
EFFICIENT PARSING USING PREFERENCES

Herman CAEYERS Geert Adriaens
Siemens CSL Siemens CSL and

University of Leuven

C/O METAL Project
M. Theresiastraat 21
B-3000 Leuven
Belgium

Abstract

In this paper we address the problem of choosing the best analysis
of a sentence from the set of possible ones given a parsing mechanism
that explores multiple alternatives. The role of such a system in an
application environment where response time is critical is explained.
We give a detailed description how this is done in the METAL automatic
translation system.

0. Introduction

The aim of automatic translation is to give a correct (most 'useful'
w.r.t. postediting) and unique translation for each sentence of a text.
To be correct all the necessary rules and information applied in these
rules must be there. However, correctness is a relative notion. In a
restricted context an analysis of a sentence part can be correct,
although further analysis might reject it. The current state of natural
language processing still restricts the context in which the linguist
can work with the consequence of overgeneration of analyses.
Nevertheless, some of the results might have a higher likelihood than
the others. The mechanism which compares the interpretations is called
a preference mechanism. A question to ask when building such a
mechanism is at which moment of the analysis the ordering of
interpretations will be executed. A frequent approach is to order them
gradually during the parse based on specific constraints. In this
approach a numeric value, the score, is calculated, independently for
each competing interpretation. This can be done by counting the number
of constraints satisfied by the interpretation (Wilks 1973) where these
constraints might be assigned relative weights by the linguist
(Robinson 1982) or calculated automatically (Papegaaij 1986). Opponents
to this approach argue that the score is often based on the way
interpretations are built and that it is unnatural for a linguist to
associate scores to particular structures (Petitpierre et al. 1987).

279

Their proposal is to keep the preference mechanism in a separate module
and to execute it only when all the interpretations are available. The
mechanism results then in the comparison of the interpretations using
preference statements expressed by the user in the form of rules.
Theoretically, we can agree with this viewpoint but we do not consider
it as being feasible in an application environment where response time
is critical. In the METAL automatic translation system, the grammars we
use are fairly large and syntactic analysis can consume lots of CPU-
time (rule applications are computationally expensive). Since there is
only a limited amount of (real) time available for this process, it is
not possible to pursue all alternatives during syntactic analysis
exhaustively. Instead, we need to find ways to get the best possible
analysis for a sentence given severe resource constraints on the number
of rules we are allowed to consider. Therefore we will opt for a
mechanism that makes the parsing efficient and which makes use of
transparent, controlled decisions of the linguist.
The preference mechanism we will describe is a modification of the one
J. Slocum originally wrote for METAL (Bennett and Slocum 1985). For
clarity's sake we first briefly give the main characteristics of the
METAL parser.

1. The parser

In the METAL Automatic Translation System a chart parser is used.
Chart parsers are a popular type of parsers that have interested a lot
of researchers over the last two decades (see e.g. Kay 1967, 1980;
Kaplan 1973; Winograd 1983, Thompson & Ritchie 1984), and that have
found their way into many systems because they belong to the most
efficient parsing algorithms for natural languages. Their distinctive
characteristic is that they avoid recomputation of syntactic
substructures by storing them in a special data structure, the chart.
As Winograd states it, they "make it possible to achieve the two
principles of efficient parsing: only do what is relevant and don't
do anything more than once" (1983,116). A chart consists of nodes
and edges. Each node represents a position in the input sentence,
whereas the edges represent partial or complete phrases that have been
built across the nodes while trying to apply the grammar rules to the
input. Partial phrases are called active edges, complete phrases are
called inactive edges. The whole parsing process aims at turning active
edges (i.e. partially applied rules) into inactive ones, looking for an
inactive sentence edge spanning the complete input. In relation to top-
down versus bottom-up parsing, a chart parser is neutral with respect
to this dichotomy. Depending on whether the inactive edges or the
active ones dominate the algorithm, it will be more of a bottom-up
parser or more of a top-down one respectively. If the addition of a
complete (inactive) edge causes proposing new rules to try out, the
parser is bottom-up; if the addition of an active edge (itself a
hypothesis about phrases to come) causes the proposing (more
hypotheses), the parser works top-down.

The METAL chart parser is a bottom-up parser: whenever a phrase is
built that forms the left corner of one or more grammar rules (i.e. the
leftmost right-hand-side element), all these rules will be turned into
active chart edges looking for phrases to complete them. When all

280

right- hand-side phrases are available, the rule can be applied, i.e.
the parser will attempt to build an inactive (complete) edge spanning
the found phrases with as a category the left-hand-side of the rule.
This attempt will succeed if all the tests of the rule in question are
successful.
The continuous interplay of active and complete edges does not happen
via a simple linear structure like a stack or queue, but it is governed
by a more complex agenda structure. In order to make the parser
efficient the agenda is partitioned into priority classes. Each task
(i . e . each creation of an active edge or attempted creation of a
complete edge) is evaluated as to its priority and it then gets written
into the appropriate priority class. Before we can explain how this is
done we have to introduce the notions of static leveling and dynamic
preferencing.

