionary, and for
each query/translation pair obtained, we counted its
number of occurrences in the Hansards. This al-
lows to discriminate frequent from rare translations.
This gave two sets of sentence pairs: one in which
query/translation pairs are frequent, occurring in 594
sentence pairs on average in the Hansards, the other
in which the query/translation pairs are rare, occur-
ring in only one sentence pair in the Hansards.

It is interesting to remark that these rare
query/translation pairs cooccur only once in the
Hansards, but that the queries and the translations
taken separately do occur frequently: the queries
occur in 4959 sentence pairs on average, and the
translations in 1977 on average. This means that the
queries and the translations are not rare, but their
cooccurrences are.

Last, since the translations were automatically
identified using a dictionary, we had to manually
check the correctness of the translations to ensure
the quality of the reference corpora. We manu-
ally examined each sentence pair to validate the
query/translation pair.

We ended up with 1516 sentence pairs in TEST-
FREQ, and 706 sentence pairs containing a query
and a rare translation. From these, we kept 115 sen-
tence pairs for a development corpus called DEV-
RARE; the remaining 591 pairs formed the TEST-
RARE corpus.

4.2 Metrics
We considered two accuracy metrics for evaluating
the transpotting algorithms. The first one is the per-
centage of times the reference translation is correctly
identified by an algorithm. For example, when the
reference translation is qui vivra verra, the transpot
has to match it exactly to be credited a point.

Often, transpotting algorithms are short of one
word when identifying the translation of a query.
Therefore, we computed a second metric where we
give a point to a transpot with at least one word cor-

rect. For example, when the translation is qui vivra
verra, the transpot verra is considered correct with
this metric.

Since the transpotting algorithms always return
a transpot, the number of returned transpots is the
same as the number of reference translations; so for
these tasks precision equals recall.

4.3 Training and Tuning
The distributions required by the word-based trans-
potting algorithms described in Section 3 were ob-
tained by running GIZA++ on the Hansards (Och
and Ney, 2003). IBM model 4 lexical distributions
were used in this work, while the alignment distri-
butions were coming from IBM2 or HMM models.
The phrase table required by the phrase-based trans-
potting algorithm has been computed by MOSES in
its default configuration.

Equation (4) which combines lexical distributions
obtained by training models in both translation di-
rections requires a combination operator. We ob-
tained the best results on DEVRARE using the ge-
ometric mean. Equation (1) which combines global
and local lexical distributions requires the optimiza-
tion of the λ parameter that controls the linear com-
bination. We optimized it on DEVRARE for each
transpotting algorithm.

5 Experiments

5.1 Frequent Translation Spotting
The first experiment compares the transpotting al-
gorithms described in Section 3 for transpotting the
queries of the TESTFREQ corpus. Results are pre-
sented in Table 1.

Algorithm % ref. found % 1 word found
IBM2 61.8 84.4
HMM 61.0 83.1
C-IBM2 68.3 94.2
C-HMM 69.3 94.8
C-HMM-bi 72.3 96.3
PBM 77.2 93.5

Table 1: Scores of the transpotting algorithms on the
TESTFREQ corpus.

As we could expect, PBM is the best algorithm for
identifying the reference translations. Then, follow



the 3 constrained models that overpass the 2 uncon-
strained ones. For constrained models, the HMM-
based model logically outperforms the IBM-based
model, whereas surprisingly, the opposite result is
observed for unconstrained models.

According to the percentage of times at least one
word of the reference translation is correctly iden-
tified, the constrained models overpass PBM. This
shows that constrained models are more recall ori-
ented, while PBM is more balanced between recall
and precision.

We also observe that the percentage of times
where at least one word of the translation is found
are around 20 points higher than those where the
whole reference translation is found. This indicates
that the algorithms are good at spotting the region
of the translation in the target sentence, but often
lack precision at identifying their exact boundaries.
Often, this is due to the insertion of a grammatical
word at the frontier of a reference translation. Those
words tend to be highly ranked in lexical distribu-
tions, a problem analyzed in (Moore, 2004). We il-
lustrate in Section 5.4 that missing word boundaries
can lead to very misleading translations.

