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Abstract

Existing studiesshow that a weighted
context-free transductionof reasonable
quality canbe effectively learnedfrom
examples. This paperinvestigatesthe
approximationof suchtransductionby
meansof weighted rational transduc-
tion. The advantageis increasedpro-
cessing speed, which benefits real-
timeapplicationsinvolving spokenlan-
guage.

1 Intr oduction

Several studieshave investigatedautomaticor
partlyautomaticlearningof transductionsfor ma-
chinetranslation.Someof thesestudieshavecon-
centratedon finite-stateor extendedfinite-state
machinery, suchas(Vilar andothers,1999),oth-
ers have chosenmodels closer to context-free
grammarsandcontext-free transduction,suchas
(Alshawi et al., 2000;Watanabeet al., 2000;Ya-
mamotoand Matsumoto,2000), and yet other
studiescannotbe comfortablyassignedto either
of thesetwo frameworks,suchas(Brown andoth-
ers,1990)and(TillmannandNey, 2000).

In this paperwe will investigateboth context-
free and finite-statemodels. The basisfor our
study is context-free transductionsincethat is a
powerful modelof translation,whichcanin many
casesadequatelydescribethe changesof word�
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order betweentwo languages,and the selection
of appropriatelexical items. Furthermore,for
limited domains,automaticlearningof weighted
context-free transductionsfrom examplesseems
to bereasonablysuccessful.

However, practical algorithmsfor computing
themostlikely context-freederivationhave a cu-
bic time complexity, in terms of the length of
the input string, or in the caseof a graphout-
put by a speechrecognizer, in termsof thenum-
berof nodesin thegraph.For certainlexicalized
context-free modelswe even obtain higher time
complexities whenthesizeof thegrammaris not
to beconsideredasaparameter(EisnerandSatta,
1999). This may poseproblems,especiallyfor
real-timespeechsystems.

Therefore,wehave investigatedapproximation
of weightedcontext-free transductionby means
of weightedrationaltransduction.Thefinite-state
machineryfor implementingthe latter kind of
transductionin generalallows fasterprocessing.
We canalsomore easilyobtain robustness.We
hopetheapproximatingmodelis ableto preserve
someof theaccuracy of thecontext-freemodel.

In thenext section,wediscusspreliminarydef-
initions, adaptedfrom existing literature, mak-
ing no more thansmall changesin presentation.
In Section3 we explain how context-free trans-
ductiongrammarscanberepresentedby ordinary
context-free grammars,plus a phaseof postpro-
cessing.The approximationis discussedin Sec-
tion 4. As shown in Section5, we may easily
processinput in arobustway, ensuringwealways
obtainoutput. Section6 discussesempirical re-
sults,andwe endthepaperwith conclusions.



2 Preliminaries

2.1 hierarchical alignment

Theinput to our algorithmis a corpusconsisting
of pairs of sentencesrelatedby an hierarchical
alignment(Alshawi etal.,2000).In whatfollows,
theformalizationof thisconcepthasbeenslightly
changedwith respectto the above reference,to
suit ourpurposesin theremainderof thisarticle.

Thehierarchicallyalignedsentencepairsin the
corpusare5-tuples

�������	��
����������
������
satisfying

the following. Thefirst two components,
���

and��

, are strings,called the source string and the

target string, respectively, the lengthsof which
are denotedby � ��� � � ���

and � 
�� � � 
��
. We

let � �
and � 


denotethesetsof string positions����� � � �!� � ��"
and

����� � � �#� � 
�" respectively.
Further,

���
(resp.

��

) is a mappingfrom posi-

tions in � �%$&��' "
(resp. � 
($)��' "

) to pairs of
lists of positionsfrom � �

(resp. � 

), satisfying

the following: if a position * is mappedto a pair�,+-��� +.
��
, thenthepositionsin thelist

