[From: Current issues in computational linguistics: in honour of Don Walker, ed. Antonio Zampolli, Nicoletta
Calzolari, Martha Palmer (Linguistica Computazionale, vol. 9-10); Pisa, Dordrecht, [1994]

UD, yet another unification device*

R. Johnson, IDSIA, Lugano
M. Rosner, IDSIA, Lugano
e-mail: mike@idsia.uu.ch

Abstract

This article' describes some of the features of a sophisticated language and
environment designed for experimentation with unification-oriented linguistic de-
scriptions. The system, called UD, has to date been used successfully as a devel-
opment and prototyping tool in a research project on the application of situation
schemata to the representation of real text, and in extensive experimentation in
machine translation.

While the UD language bears close resemblances to all the well-known uni-
fication grammar formalisms, it offers a wider range of features than any single
alternative, plus powerful facilities for notational abstraction which allow users to
simulate different theoretical approaches in a natural way.

After a brief discussion of the motivation for implementing yet another unifi-
cation device, the main body of the article is devoted to a description of the most
important novel features of UD.

1 Introduction

The development of uD arose out of the need to have available a full set of prototyp-
ing and development tools for a number of different research projects in computational
linguistics, all involving extensive text coverage in several languages: principally a de-
manding machine translation exercise and a substantial investigation into some practical
applications of situation semantics (Rupp, Johnson and Rosner, 1992).

The interaction between users and implementers has figured largely in the develop-
ment of the system, and a major reason for the richness of its language and environment
has been the pressure to accommodate the needs of a group of linguists working on
three or four languages simultaneously and importing ideas from a variety of different
theoretical backgrounds.

*We thank Suissetra and the University of Geneva for supporting the work reported in this article, and
the ACL for granting reproduction rights. We are grateful to all our former colleagues in ISSCO, and to
all UD users for their help and encouragement. Special thanks are due to C.J. Rupp for being a willing and
constructive guinea-pig, as well as for allowing us to plunder his work for German examples.

! This article is a slightly updated version of the authors’ “A rich environment for experimentation
with unification grammars” that appeared in the Proceedings of ACLE-89, Manchester. At the time of
publication, the novelty of the system lay in the fact that it provided a number of experimental features, as
described here, in an implementation that was not only freely available but also efficient, even by today’s
standards.

525

Historically up evolved out of a near relative of PATR-11 (see Shieber, 1984) and
its origins are still apparent, not least in the notation. In the course of development,
however, uD has been enriched with ideas from many other sources, most notably from
LFG (Bresnan, 1982) and HpsG (Sag and Pollard, 1987).

Among the language features mentioned in the article are

» a wide range of data types, including lists, trees and user-restricted types, in
addition to the normal feature structures;

» comprehensive treatment of disjunction;

* dynamic binding of pathname segments.

A particular article of faith which has been very influential in our work has been the
conviction that well-designed programming languages (including ones used primarily
by linguists), should not only supply a set of primitives which are appropriate for the
application domain but should also contain within themselves sufficient apparatus to
enable the user to create new abstractions which can be tuned to a particular view of the
data.

We have therefore paid particular attention to a construct which in up we call a
relational abstraction, a generalisation of PATR-1I templates which can take arguments
and which allow multiple, recursive definition. In many respects relational abstractions
resemble Prolog procedures, but with a declarative semantics implemented in terms of
a typical feature-structure unifier.

1.1 Structure of the article

Section 2 gives a concise summary of the semantics of the basic up unifier. This serves
as a basis for an informal discussion, in Section 3, of our implementation of relational
abstractions in terms of ‘lazy” unification. The final section contains a few remarks on
the issue of completeness, and a brief survey of some other language features.

2 Basic Unifier Semantics

In addition to the usual atoms and feature structures, the ub unifier also handles lists,
trees, typed instances, and positive and negative disjunctions of atoms. This section
contains the definition of unification over these constructs and employs certain notational
conventions to represent these primitive ub data types, as shown in figure 1.

Throughout the description, the metavariables U and V stand for objects of arbitrary
type. Three other special symbols are used:

526

Type name Notation

atom ABC
list [UIV]
n-ary tree Vo(Vi, oy Vi)

+ve disjunction /C,..,C,/f

—ve disjunction -/C1,..,Cy/f

feature structure {< A, V) >,..,< A,V >}

typed instance < C{< AL, VI >, < A, Ve >} >

Figure 1: Notational Conventions
[1] Uiscommutative: UV =VUU
[2] T is the identity: Vur=vVv
[3] Uis L-preserving: VUL =1

Figure 2: Algebraic Properties

U stands for the unification operator
T stands for top, the underdefined element.

1 stands for bottom, the overdefined element that corresponds to fatlure.