5.2 Rare Translation Spotting

The second experiment compares the algorithms
when transpotting the queries of the TESTRARE cor-
pus. Results are presented in Table 2.

Algorithm % ref. found % 1 word found
PBM 32.5 47.9
IBM2 43.8 58.5
HMM 47.4 63.3
C-IBM2 51.3 70.4
C-HMM 54.3 73.6
C-HMM-bi 65.6 83.9

Table 2: Scores of the transpotting algorithms on the
TESTRARE corpus.

For both metrics, we observe that the scores of
all algorithms drop significantly. This shows that
identifying rare translations of a query is harder
than identifying frequent ones, and this, even if rare
translations in our test set are composed of frequent
words (see Section 4.1).

The large drop of the PBM algorithm might seem

surprising. It is explained by the fact that of-
ten, a query/rare translation pair is not kept by the
grow-diag-final heuristic of MOSES, due to
a failure of the word alignment models being used.
This highlights a shortcoming of phrase-based mod-
els when dealing with rare events, as described in
(Foster et al., 2006). Note that some kind of SMT
decoder could be used to enhance the PBM algo-
rithm. Nevertheless, it seemed more rational to us
to focus on pure word-alignment based techniques.

5.3 2-stage Translation Spotting
The third experiment evaluates the performance of
the 2-stage method described in Section 2. We con-
sidered the three best transpotting algorithms for
identifying rare translations, as identified in the pre-
vious section. Results are presented in Table 3 when
using 200 non parallel sentence pairs for building the
artificial bitext of each sentence pair. In Figure 5, the
results are plotted as a function of the number of non
parallel sentence pairs used.

2-stage w. % ref. found % 1-w found λ

C-IBM2 58.4 +7.1 79.0 +8.6 0.99
C-HMM 60.9 +6.6 83.2 +9.6 0.98
C-HMM-bi 69.7 +3.9 86.5 +2.6 0.50

Table 3: Scores of the 2-stage transpotting approach on
the TESTRARE corpus, as well as its absolute gains, as a
function of the transpotting algorithm used. λ stands for
the best value given to the global lexical model in Eq. (1).

For the three transpotting algorithms, significant
gains are observed when our method is applied with
regards to the scores of Table 2. In terms of the
percentage of reference translations correctly identi-
fied, we observe a gain of nearly 7 absolute points
for C-IBM2 and C-HMM, and nearly 4 points for
C-HMM-bi. A gain of 4 points is similar to the gain
observed in Table 2 when going from IBM2 to HMM
or from C-IBM2 to C-HMM.

As can be observed in Figure 5, most of the gains
are obtained using only 10 non parallel sentence
pairs. For instance, C-HMM-bi shows a gain of 3.1
absolute points. The fact that only a small number
of non parallel sentence pairs is required to adapt the
lexical model indicates that the cost of the method
remains moderate and that it can be deployed in in-
dustrial applications.
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Figure 5: % of times where the reference translation is found (left), and where at least one word of the reference
translation is found (right) as a function of the number of non parallel sentence pairs used.

The last column of Table 3 indicates the optimal
value of λ used for Eq. (1). For the two unidirec-
tional models C-IBM2 and C-HMM, the confidence
given to the local model is very low. Indeed, we
observed that when the value of λ is below 0.95, the
gain of the 2-stage approach cancels out, and a value
below 0.7 even degrades performances. On the con-
trary, for the bidirectional model C-HMM-bi, the
confidence in the local model is higher. For all the
values of λ we tested, our method yields significant
gains.

These results show that even if the local distribu-
tion for a given query is estimated from non parallel
sentence pairs, it embeds valuable lexical links be-
tween the words of the query and those of the rare
translation. These links permit to reinforce the sec-
ond alignment pass despite the noise contained in
the local distribution, which means that it contains
more valuable links than noise.