+-��/�0 *21 /�+3
 are
in strictly increasingorder;we let “

/
” denotelist-

concatenation,and
0 *21 representsa list consisting

of asingleelement* .
Eachposition in � �

(resp. � 

) shouldoccur

at mostoncein the imageof
���

(resp.
��


). This
meansthat

� �
and

� 

assigndependency struc-

turesto thesourceandtargetstrings.
A further restriction on

���
and

��

requires

someauxiliary definitions. Let
�

be either
� �

or
��


. We define 4� as the function that maps
each position * to the list of positions 4�5��6����7/
� � �8/ 4�5��6�9;:<�=/>0 *21 / 4�5�,?�� �=/8� � �@/ 4�A�,?B9DC��

when�E� * � � �!0 6�� � � � �#��6�9 : 1 �F0 ?���� � � �!� ?B9 C 1 � . If
�

is a
string G �5/ / / GIH , and

+
isalist

0 6���� � � �!��6�9 1 of string
positions in

�
, then

�5JK+
representsthe string

G#L : / / / GIL�M . If * is asingleposition,then
�5J * rep-

resentsthesymbol G#N .
Wenow saythat

�
is projectiveif 4� mapseach

position * to someinterval of positions
0 O���OQP

��� / / /!� RTSU��� R 1 . We will assumethat both
���

and
��


areprojective. (Strictly speaking,our al-
gorithm would still be applicableif they were
not projective, but it would treatthe hierarchical
alignmentasif thesymbolsin thesourceandtar-
get strings had beenreorderedto make

���
and� 


projective.) Furthermore,a reasonablehier-
archicalalignmentsatisfies 4�5�,'�� � 0 '�� ��� � � �#� �E1 ,

where� � � �
or � � � 
 when

� � ���
or

� � ��

,

respectively, which meansthatall symbolsin the
string areindirectly linked to the ‘dummy’ posi-
tion 0.

Lastly,
�

is theunionof
���,'�� '�� "

andasubsetof
� �WV � 


thatrelatespositionsin thetwo strings.
It is suchthat

� * � ��6X�,� � * 
 ��6X�ZY[�
imply * �\� * 


and
� * ��6�� �,� � * ��6�
B�\Y]�

imply
6�� � 6<


; in other
words,apositionin onestringis relatedto atmost
oneposition in the other. Furthermore,for each� * ��6^�_Y[�TS`���,'�� '�� "

thereis a pair
� *ba ��6 a �ZYc�

suchthat * occursin oneof thetwo lists of
� � � *ba �

and
6

occursin oneof thetwo lists of
��
���6 a � ; this

meansthat positionscanonly be relatedif their
respective “mother” positionsarerelated.

Note that this paperdoesnot discusshow hi-
erarchicalalignmentscanbeobtainedfrom unan-
notatedcorporaof bitexts. This is the subjectof
existingstudies,suchas(Alshawi etal., 2000).

2.2 context-freetransduction

Context-free transductionwas originally called
syntax-directed transduction in (Lewis II and
Stearns,1968),but sincein modernformal lan-
guagetheory and computationallinguistics the
term “syntax” hasa muchwider rangeof mean-
ings thanjust “context-free syntax”, we will not
usetheoriginal termhere.

A (context-free) transductiongrammaris a 5-
tuple

�,dZ� e%��� ef
�� gh� ih�
, where

d
is afinite setof

nonterminals,
i&Y&d

is thestartsymbol,
e%�

andef

arethesourceandtargetalphabets,and

g
is a

finite setof productionsof theform j`k �,l��m8�
,

wherej Ynd
,
loYn�,dQ$8eD�<� �

and
mpYn�,dQ$@ef
�� �

,
such that eachnonterminalin

l
occursexactly

oncein
m

andeachnonterminalin
m

occursex-
actlyoncein

l
.1

If we were to replaceeachRHS pair by only
its first part

l
, we would obtain a context-free

grammarfor thesourcelanguage,andif we were
to replaceeachRHS pair by its secondpart

m
,

we would obtaina context-free grammarfor the
target language. The combinationof the two
halves of sucha RHS indicateshow a parsefor

1Note that we ignorethe casethat a singlenonterminal
occurstwice or morein q or r ; if we wereto includethis
case,sometediouscomplicationsof notationwould result,
without any theoreticalgain suchasan increaseof genera-
tive power. We refer to (Lewis II andStearns,1968)for the
generalcase.



thesourcelanguagecanbe relatedto a parsefor
the target language,and this definesa transduc-
tion betweenthelanguagesin anobviousway.