2. Static Leveling

In the METAL grammar the rules are partitioned into 10 classes by the
numeric LVL ("level") attribute that is assigned to each rule. A high
LVL attribute represents the grammar writer's confidence that the
rule (and the phrase it builds) will be part of a syntactic analysis
for any given sentence once the rule has fired. Mathematically this can
be expressed by the following formula which is based on the probability
of a rule to appear in an interpretation, given that this rule was
successful:

productive calls
LVL = 10 x -------------------

successful calls

A successful rule is considered productive when the resulting subtree
appears at least once in an interpretation of a well-formed sentence.
Static leveling enables the linguist to make explicit certain
linguistic observations in the grammar. Rules that generalize very
frequent constructions will get higher levels than rules that involve
the same categories in less frequent constructions (e.g. the rule
NO —> ADJ that rewrites an adjective directly to a nominal constituent
has a much lower level than the rule NO —> ADJ NO that reflects the
(more frequent) adjectival use of an ADJ. A rule with a high level will
result in a high priority for any task that is spawned by this rule.
That way, rules with a high LVL are tried first; rules with a low LVL
are tried only when the high LVL rules have been found to be
inapplicable.

3. Dynamic Preferencing

Every phrase that gets built has a preference attribute, called score,
the grammar writer's relative confidence as to whether the parse
containing this phrase will be the preferred one among a set of several
possible alternative parses. The score of a tree related to a parse
will be computed from the average of the preference attributes on the

281

nodes of the tree. For nodes built by a grammar rule this attribute
will be the level of that rule. For a lexical node the maximal level 10
is taken as a preference value by default. Following the definition of
level the probability of a lexical item to occur in an interpretation
is in most cases maximal. Based on the definition of LVL we can say
that the meaning of the score of a parse tree is the probability of it
to occur in the well-formed interpretation.

For the following general parse tree:

 0

1 i n

il ij im(i)

ijl ijk ijl(ij)

The score is the following:

LVL(0) + ∑ LVL(i) + ∑ LVL(ij) + . . .
i i,j

SCORE(0) = ---
1 + n + ∑ m(i) + ∑ l(ij) + ...

i i , j

The sum of all levels is divided by the total number of: nodes. From
this we can derive the more practical recursive formula:

LVL(0) + ∑ SCORE(i) x z(i)
i

SCORE(0) = --------------------------------------
1 + ∑ z(i)

i

with z(i) = 1 + m(i) + l(ij) + , representing the number of nodes
in the subtree i.

In the calculation of the score of a parse tree, each node is treated
on equal terms. This means that e.g. a node built by morphosyntactic
rules (which are also part of the METAL grammar handled by the chart
parser) has the same contribution to the final score as a node built by
purely syntactic ones. If we compare syntactic structures, then we can
remark that big structures (many nodes) have a bigger contribution to
the score than small structures (few nodes), which seems to be
sensible. The problem now is that some lexical nodes, like idioms, are
structures. Therefore we have to give such a node the same weight as
the compositional analysis of it. This will be done automatically by

282

considering the idiom as an analysis tree built of an amount of nodes
equal to:

3 x (# words in the idiom)

This formula gives the estimated maximal amount of "virtual" nodes
building the idiom. The factor 3 is the result of a statistical
investigation. Each of these virtual nodes has the maximal preference
attribute 10.

4. Combining static leveling and dynamic preferencing

Both static leveling and dynamic preferencing are used when the parser
has to decide which tasks to execute. The basic idea behind this is the
following:

- Prefer tasks involving rules with a high level (because they are
more likely to yield a parse)

- Prefer tasks involving phrases with high preference factors (because
they are more likely to yield a preferred parse)

An important part of this scheme is how to combine these two heuristics.
We have currently implemented a scheme where the static level of a rule
serves as the major factor taken into account when selecting tasks from
the agenda. Within a set of tasks where all the rules belong to the
same level, we use the dynamic preferences of the phrases that are
involved in the various tasks as an additional factor in ordering these
tasks. Dynamic preferencing is a refinement of the static leveling
which is needed for the linguist to keep the ordering of the grammar
rules under control.
In the actual implementation this works by partitioning the agenda into
111 priority classes. The priority of a task is a numerical factor that
is the combination of the static level of the rule and the
preferences of the phrase:

∑ SCORE(i) x z(i)
i

Priority class = 10 x LVL(0) + -----------------
 ∑ z(i)
 i
with z(i) as defined before.

The parser loops through the agenda vector, starting from the highest
priority class. As soon as it hits an agenda slot containing tasks to
be executed, it retrieves them from the agenda, zeroes the slot, and
executes all the tasks (creating new ones in the process). It then
starts again from the highest priority class. The process either stops
successfully when one or more complete (S-buiding) parses have been
found, or it stops unsuccessfully when its agenda is empty and no S has
been built. (In practice, we stop the parser after a preset maximum
number of attempted rule applications.) When parsing is successful,
the unique parse or the one with the highest preference (if there are
several) is handed to the translation component.

