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Abstract 

Subsequential transducers constitute a formal model for translation that may 
be considered perhaps too simple to model translation between natural languages. 
However, their capability can suffice in limited-domain translation tasks. The finite- 
state nature of subsequential transducers makes their integration with well-known 
Continuous Speech Recognition technology both easy and efficient. A recent algo- 
rithm allows the automatic learning of these transducers, given a sufficiently large 
set of examples of sentences and their corresponding translations, and it also allows 
the incorporation of syntactic restrictions of the input and/or output languages. 
In this paper, we describe an implementation of a Speech Translation System for 
limited domains which is fully trainable and capable of real time translation from 
speech input. 

1     Introduction 

The problems of Machine Translation (MT) and Language Understanding (LU), when 
considered in their vast generality, are far from being satisfactorily solved. Interestingly, 
however, in contrast with such a general formulation, many MT and LU tasks of interest 
to industry and business have limited domains; that is, lexicons are of small size and the 
universe of discourse is limited: reservation of flights, hotels, etc.; tourist guide talks; 
broadcast of weather reports; etc. 

Although natural languages are complex, the mappings defined by their translations 
can be comparatively much simpler, specially when these languages are close as is the case 
with  many  European  languages.   LU  can also be seen as a particular case of translation; 
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that is a translation from a natural language into a formal one, in which we can adequately 
specify how the machine has to act in response to the input sentence. For instance, a 
natural language question to a database can be "translated" into the corresponding formal 
query, which can then be used to obtain the adequate answer. 

When considering speech input operation new problems arise. Most of the current 
efforts to cope with this problem are based on the use of previously developed text-input 
LT or LU systems (generally relying on knowledge-based technology), which are serially 
coupled to the output of state-of-the-art speech recognition front-ends [12, 13, 17, 18]. Such 
a procedure is quite sensitive to front-end errors, since it does not exploit the powerful 
intrinsic restrictions that underlie the output language syntax and the translation rules, to 
conveniently guide the search at the (input) acoustic and lexical levels. A possibly better 
approach would be trying to solve the LT and HI problems under a framework closer to 
the standard assumptions under which successful speech front-ends are developed. This 
means devising adequate models for LT and LU which: i) can be automatically learnt from 
training data for each task considered; and ii)  can be combined with the input-language 
acoustic and lexical models into an appropriate integrated network, in which an optimal 
search to find the best output can be performed [14]. In these situations, an adequate 
model is given by subsequential transduction, both for its simplicity and for the availability 
of an efficient algorithm for learning the corresponding finite-state devices. 

2     Subsequential Transducer Learning 
A Subsequential Transducer (SST) is a deterministic finite-state network that accepts 
sentences from a given input language and produces associated sentences of an output 
language [2]. The translation of an input sentence is performed departing from an initial 
state and accepting the input symbols one by one. Each edge of the network has associated 
an input symbol and an output string. Every time an input symbol is accepted the 
corresponding string is output and a new state is reached. After the whole input is 
accepted additional output may be produced from the last state reached. This final 
output differentiates SSTs from pure sequential transducers and allows them to overcome 
several limitations of the latter [14]. 

Given a set of training pairs of sentences from a translation task, the Onward Subse- 
quential Transducer Inference Algorithm (OSTIA) efficiently learns a SST that generalises 
the training set [10]. Moreover, if the unknown target translation can be assumed to ex- 
hibit a Subsequential structure [2], convergence to this translation is guaranteed if the 
set of training samples is representative or, simply, large enough [10]. To illustrate the 
functioning of the algorithm, a small example for a simple task can be seen in Figure 1. 
The task is to decode Morse messages which can contain only three letters; a(• –), e(•) 

and w(•  –  –) but without any marks between letters. The algorithm is provided with the 
training pairs shown in Figure l(a), and proceeds in three stages: 

1. The input sentences are first represented in a prefix tree. Then, empty strings are 
assigned as output substrings to the edges of this tree, while every output sentence 
is associated as a whole to the node reached by the corresponding input string. 
Figure l(b) shows this initial tree for the above mentioned examples. 