An exampleof a transductiongrammaris:
s k �

Subj-IObj “lik e” Obj-Subj
�

Obj-Subj Subj-IObj “pla ı̂t”
�

Subj-IObj k �
“I”

�
“me”

�
Obj-Subj k �

“him”
�
“il”

�
This transductiondefinesthat a sentence“I lik e
him” canbetranslatedby “il meplaı̂t” .

Wecanreducethegenerativepowerof context-
freetransductiongrammarsby asyntacticrestric-
tion thatcorrespondsto thebilexical context-free
grammars(EisnerandSatta,1999).Let usdefine
a bilexical transductiongrammaras a transduc-
tion grammarwhich is suchthat:

t thereis a mappingfrom thesetof nontermi-
nalsto

e%��Vuef

. Dueto thisproperty, wemay

write eachnonterminalas j 0 G � v 1 to indicate
that it is mappedto the pair

� G � v�� , where
G Y�e%�

and
v=Y�ef


, where j is a socalled
delexicalizednonterminal.We maywrite

i
as j 0 wx� w 1 , where

w
is a dummysymbolat

thedummystringposition
'
. Further,

t eachproductionis of one of the following
five forms:

j 0 G � v 1�k �,yz0 G � v 1b{ 0 |�� } 1 �uy~0 G � v 1b{ 0 |�� } 1 �
j 0 G � v 1�k �,yz0 G � v 1b{ 0 |�� } 1 � { 0 |�� } 1 yz0 G � v 1 �
j 0 G � v 1�k � { 0 |�� } 1 yz0 G � v 1 �uy~0 G � v 1b{ 0 |�� } 1 �
j 0 G � v 1�k � { 0 |�� } 1 yz0 G � v 1 � { 0 |�� } 1 yz0 G � v 1 �
j 0 G � v 1�k � G � v��

For convenience,we alsoallow productionsof
theform:

j 0 G � v 1�k �����5yz0 G � v 1 � ������
fyz0 G � v 1 � 
��
where

����� � ��Yne ��
and

�A
�� � 
7YQe �

.

In the experimentsin Section6, we alsocon-
sidernonterminalsthatarelexicalizedonly by the
sourcealphabet,which meansthat thesenonter-
minalscanbewrittenas j 0 G�1 , whereG Y�e%�

. The
motivation is to restrict the grammarsizeandto
increasethecoverage.

Bilexical transductiongrammarsareequivalent
to the dependency transductionmodel from (Al-
shawi et al., 2000).

2.3 obtaining a context-freetransduction
from the corpus

We extract a context-free transductiongrammar
from a corpusof hierarchicalalignments,by lo-
cally translatingeachhierarchicalalignmentinto
asetof productions.Theunionof all thesesetsfor
the whole corpusis then the transductiongram-
mar. Countingthe numberof times that identi-
cal productionsaregeneratedallows us to assign
probabilitiesto theproductionsbymaximumlike-
lihoodestimation.

We will considera methodthat usesonly one
delexicalizednonterminalj . For a pair

� * � *ba �7Y
�
, we have a nonterminal j 0 ����J * ����
�J * a 1 or a

nonterminalj 0 ����J *b1 , dependingonwhethernon-
terminalsarelexicalizedby bothsourceandtarget
alphabets,or by just the sourcealphabet.Let us
call thatnonterminal�����	� � * � *ba � .

Eachpair of positions
� * � * a ��Y��

givesrise to
oneproduction.Supposethat

����� * � � �!0 6���� � � �#��6�9>: 1 �F0 ?A��� � � �!� ?B9DC 1 �
and each position in this pair is related by

�
to someposition from � 


, which we will call6 a � � � � ����6 a9;: � ? a � � � � ��� ? a9DC
, respectively, andsimi-

larly, supposethat
� 
 � * a � � �!0 6 a a� � � � �!��6 a a9%� 1 �F0 ? a a� � � � �!� ? a a9u� 1 �

and each position in this pair is related by
�

to someposition from � �
, which we will call6 a a a� � � � �!��6 a a a9 � � ? a a a� � � � �!� ? a a a9 �

. Then the production
is givenby

�����	� � * � * a � k� �D����� ��6 � ��6 a � ��/ / / �D�F�	� ��6 9>: ��6 a9>: ��� � J *
�D����� �,?A��� ? a � ��/ / / �D�F�	� �,?F9DC�� ? a9 C �,�
�����	� ��6 a a� ��6 a a a� ��/ / / �����	� ��6 a a9%� ��6 a a a9D� �	��
�J * a
�D����� �,? a a� � ? a a a� �(/ / / �D�F�	� �,? a a9u� � ? a a a9u� ���

Notethatbothhalvesof theRHScontainthesame
nonterminalsbut possiblyin adifferentorder.