The semantics of unification proper are summatrised in figures 2--5: Clauses [1]-[3]
define its algebraic properties; clauses [4]-[6] define unification over constants, lists and
trees.

In figure 4, clause [7] treats positive and negative disjunctions with respect to sets of
atomic values. In figure 5, clause [8] deals with feature structures and typed instances.
Intuitively, type assignment is a method of strictly constraining the set of attributes
admissible in a feature structure.

Any case not covered by [1]-[8] yields L. Moreover, all the complex type construc-
tors are strict, yielding L if applied to any argument that is itself L.

The extensions to a conventional feature structure unifier described in this section
are little more than cosmetic frills, most of which could be simulated in an orthodoex,
PATR-style environment, even if with some loss of descriptive clarity.

In the rest of the article, we discuss a further enhancement which dramatically and
perhaps controversially extends the expressive power of the language.

3 Extending the Unifier

The major shortcoming of typical PATR-style languages is their lack of facilities for
defining new abstractions and expressing linguistic generalisations not foreseen (or even
foreseeable) by the language designer. This becomes a serious issue when, as in our

527

[4] constants: CyUC, =C,ifCy=Ch
(5] lists: [U1|U2] u [V1|V2} = [U1 Lt V[le L Vz]

[6] trees: Us(U1, .., Un) U Vo(V1, ., Vi) =
Vo Wp(Uh UV, U1 V,)

Figure 3: Unification of constants, lists and trees

(71 /Ciy...,CafUC =C
ifC € {C1,...,Cn)

/Ah---:Ap/U/Bla“-qu/ = /C[,-..,Cf/,
if C; € {Ay,...,Ap}and C; € {By,..., B,},
1 <t < r,provided (forr > Q)

~/C1,...,Coj UC =0,
ifC#C,1<i<n

_'/A],...,Ap/l—'"/B],...,Bq/= ‘1/01:"'301'/,
where C; € {Ay,..., A} orC; € {By,..., By},
1<:1<r

JA1,..., AyJU~/BL,...,Bg) = ~C1,...,Cr/,

where C; € {Al,..., 4.} and C; & {By,..., B,},
1<i<r

Figure 4: Unification of +ve and —ve atomic value disjunctions

528

i8]

f< AL, U1>,...,< AU, >} U
{< Bi,Vi>,....< B,,V; >} =
{(A, U, > [A,' EB],...,B&} U
{< B U; > |Bj QAI,...,AP} U

{< A, U;u V; > |A; = Bj}
1is<p, 1<i<y¢

<C A< ALY >0, < Ap, Uy >} > U
<C{< A, VL >,..,< AV, >} > =
<C A< AL TIUVI >, < A, U, LIV, >} >

< C{< AU >,...,< A, Up >} > U
{< B1,Vi>,...,< B, V, >} =
< C.{< Ay, Ui > |Ai € {B1,..., B} U
{< A, U;uV; > |A; = By} >,
1<i<p, 1<5<¢
(fOI‘{B],...,Bq} Q {A],...,AP})

Figure 5: Unification of feature structures and typed instances

529

own case, quite farge teams of linguists need to develop several large descriptions
stmultaneously.

To meet this need, UD provides a powerful abstraction mechanism which is nota-
tionally similar to a Prolog procedure, but having a strictly declarative interpretation.
We use the term relational abstraction® to emphasise the non-procedural nature of the
construct.

3.1 Some Examples of Relational Abstraction

The examples in this section are all adapted from a description of a large subset of
German written in UD (Rupp, 1990). As well as relational abstractions, two other UD
features are introduced here: a built-in list concatenation operator ‘++’ and generalised
disjunction, notated by curly brackets (e.g. {X,Y}). These are discussed briefly in
Section 4.

The first example illustrates a relation Mexrge, nsed to collect together the semantics
of an arbitrary number of modifiers in some list X into the semantics of their head Y. Its
definition in the external syntax of the current UD version is

Merge (X, Y)
IMerge~-all{(X, <Y desc cond», <Y desc ind>)

(The invocation operator ‘I’ is an artefact of the LALR(1) compiler used to compile
the external notation ~ one day it will go away. X and Y should, in this context, be
variables over feature structures. The desc, cond and ind attributes are intended to be
mnemonics for, respectively, ‘description’, (a list of) ‘conditions’ and ‘indeterminate’.)

Merge is defined in terms of a second relation, Merge-all, whose definition is

Merge-all ([HA|T1l], <Hd desc cond> ++ L, Ind)
Ind = <Hd desc ind>
Merge-all{Tl,L, Ind}

Merge-all([].,[]),Ind)

Merge-all does ail the hard work, making sure that all the indeterminates are
consistent and recursively combining together the condition lists.