2. The longest common prefixes of the output strings are recursively moved, level by 
level,  from  the  leaves  of  the  tree  towards the root.   The onward prefix tree of the 

327 



{(λ, λ), ( •, e ) ,  (•  •, e e), (•  –, a ) ,  ( •  •  –, e a ) ,  ( •  –  •, a e ) ,  (•  –  – ,w), (•  •  –  –,ew), 
( •  –  •  –,aa ) ,  ( •  –  –  •,we), (•  –  •  –  –,aw), (•  –  –  •  –,wa)}. 

(a) Set of training samples. 

(c) Onward prefix tree. (d) Final subsequential transducer. 

Figure 1: The three steps of OSTIA for a simple Morse decoder. 

examples is presented in Figure l(c). 

3. Starting from the root, all pairs of states are orderly considered, level by level, 
and they are merged if merging is acceptable; i.e., if the resulting transducer is 
subsequential and is not in contradiction with the training set. Figure l(d) shows 
the result of this process for the Morse example. 

All these operations can be very efficiently implemented, yielding an extremely fast 
algorithm that can easily handle huge sets of training data. The algorithm does not try 
to enforce any restriction either in the input or in the output languages of the SST. The 
resulting transducer may entail some of these restrictions as a by-product of the necessity 
of enforcing the translation rules themselves (as is the case in the example shown in 
Figure l(d)). However, in general OSTIA tends to generalise as much as possible the 
training data resulting in transducers that are very permissive in relation to the input 
and output syntax. While this has no negative effect when new correct input sentences 
are submitted to translation, the implications can be very negative for erroneous input 
data. This particularly applies to translation of input speech, a task were the robustness of 
the transducer is specially important: it should be able to produce approximately-correct 
translations for approximately well-recognised sentences [9. 11]. 

A naive approach to this problem consists in using an explicit input language model to 
obtain syntactically-correct sentences during the recognition phase and then translating 
the best hypothesis by means of the transducer learned by OSTIA, in a decoupled way. 
Such an scheme has the disadvantage of not taking the syntactic restrictions underlying 
the transducer itself (and those of the output language) into account for a better guidance 
during the speech-recognition stage. 

Instead of that, we have used OSTIA with Domain and Range (OSTIADR), a re- 
cently introduced extended version of OSTIA which uses syntactic restrictions of the 
input and/or output languages, expressed by finite-state models, to guide the merging of 
states and limit the possible over-generalisations from the training data [11]. This version 
produces SSTs that only accept input sentences and only produce output sentences com- 
patible with input and/or output models. In addition, text-to-text experimental results 
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have shown that the new version produces highly accurate transducers using less training 
samples [11]. 

This extension of OSTIA consists in a simple modification of the third stage, so that 
states can be merged only when the prefixes of the input and output strings leading to 
them reach the same states in the input and output automata, respectively. To test this 
efficiently, a single preprocess is done after completion of the second stage. In this pre- 
process the nodes of the tree are labelled according to the states reached in the automata 
and the above mentioned condition becomes a simple comparison of labels. 

3 Overview of the Recognition and Translation System 
Traditionally, Continuous Speech Recognition (CSR) systems have been used to translate 
an acoustic signal into the word sequence most likely uttered by the speaker. The approach 
of many current CSR systems is to model the task as the composition of different mappings 
between intermediate stages, i.e. from the acoustic signal into phonemes, and so on into 
words and syntactically correct sentences. Spoken LT (and, in particular, LU in the sense 
mentioned above), can be seen as the addition of a new mapping, from the sentence 
uttered by the speaker into a sentence in a different language. 