However, if any position in
����� * � or

��
�� *ba � is
not relatedto someotherpositionby

�
, thenthe

productionabovecontains,insteadof anontermi-
nal,asubstringonwhichthatpositionis projected
by 4��� or 4��
 , respectively. E.g. if thereis no po-
sition

6 a � suchthat
��6 � ��6 a � �zY��

, then insteadof
�����	� ��6�����6 a � � we have thestring

����J 4���<��6���� .



In general,we cannotadapt the above algo-
rithm to producetransductiongrammarsthat are
bilexical. For example,aproductionof theform:

j 0 G � G#a�1�k � j 0 v�� v a�1�j 0 |�� | a�1�G � j 0 |�� | a�1�j 0 v�� v a�1�G#a �
cannotbe broken up into smaller, bilexical pro-
ductions.2 However, the hierarchicalalignments
thatwework with wereproducedby analgorithm
thatensuresthatbilexical grammarssuffice. For-
mally, thisapplieswhenthefollowing cannotoc-
cur: thereare * � * ��� * 
�Y � �

and
6I��6�� ��6<
�Y � 


suchthat
� * ��6^�~Y[�

, * � and * 
 occur in
�E� * � , 6��

and
6 


occurin
�E��6X�

and
� * � ��6 � �,� � * 
 ��6 
 �fY_�

, and
either* ��� * 
7� * and

6<
7��6��u��6
, or * � * ��� * 


and
6��&6<
7��6��

, or * ��� * 
�� * and
6K��6�����6<


,
or * � * ��� * 
 and

6�����6�
���6
.

Forexample,if thenon-bilexical productionwe
wouldobtainis:

j 0 G � G!a�1Fk � j 0 v�� v a�1 } G�j 0 |�� | a�1 �
j 0 |�� | a 1���j 0 v�� v a 1�G a �

thenthe bilexical transductiongrammarthat our
algorithmproducescontains:

j 0 G � G a 1�k � j 0 G � G a 1�j 0 |�� | a 1 � j 0 |�� | a 1�j 0 G � G a 1 �
j 0 G � G a 1�k � j 0 G � G a 1 � ��j 0 G � G a 1 �
j 0 G � G a 1�k � j 0 v�� v a 1�j 0 G � G a 1 � j 0 v�� v a 1�j 0 G � G a 1 �
j 0 G � G a 1�k �,} j 0 G � G a 1 � j 0 G � G a 1 �
j 0 G � G a 1�k � G � G a �

3 Reordering aspostprocessing

In the following sectionwe will discussanalgo-
rithm thatwasdevisedfor context-freegrammars.
To make it applicableto transduction,wepropose
a way to representbilexical transductiongram-
marsasordinarycontext-free grammars. In the
new productions,symbolsfrom the sourceand
target alphabetsoccursideby side,but whereas
sourcesymbolsarematchedby the parserto the
input, thetargetsymbolsaregatheredinto output
strings. In our case,theuniqueoutputstring the
parsereventually producesfrom an input string
is obtainedfrom the most likely derivation that
matchesthatinputstring.

2That bilexical transductiongrammarsare lesspower-
ful than arbitrary context-free transductiongrammarscan
be shown formally; cf. Section3.2.3of (Aho andUllman,
1972).