Although these definitions look suspiciously like pieces of Prolog, to which we are
clearly indebted for the notation, the important difference, which we already referred to
above, is that the interpretation of Merge and Merge-all is strictly declarative.

The best examples of the practical advantages of this kind of abstraction tend to
be in the lexicon, typically used to decounple the great complexity of lexically oriented
descriptions from the intuitive definitions often expected from dictionary coders. As
illustration, without entening into discussion of the underlying complexity, for which we

ZRelational abstractions are comparable, for example, in spirit and in syntax, to parametric sorts in the
CUF (see D'orre and Eisele, 1991),

530

unfortunately do not have space here, we give an extemnal form of a lexical entry for
some of the senses of the German verb “tr'aumen”.

This is a real entry taken from an HPSG-inspired analysis mapping into a quite
sophisticated situation semantics representation. All of the necessary information is
encoded into the four lines of the entry; the expansions of Pref, Loctype and Subcat
are all themselves written in UD. The feature -prefix is a flag interpreted by a separate
morphological component to mean that “tr aumen” has no unstressed prefix and can take
‘ge-’ in its past participle form.

traeumen -prefix
Pref {none)
'Loctype({project])
1subcat{np{non), {vp{inf,squi), pp{von,dat)})

Pref is a syntactic abstraction used in unraveling the syntax of German separable
prefixes. Loctype is a mudimentary encoding of Actionsart.

Subcat contains all the information necessary for mapping instances of verbs with
VP or PP complements to a situation schema (Fenstad, Halvorsen, Langholm and van
Benthem, 1987; Rupp, Johnson and Rosner, 1992). Here, for completeness but without
further discussion, are the relevant fragments of the definition of Subcat.

Subcat {np (nom) , pp{P,C})

!Normal

1Obl (Pobi, P,C, X)
TArg{X,2)

<* gubcat> = [Pobj|T]
'Assign (T, _)

Subcat (np (nom) , vp(F,squi))
IControlVerb
!Veomp (VP,F, NP, Sit)
1Arg(Sit, 2)
<* gubcat> = [VP|T]
iAssign (T, X)
F = inf/bse
'!Contrel (X, NP)

Assign([X], X)
<* yolce> = active
18ubj (X)
targ(X, 1)

Assign{{{Yl, [}}, Z)
<* yoice> = passive
<* yform> = psp
Takes (none)
IObl{Y,von,dat,2)
'Arg(Z,1)

531

4 Implementation of the Extensions

In this section we describe briefly the algorithm used to implement a declarative se-
mantics for relational abstractions, concluding with some remarks on further interesting
extensions which can be implemented naturally once the basic algorithm is in place. For
the moment, we have only an informal characterisation, but a more formal treatment i<
in preparation (Johnson and Rupp, forthcoming).

4.1 The solution algorithm

The main problem which arises when we introduce relational abstractions into the
language is that some unifications which would ultimately converge may not converge
locally (i.e. at some given intermediate stage in a derivation) if insufficient information
is available at the time when the unification is attempted (of course some pathological
cases may not converge at all—we return to this question below).

We cope with this by defining an argument to the unifier as a pair < [,k >.
consisting of an information structure I belonging to one of the types listed in section
2, plus an agenda K which holds the set of as yet unresolved constraints potentially
holding over I. Unification of two obiects,

<h,Ki>U< D) Ky>

involves the attempt to resolve the pooled set of constraints Ky U Ky = K with respect
to the newly unified information structure Iy = I, U Iy, if it exists.

The question of deciding whether or not some given constraint set will converge
locaily is solved by a very simple heuristic. First we observe that application of the
constraint pool Ky to Iy is likely to be non-deterministic, leading to a ser of possible
solutions. Growth of this solution set can be contained locally in a simple way, by
constraining each potentially troublesome (i.e. recursively definined) member of K to
apply only once for each of its possible expansions, and freezing possible continuations
in a new constraint set.

After one iteration of this process we are then left with a set of pairs {< Jy, L >
yeveny < Jpy Ly >}, where the L; are the current constraint sets for the corresponding
Ji.

If this result set is empty, the unification fails immedjately, i.e. [y is inconsistent
with K. Otherwise, we allow the process to continue, breadth first, only with those
< Jiy L; > pairs such that the cardinality of L, is strictly less than at the previous
iteration. The other members are left unchanged in the final result, where they are
interpreted as provisional solutions pending arrival of further information, for example
at the next step in a derivation.

4.2 Decidability

It is evident that, when all steps in a derivation have been completed, the process
described above will in general yield a set of information/constraint pairs

{< I, K>, ,<In, Ky >}

532

where some solutions are still incomplete—i.e., some of the K; are not empty. In very
many circumstances it may well be legitimate to take no further action—for example
where the output from a linguistic processor will be passed to some other device for
further treatment, or where one solution is adequate and at least one of the K; is empty.
Generally, however, the result set will have to be processed further.