283

5. Influencing dynamic preferencing

Sometimes it is useful to modify slightly the preference attribute of a
rule to influence the score of a parse tree with the intention to
promote or suppress a specific interpretation. Changing the level of
the rule is not appropriate here, because this will directly affect the
major index of the priority class and by consequence also the rule
ordering. It is possible that a rule always has to be executed before
another one, even if the result of the execution has a lower
probability of occurrence than that of this other one. Therefore we
introduced an operator in the grammar (called PRF), which can be used
within a rule to modify its level when calculating the score. More
specifically, the modification of the level especially affects the
calculation of the score. Setting a PRF in a rule must have an
immediate and predictable effect on the score of the sentence.
Therefore the effect must not be influenced either by the place in the
tree, or by the size of the tree. The following modification of the
score by a PRF fulfils these requirements:

 LVL(0) + PRF(0) + ∑ SCORE(i) x z (i)
i

SCORE(0) = ---------------------------------
1 + ∑ z (i)

i

where the value of PRF is an integer ranging between (10 - LVL) and
(0 - LVL). LVL is the level of the rule where the PRF occurs. Using a
preference within a rule means using another level in the calculation
of the score which is the average of the levels in the parse tree.
There is also the possibility to influence the reading of a lexical
item by setting a PRF on its node. If a lexical entry has a PRF the
default value 10 of the preference attribute will be decreased by this
preference. Also here the lexical preference will mainly affect the
score of the parse tree. An example is the way how ah idiom reading of
some words can be promoted or suppressed with respect to the
compositional one by using a PRF.
In practice, the result of introducing a PRF does not affect the
interpretations of a sentence. They will only be ordered differently as
a consequence of giving more or less weight to some substructures.

6. Example calculation

The following figure represents a parse tree with on the nodes the LVL
of the rule that built the node and the possible PRFs figuring in the
rule. For each node the score has been calculated and also the priority
class of the tasks dealing with the rule.

284

7. Further development

The heuristics presented in the preceding section have proved to work
well in the current production release of Metal. The speed of
translation is manifestly increased and the quality is improved.
However, current work on developing different language pairs has
pointed out that there is room for improvement. An important
consequence of the organisation of the agenda into priority classes is
the fact that the parser does not operate in strictly left-to-right
fashion: the tasks with the highest priority that are processed first
might apply to phrases anywhere in the tree. This means that the left
context of a rule application is not guaranteed to. be completely
specified in the chart. Therefore the top-down filtering schemes which
are typically proposed for bottom-up chart parsers (see e.g. Kay 1980)
cannot be used here. We cannot discard potential rule applications on
the grounds that they are incompatible with the left context because
this context may not have been exhaustively analysed yet.
A possible alternative would be to use the left context (insofar as it
is specified) as an additional parameter when computing the priority
class of a task. This way an active edge with a given priority that
needs a constituent of a certain category at a given vertex in the
chart would be used to influence the priority of a task that could
produce a phrase of such a category at the appropriate location in the
chart.

285

8. Conclusion

We have described the ordering heuristics within the current version of
METAL. These are used to arrive at a desired syntactic analysis given
the complexity of the linguistic database and the resource constraints
in a production system. With this preferencing mechanism the quality
and the speed of the translation have been drastically increased.
Special attention was given to the transparency of the heuristic
information which has to be introduced by the linguist. Finally, we
have also suggested how the current scheme can be further improved.

Acknowledgements

We would like to thank Manfred Immler and Rudi Gebruers for their
fruitful suggestions.

References

BENNETT, W. S. and SLOCUM J. (1985)
- The LRC machine Translation System. In Computational
linguistics 11.

KAPLAN, R. M. (1973)
- A general Syntactic Processor. Algorithmics, New York.

KAY, M. (1967)
- Experiments with a powerful Parser. In Proceedings of the
Second COLING Conference, Grenoble.

KAY, M. (1980)
- Algorithm Schemata and Data Structures in Syntactic Processing.
CSL-80-12, XEROX PARC, October.

PAPEGAAIJ, B. ; SADLER, V. and WITKAM, T. (1986)
- Word Expert Semantics: an Interlingual Knowledge Based
Approach. Foris, Dordrecht, Holland.

PETITPIERRE, D. et al. (1987)
- A model for preference. In Proceedings of the 3rd Conference of
European Chapter of the ACL, Copenhagen.

ROBINSON, J.J. (1982)
- DIAGRAM: A Grammar for Dialogues. Communications of the ACM
25(1).

THOMPSON, H. and G. RITCHIE (1984)
- Implementing Natural Language Parsers. Chapter 9 in T. O'Shea
and M. Eisenstadt, Artificial Intelligence. Tools, Techniques,
and Applications. Harper&Row, New York.

WILKS, Y. (1973)
- An Artificial Intelligence Approach to Machine Translation. In:
Schank, R. and Colby, M. Eds., Computer Models of Thought and
Languages. W.H. Freeman and Co, San Francisco, California.

WINOGRAD, T. (1983)
- Language as a Cognitive Process. Volume 1: Syntax. Addison-
Wesley, Reading Mass.

286