Thatthenonterminalsin bothhalvesof a RHS
in the transductiongrammarmay occurin a dif-
ferentorderis solvedby introducingthreespecial
symbols,the reorder operators, which areinter-
pretedaftertheparsingphase.Thesethreeopera-
torswill bewritten as“

0
”, “

�
” and“ 1 ”. In a given

string, thereshouldbe matchingtriples of these
operators,in suchaway thatif therearetwo such
triples,thenthey eitheroccurin two isolatedsub-
strings,or oneoccursnestedbetweenthe“

0
” and

the“
�
” or nestedbetweenthe“

�
” andthe“ 1 ” of the

other triple. The interpretationof an occurrence
of a triple, say in an output string

����0 ��
 � ��� 1 ��� ,
is that the two enclosedsubstringsshouldbe re-
ordered,sothatweobtain

�������<��
����
.

Both the reorderoperatorsandthesymbolsof
the targetalphabetwill herebemarkedby a hor-
izontal line to distinguishthem from the source
alphabet.For example,thetwo productions

j 0 G � G a 1�k � j 0 G � G a 1�j 0 |�� | a 1 � j 0 |�� | a 1�j 0 G � G a 1 �
j 0 G � G a 1�k � G � G a �
from thetransductiongrammararerepresentedby
thefollowing two context-freeproductions:

j 0 G � G a 1�k 0 j 0 G � G a 1 � j 0 |�� | a 1 �
j 0 G � G a 1�k G G a

In thefirst production,theRHSnonterminalsoc-
cur in thesameorderasin theleft half of theorig-
inal production,but reorderoperatorshave been
addedto indicatethat, after parsing,somesub-
stringsof theoutputstringareto bereordered.

Ourreorderoperatorsaresimilar to thetwo op-
erators

�
and � from (Vilar and others,1999),

but theformeraremorepowerful, sincethelatter
allow only singlewords to be moved insteadof
wholephrases.

4 Finite-state approximation

There are several methods to approximate
context-free grammars by regular languages
(Nederhof,2000).Wewill considerhereonly the
socalledRTN method,which is appliedin asim-
plified form.3

3As opposedto (Nederhof,2000),we assumeherethat
all nonterminalsare mutually recursive, and the grammar
containsself-embedding. We have observed that typical
grammarsthatwe obtainin thecontext of this articleindeed
have thepropertythatalmostall nonterminalsbelongto the
samemutuallyrecursive set.



A finite automatonis constructedas follows.
For eachnonterminalj from thegrammarwein-
troducetwo states

R �
and

R a� . For eachproduc-
tion j¡k£¢ �5/ / / ¢ 9

we introduce¤ P��
statesR,¥�� � � �!� R 9

, andwe addepsilontransitionsfromR �
to

R ¥
andfrom

R 9
to

R a� . The initial stateof
theautomatonis

R§¦
andtheonly final stateis

R a¦ ,
where

i
is thestartsymbolof thegrammar.

If a symbol ¢ N in the RHS of a productionis
a terminal,thenwe adda transitionfrom

R N©¨ � toR N labelledby ¢ªN . If a symbol ¢ªN in theRHS is
a nonterminal

y
, thenwe addepsilontransitions

from
R N«¨ � to

R ¬
andfrom

R a¬ to
R N .

The resulting automatonis determinizedand
minimizedto allow fastprocessingof input. Note
that if we apply theapproximationto the typeof
context-freegrammardiscussedin Section3, the
transitionsincludesymbolsfrom bothsourceand
targetalphabets,but wetreatbothuniformlyasin-
put symbolsfor thepurposeof determinizingand
minimizing. This meansthat the driver for the
finite automatonstill encountersnondeterminism
while processinganinputstring,sinceastatemay
haveseveraloutgoingtransitionsfor differentout-
put symbols.

Furthermore,we ignoreany weightsthatmight
beattachedto thecontext-freeproductions,since
determinizationis problematicfor weightedau-
tomatain generaland in particular for the type
of automatonthat we would obtainwhencarry-
ing over theweightsfrom thecontext-freegram-
mar onto the approximatinglanguagefollowing
(Mohri andNederhof,2001).

Instead,weights for the transitionsof the fi-
nite automatonare obtainedby training, using
stringsthat are producedas a side effect of the
computationof the grammarfrom the corpus.
Thesestringscontainthe symbolsfrom both the
sourceandtargetstringsmixedtogether, plusoc-
currencesof the reorderoperatorswhereneeded.
A English/Frenchexamplemight be:

0
I me lik eplaı̂t

�
him il 1

Theway thesestringswereobtainedensuresthat
they are included in the languagegeneratedby
the context-free grammar, andthey aretherefore
also acceptedby the approximatingautomaton
dueto propertiesof theRTN approximation.The

weightsare the negative log of the probabilities
obtainedby maximumlikelihoodestimation.