The obvious move, of relaxing the requirement on immediate local convergence and
allowing the iteration to proceed without bound, is of course not guaranteed to converge
at all in pathological cases. Even so, if there exist some finite number of complete
solutions our depth first strategy is guaranteed to find them eventually. If even this
expedient fails, or is unacceptable for some reason, the user is allowed to change the
environment dynamically so as to set an arbitrary depth bound on the number of final
divergent iterations. In these latter cases, the result is presented in the form of a feature
structure annotated with details of any constraints which are still unresolved.

4.3 Discussion

Designers of unification grammar formalisms have tended to avoid including constructs
with the power of relational abstraction, presumably through concern about issues of
completeness and decidability. We feel that this is an unfortunate decision in view of the
tremendous increase in expressiveness which these constructs can give. (Incidentally,
they can be introduced, as in ub, without compromising declarativeness and monotonic-
ity, which are arguably, from a practical point of view, more important considerations.)
On a more pragmatic note, ub has been run without observable error on evolving de-
scriptions of substantial subsets of French and German, and it has been rarely necessary
to intervene on the depth bound, which defaults to zero.

In practice, users seem to need the extra power very sparingly, perhaps in one or two
abstractions in their entire description, but then it seems to be crucially important to the
clarity and elegance of the whole descriptive structure (list appending operations, as in
HPSG, for example, may be a typical case).

4.4 Other extensions

Once we have a mechanism for ‘lazy’ unification, it becomes natural to use the same
apparatus to implement a variety of features which improve the habitability and expres-
siveness of the system as a whole. Most obviously we can exploit the same framework
of local convergence or suspension to support efficient hand-coded versions of some ba-
sic primitives like list concatenation and non-deterministic extraction of elements from
arbitrary list positions. This has been done to advantage in our case, for example, to
facilitate importation of useful ideas from, inter alia HPsG and JrsG (Gunji, 1987). We
have also implemented a fully generalised disjunction (as opposed to the atomic value
disjunction described in section 2) using the same lazy strategy to avoid exploding alter-
natives unnecessarily. Similarly, it was quite simple to add a treatment of underspecified
pathnames to allow simulation of some recent ideas from LrG (Kaplan, Maxwell and
Zaenen, 1987).

533

4.5 Current state of the system

The system has now been in a stable state for some years, and supports substantial
fragments of German French and Italian. A derivative, ELU, sSpecialised for machine
translation applications, has been built at ISSCO, Geneva (see Estival, 1990).

There is also a rich user environment, of which space limitations preclude discussion
here, including tracing and debugging tools and a variety of interactive parameterisations
for modifying run-time behaviour and performance. The whole package runs on any
Unix platform which supports Allegro Common Lisp.

References

[1] Bresnan J., ed. The Mental Representation of Grammatical Relations, Cambridge,
Ma.:MIT Press, 1982.

[2] Dorre, J. and A. Eisele. “A comprehensive unification-based grammar formalism”,
DYANA deliverable R3.1.B, Centre for Cognitive Science, University of Edinburgh,
Scotland, January 1991.

[3] Estival, D. “eLu user manual”, Technical Report, ISSCO, University of Geneva,
1990.

[4] Fenstad J-E., P-K. Halvorsen, T. Langholm and J. van Benthem, Situations, Lan-
guage and Logic, Reidel, 1987.

[5] Gunji T., Japanese Phrase Structure Grammar, Reidel, 1987.

[6] Johnson, R. and C. J. Rupp. “Evaluating complex constraints in linguistic for-
malisms”, In Trost, H., editor, Feature Formalisms and Linguistic Ambiguity. Ellis
Horwoood, Chichester, 1993. To appear.

[7] Kaplan R., J. Maxwell and A. Zaenen, “Functional Uncertainty”, in CSLI Monthly,
January 1987.

[8] Sag I. and C. Pollard, “Head-Driven Phrase Structure Grammar: an Informal
Synopsis”, CSLI Report no.CSLI-87-79, 1987.

[9] Rupp, C. J. Semantic Representation in a Unification Environment, PhD thesis,
University of Manchester, 1990.

[10] Rupp, CJ., R. Johnson and M. Rosner, “Situation schemata and linguistic repre-
sentation”, in M. Rosner and R. Johnson (eds.), Computational Linguistics and
Formal Semantics, Cambridge:Cambridge University Press, 1992.

[11] Shieber S., “The design of a computer language for linguistic information”, Pro-
ceedings of Coling 84, Stanford, 1984.