5.4 Qualitative Results
When comparing the results of C-HMM-bi alone
and our two-stage approach using C-HMM-bi, we
found that the transpot produced for the 591 sen-
tence pairs of TESTRARE differed 82 times: 35 er-
rors were corrected, 11 errors were introduced, and
36 wrong or partial transpots were modified, but
not fully corrected. Table 4 shows some exam-
ples among those corrected transpots which are rare
translations of their query in the training material.
Note that more than often, the transpots identified
during the first stage are very partial, if not mislead-

Query
Transpot with

C-HMM-bi 2-stage C-HMM-bi

input entrée entrée de données
lead the way tête au être en tête

liability mort poids mort
with all due

contredire
sans vouloir vous

respect contredire
out of date des surannée
corporation compagnie compagnie commerciale
take charge assumer assumer la responsibilité

in some ways à certains points à certains points de vue
hard at work plein travail en plein travail
vantage point avantageuse position avantageuse

payroll salaires traitements et salaires

Table 4: Examples of rare translations from TEST-
RARE which are wrong or partial when aligned with
C-HMM-bi only, but correct when aligned with our 2-
stage approach using the same alignment algorithm.

ing, while the ones identified after the second stage
are typically more faithful to the reference transla-
tion. This is the case even if the transpots proposed
by the two methods often differ in their boundaries
only.

6 Related Works

Improving word-alignment by exploiting more data
has been the focus of some studies. In particular,
it was shown that acquiring comparable data from
external resources is a fruitful strategy (Munteanu
and Marcu, 2006; Abdul-Rauf and Schwenk, 2009;
Cettolo et al., 2010; Gahbiche-Braham et al., 2011).



Exploiting external data is mainly a batch proce-
dure, while our approach better exploits the avail-
able training data, and this is done online.

The works of (Simard, 2003; Vogel, 2005) are
closely related to the constrained alignment ap-
proaches described in Section 3. Both allow to ex-
tract phrase pairs from bilingual data. Our work
attempts to extend this family of methods with the
adaptive online method described above.

Other works proposed discriminative approaches
for word alignment (Moore et al., 2006; Blunsom
and Cohn, 2006; Liu et al., 2010; Setiawan et al.,
2010). They rely on manually word-aligned train-
ing data which render them hard to generalize and
questionable for industrial applications. Dyer et
al. (2011) proposed a discriminative framework that
does not need such manual training data. Compar-
ing our approach to this one would be interesting.
In the eventuality that it outperforms our approach,
embedding it into our 2-stage framework could be
attempted, as planned in future work.

Some works have been proposed to smooth trans-
lation models. Toutanova et al. (2002) used POS
tags for smoothing translation distributions in the
HMM alignment model of Vogel et al. (1996).
Moore (2004) proposed to smooth IBM model 1
translation model, especially the count of rare
events. Foster et al. (2006) proposed to smooth a
phrase-based translation model. These works cor-
rect the estimated probabilities of rare events by
smoothing lexical distributions. While they attempt
to smooth the whole lexical model once for all, we
propose a smoothing local to each rare event and de-
pendent of the translation process.

In paraphrase extraction, approaches have been
proposed to extract paraphrases from bilingual data
by relying on phrase-based alignment models (Ban-
nard and Callison-Burch, 2005; Callison-Burch,
2008; Max, 2010). Although our approach is differ-
ent, identifying a query’s rare translation can been
seen as recognizing that this translation is a para-
phrase of a query’s frequent translation.

7 Conclusion and Future Work

We proposed an original method that improves the
transpotting of infrequent translations. To overcome
the lack of additional data, this method uses non par-

allel sentences sampled from the training material in
order to adapt the lexical distribution used to trans-
pot a given query. The experiments we conducted
exhibit significant gains in identifying rare transla-
tions by making use of only a small number of non
parallel sentence pairs for each query. This suggests
that the method could be implemented at a moderate
additional cost in industrial bilingual concordancers.

In this study, we considered only frequency-1
transpots. It would be natural to extend this work
to (slightly) more frequent translations and to in-
vestigate the frequency threshold over which the ap-
proach do not improve the alignment process.

In this work, the source sentences gathered for
building the non parallel local bitexts are sampled
randomly. This simple approach lead to significant
gains. Still, seeking for source sentences which dif-
fer the most from the seed target sentence available
seems to be intuitively attractive, possibly leading to
further improvements.

Finally, our work shows that paying attention to
rare events is fruitful in a transpotting task. We plan
to investigate whether it can pay off as well in MT.
The approach of Lopez (2008) computes online lex-
ical and alignment models during decoding. Our
method could easily be integrated in this approach.
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