5 Robustness

The approximatingfinite automatoncannoten-
surethatthereorderoperators“

0
”, “

�
” and“ 1 ” oc-

cur in matchingtriples in output strings. There
aretwo possiblewaysto dealwith this problem.
First, we couldextendthedriver of thefinite au-
tomatonto only considerderivationsin which the
operatorsarematched.This is however counter
to ourneedfor veryefficientprocessing,sincewe
arenotawareof any practicalalgorithmsfor find-
ing matchingbracketsin pathsin agraphof which
thecomplexity is lessthancubic.

Therefore,we have chosena secondapproach,
viz. to make the postprocessingrobust, by in-
sertingmissingoccurrencesof “

0
” or “ 1 ” andre-

moving redundantoccurrencesof brackets. This
meansthat any string containingsymbolsfrom
thetargetalphabetandoccurrencesof thereorder
operatorsis turnedinto a string without reorder
operators,with achangeof wordorderwherenec-
essary.

Both thetransductiongrammarand,to a lesser
extent, theapproximatingfinite automatonsuffer
from not beingableto handleall stringsof sym-
bols from the sourcealphabet. With finite-state
processinghowever, it is rathereasyto obtainro-
bustness,by making the following three provi-
sions:

1. To thenondeterministicfinite automatonwe
add one epsilon transition from the initial
stateto

R �
, for eachnonterminal j . This

meansthat from the initial state we may
recognizean arbitrary phrasegeneratedby
somenonterminalfrom thegrammar.

2. After the training phaseof the weighted
(minimal deterministic)automaton,all tran-
sitions that have not beenvisited obtain a
fixed high (but finite) weight. This means
that suchtransitionsare only applied if all
othersfail.

3. The driver of the automatonis changedso
thatit restartsat theinitial statewhenit gets
stuckat someinput word, andwhenneces-
sary, that input word is deleted. The out-



put string with the lowest weight obtained
so far (preferablyattachedto final states,or
to otherstateswith outgoingtransitionsla-
belled by input symbols) is then concate-
natedwith the output string resultingfrom
processingsubsequentinput.

6 Experiments

We have investigated a corpus of En-
glish/Japanese sentence pairs, related by
hierarchicalalignment(seealso (Bangaloreand
Riccardi, 2001)). We have taken the first 500,
1000,1500,. . . alignedsentencepairsfrom this
corpusto actastrainingcorporaof varyingsizes;
we have taken 300 othersentencepairsto act as
testcorpus.

We have constructeda bilexical transduction
grammarfrom eachtraining corpus,in the form
of acontext-freegrammar, andthisgrammarwas
approximatedby a finite automaton. The input
sentencesfrom the test corpus were then pro-
cessedby context-free and finite-statemachin-
ery (in the sequelreferredto by cfg and fa, re-
spectively). We have also carried out experi-
mentswith robust finite-stateprocessing,asdis-
cussedin Section5, which is referredto by ro-
bust fa. If we append2 after a tag, this mean
that �D����� � * � *ba � � j 0 �	��J * ����
�J *ba�1 , otherwise
�D�F�	� � * � * a � � j 0 ����J *21 (seeSection2.3).

The reorderoperatorsfrom the resultingout-
put stringswere applied in a robust way as ex-
plained in Section5. The output strings were
then comparedto the referenceoutput from the
corpus,resultingin Figure1. Our metric is word
accuracy, which is basedon edit distance.For a
pair of strings,theedit distanceis definedasthe
minimumnumberof substitutions,insertionsand
deletionsneededto turn onestringinto theother.
Theword accuracy of a string

�
with regardto a

string  is definedto be
�S¯®H , where

}
is theedit

distancebetween
�

and  and � is the lengthof
 .