So far, the best results in CSR have been obtained integrating the different sources of 
knowledge employed at each of the levels into a global model. The recognition is then 
viewed as a search for the most probable and syntactically correct word sequence given 
the acoustic signal. This integration can be easily accomplished if (stochastic) finite-state 
modelling is adopted at each level. The resulting integrated model is then a graph through 
which an optimal path can be found by Dynamic Programming. 

This approach can be extended if the mapping used for the translation is also described 
by a finite-state model, as is the case for SSTs. The phonetic and lexical models of the 
input language are then embedded in the resulting SST to give the final model to be used 
in the search for the optimal translation performed in the recognition phase. 

This methodology has been used in the development of a fully trainable Speech Trans- 
lation and Understanding System [9]. This system is based on conventional Viterbi 
Beam Search through a network which embeds phonetic, lexical, syntactic, and trans- 
lation stochastic finite-state models. Phonetic models are discrete Hidden Markov Mod- 
els (HMM). Lexical models describe words in terms of valid concatenations of phonemes. 
Translation and syntactic models are SSTs embedding stochastic (finite-state) language 
models describing sentences in terms of possible concatenations of words. 

Summarising, the system can be seen as the integration of three levels: 

Syntactic and translation level: A finite state network, learned with OSTIADR, that 
describes the syntax of the input and output languages and the rules for the trans- 
lation in terms of the words of both languages. 

Lexical level: each word is described by a set of finite state automata, with phonemes 
associated with the arcs. 

Phonetic level: A set of finite stochastic networks (HMM), each one describing one of 
the phonemes of the input language. 
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Figure 2: Two examples of translations of Spanish sentences for the experimental task, above 
for the original task, below for the extended task. 

Each of these components can be automatically learned. The integration of these compo- 
nents can be seen as the substitution of the edges of the automata describing the words 
for the HMMs describing the corresponding phonemes. These "extended" word models 
are in turn used to expand the edges of the transducers, giving rise to the final composite 
model. Note that this integration is only virtual, and only those arcs included within the 
beam of the Beam Search are actually expanded. Thanks to this limited expansion huge 
networks can be efficiently handled. 

4     Experimental Results 

4.1 Visual Scenes Description Task 

The system has been tested with an extension of a pseudo-natural task recently proposed 
by Feldman et al. [7]. The original task consisted of descriptions of simple two-dimensional 
visual scenes involving a few geometric objects with different shape, shade and size, and 
located in different relative positions. The original language of this task was extended to 
cover the possibility of adding or removing objects to or from a scene, and the task was 
adapted for LT and LU experimentation [5, 6]. In the present work, Spanish has been 
chosen as the input language; the output can be English or German for LT, or a semantic 
description of the scene in terms of first-order logic formulae for LU. The vocabulary size 
was between 25 and 70 words, depending on the language. Examples of these input and 
output sentences are shown in Figure 2. 

4.2 Training the acoustic, syntactic and translation models 

For the experimental results reported below, standard phonetic Hidden Markov Models 
and conventional lexical models are used, details can be seen in [9]. The syntactic re- 
strictions of the input and output languages have been modelled by stochastic k-Testable 
Automata (k-TA), which are equivalent to k-Grams [3, 4, 8, 15]. 

A set of 50100 input/output paired (text) sentences (for each of the 3 different output 
languages) was obtained using a semi-automatic procedure. This procedure was driven 
by a Syntax-Directed Translation Scheme [1] governed by English context-free grammars 
for the basic and extended MLA tasks, along with the associated grammars for Spanish 
and German [5]. From this set, 100 input/output sentences were randomly selected for 
speech-input testing purposes. The remaining 50000 pairs were used to automatically 
learn different k-TA (k = 2,3,4) for the  input  and  output languages as well as different 
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Table 1: Results with speech input (translation word error rates): (i) Decoupled scheme: recognition 
guided by the 4-TA of the input language, and translation performed with the transducers learned 
by OSTIA; (ii) Integrated scheme: recognition and translation guided by the transducers learned by 
OSTIADR using both the 4-TA of the input and output languages. 