To allow a comparisonwith moreestablished
techniques(see e.g. (Bangaloreand Riccardi,
2001)),we alsotake into considerationa simple
bigrammodel, trainedon the stringscomprising
bothsourceandtargetsentencesandreorderoper-
ators,asexplainedin Section4. For thepurposes
of predictingoutputsymbols,aseriesof consecu-

tive targetsymbolsandreorderoperatorsfollow-
ing a sourcesymbolin the trainingsentencesare
treatedasa singlesymbolby the bigrammodel,
and only thosemay be output after that source
symbol.Sinceourconstructionis suchthattarget
symbolsalwaysfollow sourcesymbolsthey area
translationof (accordingto theautomaticallyob-
tainedhierarchicalalignment),this modification
to thebigrammodelpreventsoutputof totally un-
relatedtargetsymbolsthatcouldotherwiseresult
from astandardbigrammodel.It alsoensuresthat
a boundednumberof output symbolsper input
symbolareproduced.

Thefractionof sentencesthatweretransduced
(i.e. that were acceptedby the grammaror the
automaton),is indicatedin Figure 2. Since ro-
bust fa(2) andbigram areable to transduceall
input, they arenot representedhere.Notethatthe
averagewordaccuracy is computedonly with re-
spectto the sentencesthat could be transduced,
which explainsthehigh accuracy for small train-
ing corpora in the casesof cfg(2) and fa(2),
wherethe few sentencesthat can be transduced
aremostlyshortandsimple.

Figure 3 presentsthe time consumptionof
transductionfor the entire test corpus. These
datasupportour concernsaboutthehigh costsof
context-free processing,even thoughour parser
reliesheavily on lexicalization.4

Figure4 shows thesizesof theautomataafter
determinizationandminimization. Determiniza-
tion for thelargestautomataindicatedin theFig-
ure took more than 24 hoursfor both fa(2) and
robust fa(2) , which suggeststhesemethodsbe-
comeunrealisticfor trainingcorpussizesconsid-
erablylargerthan10,000bitexts.

7 Conclusions

For ourapplication,context-freetransductionhas
a relatively high accuracy, but it alsohasa high
time consumption,andit may be difficult to ob-
tainrobustnesswithoutfurtherincreasingthetime
costs. Theseare two major obstaclesfor usein
spoken languagesystems.We have tried to ob-
tain a rational transductionthat approximatesa

4It usesa trie to representproductions(similar to ELR
parsing(Nederhof,1994)),postponinggenerationof output
for a productionuntil all nonterminalsandall inputsymbols
from theright-handsidehave beenfound.
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context-free transduction,preservingsomeof its
accuracy.

Ourexperimentsshow thattheautomataweob-
tain becomevery large for trainingcorporaof in-
creasingsizes. This posesa problemfor deter-
minization.Weconjecturethatthemainsourceof
theexcessive growth of theautomatalies in noise
in thebitexts andtheirhierarchicalalignments.It
is a subjectfor further studywhetherwe canre-
ducetheimpactof thisnoise,e.g.by clusteringof
sourcesymbols,or by removing someinfrequent,
idiosyncraticrulesfrom theobtainedtransduction
grammar. Also, othermethodsof regularapprox-
imationof context-freegrammarsmaybeconsid-
ered.

In comparisonto a simpler model, viz. bi-
grams,our approximatingtransductionsdo not
have a very high accuracy, which is especially

worrying sincethe off-line costsof computation
aremuchhigherthanin thecaseof bigrams.The
relatively low accuracy may be due to sparse-
nessof datawhenattachingweightsto transitions:
the sizeof the minimal deterministicautomaton
grows much fasterthan the size of the training
corpusit is constructedfrom, andthesametrain-
ing corpusis usedto train theweightsof thetran-
sitionsof the automaton.Thereby, many transi-
tionsdo not obtainaccurateweights,andunseen
input sentencesarenot translatedaccurately.

The problemsdescribedheremay be avoided
by leaving out thedeterminizationof theautoma-
ton. This however leadsto two new problems:
training of the weights requiresmore sophisti-
catedalgorithms,andwe mayexpectanincrease
in the time neededto transduceinput sentences,
sincenow both sourceand target symbolsgive
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rise to nondeterminism.Whethertheseproblems
canbeovercomerequiresfurtherstudy.
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