SSTs. For comparison purposes, both the above described integrated system and a de- 
coupled system in which speech recognition is performed prior to translation, have been 
implemented. For the decoupled approach SSTs where learned with the original OS- 
TIA (without input or output syntactic restrictions) and recognition was performed using 
k-TAs of the input language. For the integrated approach SSTs were learned with OS- 
TIADR using the input and output k-TAs, and a stochastic extension of the transducers 
was carried out by estimating the transition probabilities from their frequencies of use for 
processing the sentences in the training-set. 

4.3     Recognition and Translation Results 
From the randomly selected test-set of 100 input/output pairs, each Spanish test sentence 
has been uttered by four speakers (one of them -speaker number 2 in Table 1- also 
participated in the training of the HMMs). The system outlined above has been used 
to analyse these utterances, using the same parameter for the recogniser (beam search 
thresholds) in all the experiments. 

Table 1 presents the translation word error rates (including insertion, substitution and 
deletion errors) for the four speakers and their averages. In general, a great improvement of 
the results is observed when syntactic constraints are integrated in the learned transducers. 

The size (number of arcs) of the integrated SSTs was typically less than five times the 
size of the corresponding k-TAs in the case of Spanish-to-English and Spanish-to-German 
models, and up to 30 times the size of the corresponding k-TAs in the case of Spanish- 
to-Semantics models. This is due to a larger semantic vocabulary as well as to the higher 
degree of “asynchrony” in the Spanish-to-Semantic translation. In fact, the semantic 
representation was specifically chosen for studying this effect. For instance, in Figure 2 
the Spanish segment "se añade" corresponds to "Ad(x)" which appears at the very end 
of the semantic representation. In spite of this increment in size, Viterbi beam search 
recognition-and-translation time was always lower using the integrated transducers, and 
never greater than 0.4 times real-time in a HP-9000/735 workstation. 
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5     Concluding Remarks 
General purpose automatic translation (or understanding) of spontaneous speech is far 
from being satisfactorily solved. However, many applications of interest can be limited to a 
small or medium-sized vocabulary, and they have a restricted semantic domain. For tasks 
of this kind, it seems perfectly feasible to build systems by means of a finite-state model, 
not only of the syntactic constraints of the languages involved, but also of the required 
translation mapping itself. Moreover, since all these models can be automatically learned 
from training data, the building of Speech Translation and Understanding Systems for 
these tasks can be done at low development costs. 

An important bottleneck of this approach lies in the availability of large corpora of 
paired sentences in different languages. It is likely that these resources will be available 
in the near future, in the same way as corpora for training acoustic and language models 
exist today. Note also that inherent to OSTIA is its independence from alignments at 
any sub-sentence level. This implies that the building of these corpora does not need to 
take care of these costly alignments. 

The ability of SSTs to defer translation until the necessary amount of input data has 
been seen is clearly an advantage, but it can lead to models that grow excessively when 
confronted with large vocabularies which include many different possibilities for words 
in similar syntactic categories. The problem is that SSTs use the states as "storage" 
for the information seen. A typical example is the translation of Spanish noun phrases 
into English, which normally involves a reversal of the order of adjectives. That means 
that there must be at least an state for each possible combination of adjectives. A way 
of solving this problem is the use of word categories. The process of translation can 
then be decomposed in three stages: first the successive words that appear in the input 
sentence are labelled and substituted for their categories together with a numerical label 
indicating their relative position in the sentence; then the transducer is employed to obtain 
a similarly labelled sentence in the output language; finally the numbered labels, with help 
of a dictionary, are employed to substitute the output categories for their corresponding 
words. The advantage of this approach is that the category transducer can be learned 
using significantly less training pairs and have lower error rates and smaller sizes than the 
ones learned with the original approach [16]. 
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